
8 ~
BG
EJEJ

EJEJ

FLUKE AND PHILIPS -THE GLOBAL ALLIANCE IN TEST & MEASUREMENT

PHILIPS

LOGIC ANALYZERS
PM 3580 I PM 3585

Custom disassembler
PF 8629/30

Dual logic analysis

PF8629/30 - Custom Disassembler
Software Version 2.0

IE, Test & Measurement
© Copyright Philips Electronics N.V. 1993

All rights reserved

Publication Number 4022 104 90662

PF 8629/30 Custom Disassembler

Guarantee
Statement

T his Philips guarantee is in addition to all rights which
the buyer may have against his supplier under the
sales agreement between the buyer and the supplier
and according to local legislation.

Philips guarantees this product to be free from defects in
material and workmanship under normal use and service
for a period of one (1) year from the date of shipment. This
guarantee does not cover possible required standard
maintenance actions. This guarantee extends only to the
original purchaser and does not apply to any product or
part thereof that has been misused, altered or has been
subjected to abnormal conditions of operation and han­
dling.

Fluke/Philips-supplied software is guaranteed to be prop­
erly recorded on non-defective media. We will replace
improperly recorded media without charge for 90 days af­
ter shipment upon receipt of the software. Our software is
not guaranteed to be error free.

Philips' obligation under this guarantee is limited to have
repaired or replace a product that is returned to an autho­
rized Philips Service Centre within the guarantee period,
provided that Philips determines that the product is defec­
tive and that the failure has not been caused by misuse,
alteration or abnormal operation.

Guarantee service for products installed by Philips will be
performed at the Buyer's facility at no charge within Philips'
service travel area; outside this area guarantee service will
be performed at the Buyer's facility only upon Philips' prior
agreement and the Buyer shall pay Philips round trip travel
expenses.

If a failure occurs, send the product, freight prepaid to the
Service Centre designated by Philips with a description of
the difficulty. At Philips' option, repairs will be made or the
product will be replaced. Philips shall return the product,
F.O.B. Repair Centre, transportation prepaid, unless the
product is to be returned to another country, in which case
the Buyer shall pay all shipping charges, duties and taxes.
Philips assumes NO risk for damage in transit.

Pageiii

Disclaimer

Page iv

PF 8629/30 Custom Disassembler

••···.·•.••• :..:::.: • .: •• ::.:.:::.::::;:,::::::·.JK-:::

The foregoing guarantee is exclusive and is in lieu of all
other guarantees, expressed or implied, including but not
limited to any implied guarantee of merchantability, fitness,
or adequacy for any particular purpose or use. We shall
not be liable for any direct, indirect, special incidental, or
consequential damages, whether based on contract, tort,
or otherwise.

Some countries or states do not allow the foregoing limita­
tions. Other rights may also vary.

© Copyright Philips Electronics N.V. 1993

Printed in the Netherlands

PF 8629/30 Custom Disassembler

Preface -: •••••••••••• -..: •••••• .+. ••• /-·· , ;.,nw~: ... ·········-·

Thank you for purchasing the PF 8629/30 Custom Disas­
sembler package.

Should you have any suggestions on how this product
could be improved then please contact your local Fluke/
Philips representative. Fluke/Philips addresses are listed
in chapter 11 of the PM 3580/PM 3585 Logic Analyzers
User Manual.

Pagev

PF 8629/30 Custom Disassembler

Page vi

PF 8629/30 Custom Disassembler

Table of Contents
Guarantee Statement iii
Disclaimer iv
Preface v

Introduction 1
Key Features 1-2
Microprocessor Adapters 1-2
Installation 1-3
Creating a Custom Disassembler 1-4

Disassembler Description File 1-4
Invocation of the Disassembler Compiler 1-4

Loading a Custom Disassembler 1-5
Disassembler Parameters 1-5

Display Options 1-6
Translation Options 1-6

Activating/Deactivating the Disassembler 1-7
About this Manual 1-7

Writing a Custom Disassembler 2
The Hypothetical Microprocessor 2-2
Disassembly Process 2-4
Lookup Table 2-5
Index Table with local variables 2-8

Local Variable 2-8
Print Sample Value 2-10

Detection of Illegal Opcodes 2-11
Global Variables 2-12
Display Section 2-13
Data Transfers 2-14

Completing the Disassembler Description File 2-16
Declaration of Tables and Variables 2-16
Label and Clock Definitions 2-17
Start Section 2-17
Complete Example 2-17

About Processing Speed 2-20
Rearrange Lookup Tables 2-20
Splitting up Lookup Tables 2-20
Usage of Index Tables 2-20

Disassembler Description Language Reference 3
Introduction 3-3
File Structure 3-5

The Declarative Part 3-6
The Tabular Part 3-7

%% DEF Section 3-8
Global Variables 3-8

Page vii

Page viii

PF 8629/30 Custom Disassembler

Constants 3-9
%% EQU Section 3-9
%% FORMAT Section 3-11

Logo Definition 3-11
Header Definition 3-12
Pod Threshold Definition 3-13
Symbolic Output Control 3-1 4
Synchronization Blocksize Definition 3-14
Clock Definition 3-16
Label Definition 3-22
Clock Sequence Definition 3-29
Tab Settings 3-31

%% START Section 3-32
Tabular Section (%%<name>) 3-33

Lookup Tables (LT) 3-33
Index Tables (IT) 3-33

General Elements 3-35
Lines 3-35
Comments 3-35
Spaces and Tabs 3-36
Upper and Lower Case Characters 3-36
Conditions and Commands 3-37

Conditions 3-37
Pattern Conditions 3-37
Relational Conditions 3-40
Clock Sequence Conditions 3-41
AND-ing and OR-ing of Conditions 3-42

Pattern Expression 3-42
Commands 3-43
Display Selection Commands 3-44

PROG 3-45
Instructions 3-46
UNUSED 3-46
SKIP 3-46
MR 3-47
MW 3-48
IOR 3-48
IOW 3-48

Positioning in a Measurement 3-49
GOTO [i] 3-49
TELL 3-51
NEXT 3-51
PREV 3-52
GOTOPART[i] 3-52
TELLPART 3-53

PF 8629/30 Custom Disassembler

N EXTPART 3-53
PREVPART 3-54
UNGET 3-55

Instructions 3-56
Print Commands 3-57
Special Commands 3-59

UNPUT 3-60
ERROR 3-60
Transfer Control to other Tables 3-60

Writing a 68000 Disassembler 4
Disassembler labels 4-3
Disassembler Status Selection 4-4
Instruction Decoding 4-4
Finding additional opcodes 4-5
Display additional opcodes 4-7
Computing branch offsets 4-7
Sub values in the instruction 4-9
Computing return address 4-9
Searching datatransfers 4-9
Suppressing unused opcodes from display 4-10
Processing data transfers 4-13
Branch instruction 4-13
Conditional branches 4-14
Static char variable usage 4-15
Finishing the example disassembler 4-17

Writing a 68030 Disassembler 5
Disassembler labels 5-3
Disassembler part label 5-4
Positioning within a disassembler state 5-4
Processing data transfers 5-5
Search following opcode 5-6
Branch instructions 5-6
Unused opcode fetches 5-8
Using data transfer states 5-10

Error Messages 6
Warnings 6-2
Error Messages 6-3

Index

Pageix

PF 8629/30 Custom Disassembler

Pagex

PF 8629/30 Custom Disassembler

Chapter 1

Introduction

Key Features 1-2
Microprocessor Adapters 1-2
Installation 1-3
Creating a Custom Disassembler 1-4

Disassembler Description File 1-4
Invocation of the Disassembler Compiler 1-4

Loading a Custom Disassembler 1 -5
Disassembler Parameters 1-5

Display Options 1-6
Translation Options 1-6

Activating/Deactivating the Disassembler 1-7
About this Manual 1-7

Introduction

Key Features

Microprocessor
Adapters

Page 1-2

PF 8629/30 Custom Disassembler

T he PF 8629/30 package allows you to develop your
own disassemblers, referred to as Custom
Disassemblers, that can be executed on the PM 3580/
PM 3585 family of logic analyzers.

This product can be used to develop disassemblers espe­
cially for those microprocessors or busses and their
protocols for which a standard disassembler package* is
not available such as for example your own company pro­
prietary microprocessors.

The key features of this package are as follows:

• Simple, yet powerful Disassembler Description Lan­
guage.

• No knowledge of high-level-language programming re­
quired.

• Supports microprocessors as well as busses and their
protocols.

• Supports up to 32-bit microprocessors.

• Disassembler compiler program runs under MS-DOS.

To measure microprocessor signals you can use special
microprocessor adapters. These adapters provide a con­
venient connection to all the signals of the specific
microprocessor. The adapters that have been designed for
the PM 3580/PM 3585 family of logic analyzers contain
special RC connectors to which pod cables can be directly
connected. If you need to develop your own adapter, you
can use these special RC connectors in your own design.
The RC connectors can be separately purchased from
your local Fluke/Philips sales representative, and come in
sets of ten connectors (order number: PF 8603/20).

* The number of microprocessors supported by the PM 3580/
PM 3585 family of logic analyzers is continuously growing. You
can obtain an up-to-date list of all microprocessors supported
from your local Fluke/Philips sales representative.

PF 8629/30 Custom Disassembler Introduction

Installation

The disassembler compiler program runs under MS-DOS.
Any IBM-type or IBM compatible PC can therefore be used
to develop a Custom Disassembler. The program is not
copy protected. However, copying is restricted to the terms
indicated in the licence agreement.

To install the program in the current directory on your hard
disk or another previously formatted diskette, type the fol­
lowing command after the system prompt:

<drive>: INSTALL [RETURN]

<drive> should be replaced by the drive letter containing
the custom disassembler package diskette. The installa­
tion program is now started. "Install" will copy the required
files to the current directory. After these files have been
copied "Install" will ask you whether the example files
present on the distribution disk should also be copied. In­
stallation is then completed.

The example files are described in chapter 2, "Writing a
Custom Disassembler", chapter 4, "Writing a 68000 disas­
sembler" and chapter 5, "Writing a 68030 disassembler" of
this manual.

Page 1-3

Introduction

Creating a
Custom
Disassembler

Disassembler Description
File

Invocation of the
Disassembler Compiler

Two t::Joppy;:,ystem.or
Hart!Disk•Syst~m

Qf11~ Floppy system•.·.···

Page 1-4

PF 8629/30 Custom Disassembler

A disassembler developed with the disassembler compiler
program is written to a file with file extension .DIS. This file
has a PM 3580/PM 3585 disassembler format and can be
loaded as such.
The generation process is shown as follows:

Disassembler
Description File

<name>.DSC

Disassembler
Compiler

CDISA80.EXE
+ TEMPLATE

Custom
Disassembler

<name>.DIS

The disassembler description file is a DOS-text file that
has to be created according to the syntax requirements
outlined in this manual.
The default extension of this file is .DSC. You may use any
editor or word processor that can produce DOS-text files.

The disassembler compiler program (CD1SA80.EXE) is in­
voked by typing the following command after the system
prompt:

[<drive>:]CDISA80 <name>.DSC

On a two floppy system or a hard disk system the resulting
file <name>.DIS is placed in the current directory.

On a one floppy system make sure the current drive is A:
Suppose your description file is called MYDISA.DSC. In­
voke the CDISA80.EXE program by typing:

A:\> B:CD1SA80 MYDISA.DSC [RETURN]

You will be asked to swap disks so the CDISA80.EXE pro­
gram can be started.

PF 8629/30 Custom Disassembler Introduction

Loading a Custom
Disassembler

Disassembler
Parameters

The disassembler <name>.DIS created by the disassem­
bler compiler program can be loaded in the same way as
standard disassemblers are loaded on your PM 3580/
PM 3585 logic analyzer.

Copy the disassembler onto a 3.5" DOS diskette. Put this
diskette in the disk drive of your logic analyzer. You can
now load the disassembler using the Option field in the
Configuration menu or the LOAD command in the 1/0
menu.

The disassembler software and incorporated Logic Ana­
lyzer settings are then loaded. Please also refer to chapter
?,"Disassemblers", of your PM 3580/PM 3585 User Man­
ual.

After a disassembler has been loaded, an extra field, Pa­
rameters, is shown in the state list display.

Pressing SELECT on this field shows a popup menu via
which different disassembler parameters can be set in or­
der to control the disassembly process. An example of this
disassembler parameter popup menu is shown below.

This disassembler parameter popup menu is the same as
that for the standard microprocessor support packages.
Please also refer to chapter 7, "Disassemblers", of your
PM 3580/PM 3585 User Manual.

The fields on the Disassembler Parameters menu are
grouped in two sections:

Page 1-5

Introduction PF 8629/30 Custom Disassembler

Display Options

Translation Options

Page 1-6

Display This controls which state samples are shown.

Translate This controls the disassembly process.

The display options determine which and how disassem­
bled instructions are displayed.

The Program Context Mode field determines which state
samples selected by custom disassembler commands
should be shown and whether state samples captured with
external clocks that are not defined by the disassembler,
should also be shown.

The Show Data Transfers determines if state samples se­
lected by the custom disassembler data transfer
commands are shown.

The fields related to translation are Restart and Synchroni­

zation (with r:;:;;Jsync).

Restart determines whether a new translation (disassem­
bly) should be performed on the current measurement as
soon as the popup is closed.

The Synchronization field and other fields that may subse­
quently appear on that line, determine how the
disassembler searches for proper instruction starting
points.

For automatic synchronization, the disassembler starts at
the earliest point in memory, and continues correcting itself
until a properly synchronized disassembly is achieved.

For a manually synchronized disassembly, the disassem­
bler starts at the position the Y cursor is set to. Dependent
of the custom disassembler "at Y" fields may be present.

The "Disa symbolic" field specifies whether the disassem­
bler uses symbols on producing disassembler output. This
options field is NOT effective for logic analyzer system
software versions below 2.01.

PF 8629/30 Custom Disassembler Introduction

Activating/
Deactivating the
Disassembler

About this
Manual

If a disassembler has been loaded, disassembly can be
enabled or disabled using the field called Oisa in the state
data display menu.

When disassembly is enabled, the state display shows an
additional column containing a translation of the data
stored in the acquisition memory. When disassembly is
disabled, the additional column is not shown.

Note: If no disassembler has been loaded, the Disa field
shows "None" and is not selectable.

The next chapters contain language reference details and
full blown examples of disassemblers covering different
levels of complexity. A brief outline of these chapters fol­
lows.

Chapter 2, "Writing a Custom Disassembler", describes by
means of a simple example how a custom disassembler is
developed and how it is described in the Disassembler De­
scription Language.

Chapter 3, "Disassembler Description Language Refer­
ence", describes the exact syntax for each of the language
elements.

Chapter 4, "Writing a 68000 Disassembler" contains an ex­
ample how to write a disassembler for an advanced
pipelined microprocessor such as the 68000. This exam­
ple shows how to handle pipeline compensation and how
to synchronize the disassembler to find the instructions by
using the microprocessor status lines and the information
available on the ADDRESS lines of the microprocessor.

Chapter 5, "Writing a 68030 Disassembler" gives an exam­
ple how to upgrade an existing 68000 disassembler to a
68030 disassembler. This example shows the handling of
multiple instructions in one disassembler state.

Page 1-7

Introduction

Page 1-8

PF 8629/30 Custom Disassembler

Chapter 6, "Error Messages", explains the error messages
and warnings that may be generated by the Disassembler
Compiler Program.

The last part of this manual contains the index.

PF 8629/30 Custom Disassembler

Chapter 2

Writing a Custom
Disassembler

The Hypothetical Microprocessor 2-2
Disassembly Process 2-4
Lookup Table 2-5
Index Table and Local Variables 2-8

Local Variable 2-8
Print Sample Value 2-10

Detection of Illegal Opcodes 2-11
Global Variables 2-12
Display Section 2-13
Data Transfers 2-14

Completing the Disassembler Description File 2-16
Declaration of Tables and Variables 2-16
Label and Clock Definitions 2-17
Start Section 2-17
Complete Example 2-17

About Processing Speed 2-20
Rearrange Lookup Tables 2-20
Splitting up Lookup Tables 2-20
Usage of Index Tables 2-20

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

The Hypothetical
Microprocessor

Writing a Custom Disassembler requires knowledge of
the specific microprocessor as well as the Disassem­
bler Description Language.

In this chapter we will develop a Custom Disassembler for
a hypothetical microprocessor. While developing this dis­
assembler we will also learn the basics of the Dis­
assembler Description Language.

Let us assume this microprocessor has instructions of dif­
ferent lengths: 1 , 2 or 3 bytes. The first byte of an
instruction contains the opcode. In two-byte instructions
the second byte is a databyte and in three-byte instructions
the second and third byte form a 16-bit address item (high
byte first).

The microprocessor has a separate R/WN line and OPC/
DN line respectively indicating a read/write cycle and, for
read cycles, whether an opcode or data is being fetched.
The microprocessor has a single clock "CLK" and a spe­
cial signal "QUAL".

For the purpose of this example we will only look at a part
of the microprocessor's instruction set. This part is de­
scribed below.

Object Code Instruction* Operation performed
(Hex) Mnemonic

Oi LOAD

10 dd LOAD

1i dd LOAD

20 hh II LOAD

2i hh II LOAD

30 hh II STORE

3i hh II STORE

4i ADD

7i DECR

FO hh II JUMP

F1 hh II JUMP

F2 hh II JUMP

Operand

A,Ri

A,data

Ri,data

A,addr

Ri,addr

A,addr

Ri,addr

A,Ri

Ri

addr

Z,addr

NZ,addr

Load accumulator with the contents of register Ri

Load immediate data into accumulator

Load immediate data into register Ri

Load accumulator from directly addressed memory location

Load register Ri from directly addressed memory location

Store accumulator contents in directly addressed memory location

Store contents of register Ri in directly addressed memory location

Add contents of register Ri to accumulator

Decrement contents of register Ri

Jump to instruction at address indicated

Jump to instruction at address indicated if zero flag is set

Jump to instruction at address indicated if zero flag is not set

Ri (i ~1, 2, 3, 4): General Purpose Registers

Page2-2

PF 8629/30 Custom Disassembler Writing a Custom Disassembler

+E18.11
+ir,til12
+GHiH3
+0814

r. +1~,z,1s
*€n31G
+1:1817

+f,ll;J19
+0820
+0021
+fill!.122

S· "ftBL~23
+lillll24
~E1©25
+1~1z126
+0.LS!.27

1
1
1
1
fJ
f}J

l£1.@D7
12,n
i(l008
illi?itl9
t3fHDa
000t,
(!t~Ullr:

1:JElOd

fH2H}Ja

(lft\)b
t111;ii;Jc
!!11,11:ld
B00e.
1~11)0f

'3fllrD
2EH:H~
r,:n"H

Now assume this microprocessor executes the following
program part starting at address OOOOH:

Address Instruction

0000 LOAD R1,1200
0003 LOAD R2,2
0005 LOAD R4,1201
0008 LOAD A,R4
0009 ADD A,R1
OOOA DECR R2
OOOB JUMP NZ,0009
OOOE STORE A,2000
0011 LOAD A,5000
0014

The logic analyzer has been set up to capture state data.
The state data captured for the program part shown above
looks as follows:

+ 22t:1rr2,
04 + .2.4Bird
41
72 .. ·f. lS0t::1S
f2 .. + 3€101\s
f1JZ1 + , 3 21'.lns
iz,9 + 3 4f!Jni,

72 +- . :3.8Ek,s ,,
f2 +- 4 ~1~/ns v
190 + 426ns ,;
09 + 44tins ·;
3El + 4tiine, ;
26J +· 4 8J!Jns 1

1]f~l + 5. f:)f£1rt~ V

ee + 52€1ns v
2f• + 54Hns v

This acquisition is available on disk with the file name
EXAMPLE.NEW

Page2-3

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

Disassembly
Process

Page2-4

With this package we will develop step by step a custom
disassembler for the hypothetical microprocessor. The re­
sulting display after disassembly will show:

The disassembler description file is available on disk
with the filename EXAMPLE.DSC.
Use the CD1SA80 compiler to create a loadable disas­
sembler EXAMPLE.DIS.

.=.=.:.:.:.::•:•.•:•:•.=.•.•::.:.:;::•.•.•:•:•:.x:•:•:•:•:•:•x:•k

The disassembly process involves the following basic
steps:

1. Initialize sample pointer. The disassembler uses a
sample pointer to keep track of it's position in the
measurement. The initialization of this pointer is done
by the disassembler.

PF 8629/30 Custom Disassembler Writing a Custom Disassembler

Lookup Table

2. If the sample pointed to by the sample pointer is an
opcode, then print the opcode in the disassembler
output column and proceed with step 3.
If the sample pointed to by the sample pointer is a
memory read or write print "mr" or "mw" in the disas­
sembler output column and proceed with step 4.

3. If the instruction, identified by the opcode, requires
one or more additional bytes, then read those bytes
(samples) and print them after the opcode. Proceed
with step 4.

4. Increment the sample pointer. So it will point to the
first sample of the next instruction.

5. If more samples are left, then go back to step 2. Else,
stop.

The whole disassembly process as described above can
be controlled by means of a lookup table. The values of the
opcodes are used as entry points in this table. The differ­
ent entries in the table determine the string to be printed,
and indicate whether additional bytes (samples) are re­
quired with this opcode to complete the instruction. The
third step of the disassembly process indicated above is
thus programmed as a command in the lookup table for
those opcodes requiring additional bytes. If no additional
bytes are required the disassembly for the instruction is fin­
ished.

The lines for our lookup table are built as follows:

If ((OPC/DN = 1} AND (DATA= <code>)) DO <commands>

Using the Disassembler Description Language syntax this
is written as:

(OPC/DN = 1, DATA= <code>) ! <commands> !

The brackets "(" and ")" relate to the word "If". The "," is
used for "AND" and the pair of exclamation marks "!" re­
places the word "DO".

The commands we need for our example are: "Print
string", "Read next sample" and "Print sample value".

Page2-5

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

(OPC/DN = ObO, R/WN = ObO)
(OPC/DN = ObO, R/WN =0b1)
(OPC/DN = Ob1, DATA= Ox01)
(OPC/DN = Ob1, DATA= Ox02)
(OPC/DN = Ob1, DATA= Ox03)
(OPC/DN = Ob1, DATA= Ox04)
(OPC/DN = Ob1, DATA=Ox10)
(OPC/DN = Ob1, DATA= Ox11)
(OPC/DN = Ob1, DATA= Ox12)
(OPC/DN = Ob1, DATA=OX13)
(OPC/DN = Ob1, DATA=OX14)
(OPC/DN = Ob1, DATA= Ox20)
(OPC/DN = Ob1, DATA= Ox21)
(OPC/DN = Ob1, DATA= Ox22)
(OPC/DN = Ob1, DATA= Ox23)
(OPC/DN = Ob1, DATA= Ox24)
(OPC/DN = Ob1, DATA= Ox30)
(OPC/DN = Ob1, DATA= Ox31)
(OPC/DN = Ob1, DATA= Ox32)
(OPC/DN = Ob1, DATA= Ox33)
(OPC/DN = Ob1, DATA= Ox34)
(OPC/DN = Ob1, DATA= Ox41)
(OPC/DN = Ob1, DATA= Ox42)
(OPC/DN = Ob1, DATA= Ox43)
(OPC/DN = Ob1, DATA =0x44)
(OPC/DN = Ob1, DATA =0x71)
(OPC/DN = Ob1, DATA= Ox72)
(OPC/DN = Ob1, DATA= Ox73)
(OPC/DN = Ob1, DATA= Ox74)
(OPC/DN = Ob1, DATA= OxFO)
(OPC/DN = Ob1, DATA= OxF1)
(OPC/DN = Ob1, DATA= OxF2)

Page 2-6

The "Print string" command is given by putting the string to
be printed between quotes '"'.

The command "Read next sample" simply is "NEXT" or
11 next11

•

The command "Print sample value" is more complicated
and requires some additional explanation. For now we as­
sume this command is "V".

The lookup table sofar looks as follows (note that hexadec­
imal values are preceded by Ox; binary values are
preceded by Ob):

l"mw"!
! 11 mr 11

1

!"LOAD A, R1" !
l"LOAD A, R2" !

'LOAD A, R3" !
"LOAD A, R4" !
"LOAD A," NEXT V !
"LOAD R1," NEXT V !
"LOAD R2,"NEXT V !
"LOAD R3,"NEXT V !
"LOAD R4,"NEXT V !
"LOAD A," NEXT V NEXT V !
"LOAD R1," NEXT VNEXT V !
"LOAD R2,"NEXT V NEXT V !
"LOAD R3,"NEXT V NEXT V !
"LOAD R4,"NEXT V NEXT V !
"STORE A," NEXT V NEXT V !
"STORE R1," NEXT V NEXT V !
"STORE R2,"NEXT V NEXT V !
"STORE R3,"NEXT V NEXT V !

! "STORE R4,"NEXT V NEXT V !
! "ADD A,R1" !
!"ADD A,R2" !
I "ADD A,R3" !

'ADD A,R4" !
"DECR R1" !
"DECR R2" !
"DECR R3" !
"DECR R4" !
"JUMP NEXT V NEXT V !
"JUMP Z," NEXT V NEXT V !
"JUMP NZ,"NEXT V NEXT V !

Note: A lookup table is scanned from top to bottom. If a
value of a sample is not found in the lookup table the
disassembler will print "-" in the disassembler out-

PF 8629/30 Custom Disassembler Writing a Custom Disassembler

+8t~Cfi
+r;lGl27 1
.+rIHil28 1
+QrJ29 1
+1]1}3t~,i ·1.
+fll@31 1
+~1~132

2t~19GJ
3)1011
1)1:112
.@fE13
1:.llol1'1
1$~100
1il1)01

27
12

put column indicating that the disassembler lost
synchronization status (See also chapter 7, "Disas­
semblers", of your PM 3580/PM 3585 User Manual).
The disassembler will then proceed with the next
sample.
This display below shows that two undefined op­
codes (F5 and 27) are detected.

mw
LOAD Fi, 58,Zll\}

nw
"•./

•,J

This acquisition is available on disk with the file name
EXAMPLE.ERR

Before discussing how the "Print sample value" command
is actually solved it is worthwhile to point out another basic
element of the Disassembler Description Language: the In­
dex Table. This table allows for a more compact notation of
our lookup table.

Page2-7

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

Index Table and
Local Variables

Local Variable

Page2-B

Our hypothetical microprocessor has its registers coded in
consecutive numbers: 0 = A; i = Ri. This allows for a more
compact notation of the lookup table. We would like to use
the least significant part of the sample value (opcode) to
select the text ("A" or "Ri") to be printed. This can be done
using a local variable and an index table. The local variable
should get the value of the least significant part of the sam­
ple. This variable is then used to select the proper string
from the index table. The index table which we will give the
name "R", looks as follows:

Index Table R:

!IIAII

! "R1"
! IIR2ll
! uR311 !

! "R4"

Thus R[O] relates to "A", R[1] to "R1 ", etc.

Local variables can be used to pass values from the ac­
quired data (sample) to a command. The value assigned
to a local variable is extracted from the sample value. A
sample value can be seen as a bit pattern. To indicate
which part of the bit pattern is to be assigned to a local vari­
able, you have to place brackets "[" and "]" around
positions in the pattern. More than one occurrence of a pair
of brackets may be specified in a single pattern. Local vari­
ables corresponding with the identifiers $1, $2, $3, etc. are
assigned from left to right. Up to nine local variables ($1 to
$9) may be used.

The following notation:

(OPC/DN = Ob1, DATA= OxO[.]) ! "LOAD A," R[$1] !

would assign the value 1 to $1 if DATA= Ox01, resulting in
the print out of the string "LOAD A,R1 ". Likewise the val-

PF 8629/30 Custom Disassembler Writing a Custom Disassembler

Lookup Table Opcode:

(OPC/DN = ObO,
(OPC/DN = ObO,
(OPC/DN = Ob1,
(OPC/DN = Ob1,
(OPC/DN = Ob1,
(OPC/DN = Ob1,
(OPC/DN = Ob1,
(OPC/DN = Ob1,
(OPC/DN = Ob1,

Index Table R:

! "A"
! uR111 !

! "R2"

! "R3" !
! 11 R4"

Index Table C:

! ""
! "Z,11
! "NZ,"

R/WN = ObO)
R/WN = Ob1)
DATA= OxO[.])
DATA=OX1[.])
DATA= Ox2[.])
DATA= Ox3[.])
DATA= Ox4[.])

DATA= Ox7[.])
DATA= OxF[.])

ue 2 would be assigned to $1 if DATA= Ox02, resulting in
the print out of the string "LOAD A,R2".

The concept of using an index table in combination with a
local variable for printing register names can also be used
for "JUMP" instructions.
This leads to the following reduced lookup table which we
will name 'Opcode':

! 11mw"!
!"mr11 !
!"LOAD
!"LOAD
!"LOAD
! "STORE
! "ADD
! "DECR
! "JUMP

A" R[$1] !
R[$1] "," NEXT V !
R[$1] "," NEXT V NEXT V !
R[$1] "," NEXT V NEXT V !

A" R[$1] !
R[$1] !
C[$1] NEXT V NEXT V !

Note: If an index table is accessed outside its index
boundaries the disassembler will print "-" in the

disassembler output column indicating that the
disassembler lost synchronization status. The dis­
assembler will then proceed with the next sample.

Note: In the custom disassembler created so far opcode
"00" will lead to the display of opcode "LOAD A, A"
which is not defined for our microprocessor. Like­
wise illegal opcodes "40" and "70" are not
detected.
To prevent this we need to check the value of the
bitpattern before really using it as an index. Before
describing how this can be done, we will first com­
plete the lookup table commands; i.e. implement
the "Print sample value" command.

Page2-9

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

Print Sample Value

Page 2-10

The command NEXT causes the sample pointer to be incre­
mented so that it points to the next sample. To print the
value of (a part of) a sample a special print command, the
format command, is available in the Disassembler Descrip­
tion Language. The syntax of this format command is:

<format command> .. <format specifier> ..
<format specifier> .. '%' <width and type> ..
<width and type> .. 'c' I <width> <type> ..
<Width> .. <decdigit> ..

I 'O' <decdigit>
I <empty>

<type> .. 'bl 1101 I ldl I Ix· ..

In our example we will print the values in hexadecimal format
using two positions with leading zeroes: %02x.

To indicate which part of the actual value in the bitpattern is
to be printed, you have to place brackets "[" and "]" arounl
positions in the bit pattern. The resulting command line now
is:

(DATA= Ox[..]) ! "%02x" !

Because we should extract a local variable from this sample,
another table is required to hold this command line. This
could be a lookup table. The only purpose for the condition
in the lookup would be to assign a value to a local variable.
For this reason the index table may also contain an expres­
sion (like conditions in the lookup tables) before the
commands. This expression is only used to describe which
values must be assigned to local variables. Using the follow­
ing index table 'V', the data can be printed.

Index Table V:
(DATA= Ox[..])
(DATA= Ox[..])

! "%02x" !
! "%02x" NEXT V[O] !

If we now replace "NEXT V" by "NEXT V[O]" and "NEXT V
NEXT V" by "NEXT V[1]" in our lookup table "Opcode" WP
get the required result.

PF 8629/30 Custom Disassembler Writing a Custom Disassembler

Lookup Table Opcode:

Together with the index table V described before our dis­
assembler description so far looks as:

(OPC/DN = ObO, R/WN = ObO) ! "mw" !
(OPC/DN = ObO, R/WN = Ob1) ! "mr" !
(OPC/DN = Ob1, DATA= OxO[.]) ! "LOAD A," R[$1] !

(OPC/DN = Ob1, DATA= Ox1 [.]) ! "LOAD " R[$1] "," NEXT V[O]
(OPC/DN = Ob1, DATA= Ox2[.]) ! "LOAD " R[$1] "," NEXTV[1]
(OPC/DN = Ob1, DATA= Ox3[.]) ! "STORE " R[$1] "," NEXT V[1]
(OPC/DN = Ob1, DATA= Ox4[.]) ! "ADD A," R[$1] !
(OPC/DN = Ob1, DATA= Ox7[.]) ! "DECR R[$1] !
(OPC/DN = Ob1, DATA= OxF[.]) ! "JUMP " C[$1] NEXT V[1] !

Index Table R:

! "A"
! "R1"
! "R2"
! uR311
! "R4"

Index Table C:

!""
!"Z,"
! UNZ,"

! "%02x" !

Index Table V:

(DATA= Ox[..])

(DATA= Ox[..]) ! "%02x" NEXT V[O] !

Detection of
Illegal Opcodes

With the description file described above, opcode "00" re­
sults in 'LOAD A,A' which is an illegal instruction in our
hypothetical microprocessor. Opcode "40" and "70" are in­
correctly interpreted as well. To prevent this we need to
check the register index ($1) before the index table R is ac­
cessed. To do this we need the following command line:

(reg_ nr > 0) ! R[reg_ nr] !

Because we need a condition (reg_nr > 0), which may not
be present in the command, another table is required. This
table should be a lookup table which we will give the name
"CheckR".

Page2-11

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

Global Variables

Lookup Table Opcode:

(OPC/DN = ObO, R/WN = ObO)
(OPC/DN = ObO, R/WN = Ob1)
(OPC/DN = Ob1, DATA = OxO[.])
(OPC/DN = Ob1, DATA= Ox1 [.])
(OPC/DN = Ob1, DATA= Ox2[.])
(OPC/DN = Ob1, DATA= Ox3[.])
(OPC/DN = Ob1, DATA= Ox4[.])
(OPC/DN = Ob1, DATA= Ox?[.])
(OPC/DN = Ob1, DATA= OxF[.])

Lookup Table CheckR:
(p > 0) ! R[p] !

Index Table R:
!"A"!
!"R1" !
! "R2" !
! "R3" !
! "R4" !

Index Table C:
11111 !
! 11z," !
! "NZ,"!

! "%02x" !

.. : ... h.<:::i ... •.·.h ..•.... :

Local variables only exist on the current line of the table. In
order to transfer the value of a local variable to another ta­
ble or another line, it must be assigned to a global variable.
Global variables are defined in the definition section
{%% DEF) of the description file and can be used through­
out the entire description file. For our purpose we will
define a global variable "p".

Using the syntactical rules defined for the Disassembler
Description Language we now get the tables described be­
low. Keep again in mind that a lookup table is always
scanned from top to bottom. If a value of a sample is not
found in the lookup table the disassembler will print "-" in
the disassembler output column indicating that the disas­
sembler lost synchronization status (See chapter 7, "Dis­
assemblers", of your PM 3580/PM 3585 User Manual).
The disassembler will then proceed with the next sample.

!"mw"!
l"mr"!
! "LOAD A," {p=$1} CheckR !

R[$1] "," NEXTV[O]
R[$1] "," NEXTV[1]
R[$1] "," NEXTV[1]

! "LOAD
! "LOAD
! "STORE
! "ADD
! "DECR
! "JUMP

A," {p=$1} CheckR !
{p=$1} CheckR !
C[$1] NEXTV[1]!

Index Table V:
(DATA= Ox[..])
(DATA= Ox[..]) ! "%02x" NEXT V[O] !

Page2-12

PF 8629/30 Custom Disassembler Writing a Custom Disassembler

Display Selection

The lookup and index tables described so far only contain
commands for displaying strings and positioning the disas­
sembler within the measurement. In order to support the
display options available in the logic analyzer disassem­
bler parameters popup menu, the custom disassembler
provides commands to control the appearance of a sample
in the display menu.

The custom disassembler has to know which samples be­
long to the current instruction; the program samples as
well as data samples. This is done via display selection
commands. To indicate which opcode samples belong to
the instruction being decoded, the 'PROG' command has
to be used. This command is required for all opcode sam­
ples except for the first one. Other display selection
commands will be explained later. In our example the sam­
ples accessed are all part of the instruction. So after each
'NEXT' command the command 'PROG' should follow to
indicate that the sample is a part of the instruction. This
can be done within the 'V' index table commands because
'V' is called after each 'NEXT' command.

Note: 'NEXT' can not be done within the 'V' table because
the local variable printed in the 'V' table should be
extracted after the 'NEXT' command is executed. If
'NEXT' was placed in the 'V' table first the local vari­
able was extracted and then the 'NEXT' command
was executed resulting in an unwanted local vari­
able value.

This results in the following table 'V':

Index Table V:
(DATA= Ox[..]) ! PROG "%02x" !
(DATA= Ox[..]) ! PROG "%02x" NEXT V[O] !

Page2-13

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

Data Transfers

Page 2-14

All samples accessed in the measurement will be dis­
played as an instruction opcode. However, the samples
which meet one of the conditions in the first 2 lines of the
lookup table 'Opcode' are no instruction opcodes but are
data transfers according the 'Show Data Transfers' field in
the disassembler parameters popup menu (See Chapter
7, "Disassembler display options", of your PM 3580/
PM 3585 User Manual). To treat these samples as data
transfer instead of instruction opcodes the default
('PROG') must be replaced by other display selection com­
mands. The display selection commands for these data
transfers are 'MW' for memory write and 'MR' for memory
read. The display selection commands for data transfers
automatically result in a text in the disassembler column
for the sample at which the command was given.
The first 2 lines in the lookup table now look like:

(OPC/DN = ObO, R/WN = ObO)! MW!
(OPC/DN = ObO, R/WN = Ob1)! MR!

The difference is that the print commands "mw" and "mr"
are replaced by display selection commands MW and MR
which automatically result in the text 'mw' and 'mr' in the
disassembler column.
The data transfers in our measurement (mr, mw) are a re­
sult of the execution of the preceding instruction. These
data transfers are also a part of the instruction being de­
coded.
So we should add the data transfer samples to the instruc­
tion when we are decoding the instruction. The instructions
which result in a data transfer are 'LOAD' and 'STORE'
which have a directly addressed memory location as oper­
and (instructions with opcode Ox2. and Ox3.).
The data transfers appear immediately after the instruction
so a NEXT command must be done if we found such an in­
struction. Then the check if it really is a data transfer
should be done in a separate lookup table.

PF 8629/30 Custom Disassembler Writing a Custom Disassembler

Lookup Table Opcode:
(OPC/DN = Ob1, DATA= OxO(.])
(OPC/DN = Ob1, DATA= Ox1 (.])
(OPC/DN = Ob1, DATA= Ox2(.])
(OPC/DN = Ob1, DATA= Ox3[.])
(OPC/DN = Ob1, DATA= Ox4[.])
(OPC/DN = Ob1, DATA= Ox7[.])
(OPC/DN = Ob1, DATA= OxF[.])

Lookup Table CheckMr:

For the LOAD instruction the resulting data transfer is a
memory read. The STORE instruction results in a memory
write. This results in two additional lookup tables: Check­
Mw and CheckMr. One for checking memory write actions
and one for checking memory read actions. The 2 lines in
the lookup table 'Opcode' explained above are moved to
their respectively tables: CheckMw or CheckMr.
The resulting disassembler description then looks as:

! "LOAD
! "LOAD
! "LOAD
! "STORE
! "ADD
! "DECR
! "JUMP

A," {p=$1) CheckR !
R[$1] "," NEXTV[O]!
R[$1] "," NEXT V(1] NEXT CheckMr!
R($1] "," NEXT V[1] NEXT CheckMw!

A " {p=$1} CheckR !
{p=$1} CheckR !
C[$1] NEXTV[1]!

(OPC/DN = ObO, R/WN = Ob1) ! mr !

Lookup Table CheckMw:
(OPC/DN = ObO, R/WN = ObO) ! mw !

Lookup Table CheckR:
(p > 0) ! R[p] !

Index Table R;
!"A"!
! "R1" !
! "R2" !
! "R3" !
! "R4" I

Index Table C:
!"" !
! "Z," !
! "NZ,"!

Index Table V:
(DATA= Ox[..]) ! PROG "%02x" !
(DATA= Ox[..]) ! PROG "%02x" NEXT V[O] !

Note: If the lines in the CheckMr and CheckMw tables
were placed in the lookup table "Opcode" the data
transfers are not related to a 'PROG'-sample. The
first sample on decoding an instruction, is a data

Page2-15

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

Completing the
Disassembler
Description File

Declaration of Tables and
Global Variables

Page 2-16

transfer sample. This would result in adding the suffix
string "(unrel.)" after the data transfer text 'mw' or 'mr'
(See Chapter 7, "Disassembler bus transfers ant
disassembler status" of your PM 3580/PM 3585 User
Manual).

The Disassembler Description File is now almost complete.
Three topics are still missing:

• Declarations of tables and global variables

• Label and clock definitions

• Start command

These will be described below.

Global variables used in the disassembler description file
must be declared first in the so called DEF section of the file.
Using the syntactical rules defined for the Disassembler De­
scription Language for our example this looks as follows:

%%DEF

int p;

Likewise tables used in the disassembler description file
must be declared first in the so called EQU section of the
file. For our example this looks as follows:

%%EQU

/* lookup tables*/
LT: Opcode, CheckMr, CheckMw, CheckR

/* index tables */
IT: R,C, V

Note: Any text enclosed with the /* and */ delimiters is re­
garded as comment. Comment may be placet
anywhere in a description file. Also note that the local
variables "$i" do not need to be separately declared.

PF 8629/30 Custom Disassembler Writing a Custom Disassembler

Label and Clock Definitions

Start Section

Complete Example

Until now we have been using labels without describing
which channels of the logic analyzer are assigned to these
labels and what the attributes of these labels are. The same
applies for the state clock definitions. In other words: we
have not yet defined the settings of the Format menu.

This is done using the assignment structures (threshold,
clock, label and clock sequence) of the FORMAT section de­
fined in the Disassembler Description Language. The
FORMAT section for our example is shown with the com­
plete description file below. Refer to the chapter
"Disassembler Description Language Reference" of this
manual for a description of the syntax.

Within the disassembler description file a START section is
required. The commands contained in this section are the
commands the disassembly process starts with, in order to
process a complete microprocessor instruction. In general
only one command is given in the start section. This com­
mand is the name of the lookup table to start disassembly
with. Note that all global variables except one (see global
variables; static char. description in chapter 3) are set to
zero each time the start table is entered.

Adding the declarations, definitions and start section as de­
scribed above to our disassembler description results in the
following completed disassembler description file for our hy­
pothetical microprocessor.

Note: According to the Disassembler Description Lan­
guage, label identifiers may not contain certain
characters like for example "/" or spaces. Label
names however, may contain these special charac­
ters. In the following description the "/" is therefore

Page2-17

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

%%DEF
int p;

%%EQU

removed from the label identifiers (both in the dec­
larations of the identifiers and references to them),
but not from the label names.

Note: A table description starts with "%%<table name>"
according to the syntactical rules rather than "Table
<table name>:" as we did until now.

LT : Opcode, CheckMr, CheckMw, CheckR
IT: R, C, V

/* lookup tables */
/* index tables */

%% FORMAT

logo: "CDISA80 Example"

head: "CD1SA80 Example" 20 /* Label for disassembler output column and width of column */
pods: threshold = { {TTL, TIL},

{TTL, TIL}
}

clock: elk= { name= "CLK",
edge = rising,
channel = 31 ,
qualifier= { channels = { 30 },

levels = { high }
}

label: QUAL = { name = "QUAL",
display= timing,
channels = { 30}

}

label: RWN = { name= "R/WN",
channels = { 24}

}

label: OPCDN = { name= "OPC/DN",
channels = { 25 }

}

label: ADDRESS= { name= "ADDRESS",

label: DATA =

Page 2-18

channels = {15, 14, 13, 12, 11, 10, 9, 8,
7, 6, 5, 4, 3, 2, 1, 0}

{ name= "DATA",
channels= { 23, 22, 21, 20, 19, 18, 17, 16}

}

PF 8629/30 Custom Disassembler

clockseq: SEQ= {elk}

%%START
! Opcode!

%% Opcode

(OPCDN = Ob1, DATA= OxO[.])

(OPCDN = Ob1, DATA= Ox1 [.])
(OPCDN = Ob1, DATA= Ox2[.])
(OPCDN = Ob1, DATA= Ox3[.])
(OPCDN = Ob1, DATA= Ox4[.])
(OPCDN = Ob1, DATA= Ox?[.])
(OPCDN = Ob1, DATA= OxF[.])

%% CheckMw

! "LOAD A"

! "LOAD
! "LOAD
! "STORE"
! "ADD A,"
! "DECR
! "JUMP

(OPCDN = ObO, RWN = ObO) ! mw !

%% CheckMr
(OPCDN = ObO, RWN = Ob1) ! mr !

%% CheckR

(p > 0) ! R[p] !

%%A

!"A"
!uR111
! "R2"
! "R3"
! "R4"

%%C
! Ill!

! "Z,"
! uNz,u

%%V

(DATA= Ox[..])

(DATA= Ox[..])

!PROG "%02x" !

!PROG "%02x" NEXT V[O] !

Writing a Custom Disassembler

{p=$1} CheckR !

R[$1] "," NEXTV[OJ!
R[$1] "," NEXT V[1] NEXT CheckMr!
R[$1] "," NEXT V[1] NEXT CheckMw!
(p=$1} CheckR !
{p=$1} CheckR !
C[$1] NEXTV[1]!

Page2-19

Writing a Custom Disassembler PF 8629/30 Custom Disassembler

About Processing
Speed

Rearrange Lookup Tables

Splitting up Lookup Tables

Usage of Index Tables

Page 2-20

Creating a description file that will serve your purpose
should be fairly easy. Almost every description file will
have one main (lookup) table that is used to check the op­
code and select the appropriate actions.
The performance of a custom disassembler can be im­
proved in various ways. We will name a few.

Sometimes lookup tables tend to get very large (more than
50 or 100 lines). Since the lookup tables are scanned ev­
ery time from top to bottom you can improve the
disassembler performance by putting often used instruc­
tions at the top of the table so they are recognized very
quickly.

Performance can also be improved by splitting a large
lookup table into a few smaller (sub-)tables.
Then create a main-table which decides to what sub-table
to jump to.

table I main-table I

/ I sub-table!

.----------" I sub-table I

~ [s•b<,bk[
I sub-tab lei Splitting up a lookup table

Since index tables are directly accessible, a disassembler
will be faster when using these type of tables wherever
possible.

PF 8629/30 Custom Disassembler

Chapter 3

Disassembler Description
Language Reference

Introduction 3-3
File Structure 3-5

The Declarative Part 3-6
The Tabular Part 3-7

%% DEF Section 3-8
Global Variables 3-8
Constants 3-9

%% EQU Section 3-9
%% FORMAT Section 3-11

Logo Definition 3-11
Header Definition 3-12
Pod Threshold Definition 3-13
Symbolic Output Control 3-14
Synchronization Blocksize Definition 3-14
Clock Definition 3-16
Label Definition 3-22
Clock Sequence Definition 3-29
Tab Settings 3-31

%% START Section 3-32
Tabular Section (%%<name>) 3-33

Lookup Tables (LT) 3-33
Index Tables {IT) 3-33

General Elements 3-35
Lines 3-35
Comments 3-35
Spaces and Tabs 3-36
Upper and Lower Case Characters 3-36
Conditions and Commands 3-37

Conditions 3-37
Pattern Conditions 3-37
Relational Conditions 3-40
Clock Sequence Conditions 3-41
AND-ing and OR-ing of Conditions 3-42

Pattern Expression 3-42

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-2

Commands 3-43
Display Selection Commands 3-44

PROG 3-45
Instructions 3-46
UNUSED 3-46
SKIP 3-46
MR 3-47
MW 3-48
IOR 3-48
IOW 3-48

Positioning in a Measurement 3-49
GOTO [i] 3-49
TELL 3-51
NEXT 3-51
PREV 3-52
GOTOPART[i] 3-52
TELLPART 3-53
NEXTPART 3-53
PREVPART 3-54
UNGET 3-55

Instructions 3-56
Print Commands 3-57
Special Commands 3-59

UNPUT 3-60
ERROR 3-60
Transfer Control to other Tables 3-60

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Introduction T he disassembler description file describes the specific
properties of the microprocessor or bus used.

It is created by the user as a DOS text file using an editor
or word processor.

Any word processor capable of producing DOS text files
such as PC-write, WordPerfect, MS-Word, PFS Write or
Wordstar will do.

While reading through this chapter you will notice that
some of the syntax used for a .DSC file resembles the C
programming language. If you are familiar with program­
ming in C, you will have little trouble learning to use this
syntax. If you are not, don't worry. Only a very small set of
commands from the C language is used so the learning
curve will be very short.

In each section, the syntax of specific language elements
will be defined using a Backus-Nauer-Format (BNF) nota­
tion. It is important that these definitions are interpreted
correctly. If you are not familiar with this way of describing
a syntax study the first examples below very carefully.
Comments are added to the definitions below to help you
get familiar with the notations used:

Syntax

<bindigit>

<OCtdigit>

<decdigit>

<hexdigit>

::= 0 11
A binary digit can be 'O' or '1 '.

::= 0 .. 7
An octal digit can be anything from'O '
up to '7'.

::= 0 .. 9
A decimal digit can be anything from 'O'
up to '9'.

::= <decdigit> I a .. f I A .. F
A hexadecimal digit can be a decimal
digit or anything from 'a' up to 'f' (upper
or lower case).

<decnumber> ::= <optsign><decdigits>
A decimal number has an optional sign
followed by a list of decimal digits.

Page3-3

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-4

<optsign> ::= <empty> I '+' I '-'
An optional sign is empty, a'+' or a'-'.

<decdigits> ::= <decdigit> I <decdigit> <decdigits>
A list of decimal digits consists of one
decimal digit, or one decimal digit fol­
lowed by a list of decimaldigits

<letter> ::= a .. z I A .. Z
A letter can be anything from 'a' up to 'z'
(upper or lower case).

<name> ::= <letter><extname>

<extname>

<empty>

A name starts with a letter and is fol­
lowed by an extname

::= <empty>
I <letter><extname>
I <digit> <extname>

An extname is empty, or a letter or a
digit followed by an extname.

::= Empty is ... empty.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

File Structure

The structure for a .DSC file is shown below.

%%DEF

/* Declarations and definitions of global variables and
constants */

%%EQU

/* Allocation of symbolic names to tables*/

%%FORMAT

/* Analyzer channel allocation and grouping */

%%START

/* Table section*/

/* TABULAR SECTION*/
%%

/* User defined disassembler tables*/

The structure can be divided in two parts:

• the declarative part containing the %%DEF, the
%%EQU and the %%FORMAT sections

• the tabular part containing the %%START section and
the user defined disassembler tables.

Each section of this file will be described in detail in this
chapter.

Page3-5

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

The Declarative Part

Page 3-6

The declarative part of a description source file precedes
the tabular part and contains general information that the
CD1SA80 compiler needs concerning the structure of the
input data file (in particular the channel allocation and
grouping). It is also used to declare variables and con­
stants that will be used in the tabular part of the
disassembler description file.

A declarative section and a disassembler table begin with
a header line. A header line starts with a double percent­
age mark{%%) and is followed by an identifier. No leading
spaces and/or tabs are allowed in header lines. The iden­
tifier is not case sensitive so it may consist of upper or
lower case characters. Four predefined header lines are
available:

%%DEF followed by definitions and declara- •
tions of global variables and con­
stants

%%EQU followed by user defined names for
disassembler tables

%%FORMAT followed by channel allocation and
grouping, disassembler name and
general disassembler output control

%%START followed by disassembler table part

Other identifiers can be defined by the user in the %%EQU
section. These identifiers declare the tables defined in the
tabular part. Also alternative label names {aliases) can be
defined in this section. The predefined header lines must
precede the user defined header lines of the tabular part.
The START header line must be the first header line in the
tabular part. The sequence of the other three predefined
header lines in the first part as well as the sequence of the
user defined header lines in the second tabular part, is
free.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

The Tabular Part

Syntax

%%<identifier>

Examples

%%DEF

%%FORMAT

Note: No spaces or tabs preceding '%%' are allowed.

The tabular part contains the START table, lookup tables
(LT) and index tables (IT). Each entry in a lookup table
consists of a condition followed by a command chain. The
Index table entries contain an optional expression (like a
condition in lookup tables) followed by a command chain.
The function of each of the lookup and index tables is ex­
plained in section "Tabular Section (%%<name>)".

Page3-7

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

%% DEF Section

Global Variables

Page 3-8

.,·., ·.······•·•·-·•·•·.-:::::-;-:-:~••·•·•·•!::...:,:.:w

The definition section is used to declare global variables
and constants that are used for the remainder of the pro­
gram. This section is preceded by the %%DEF" header
line and concluded by the next header line. The declara­
tion conforms to the C language syntax for variable types,
however, only a restricted set of types is allowed.

Syntax

For global variables the permitted variable types are:

<var declaration> :: = <type> <names> ';'

<type> ::= 'char'
I 'int'
I 'long'
I 'unsigned'
I 'unsigned int'
I 'unsigned char'
I 'static char'

(8 bits)
(16 bits)
(32 bits)
(16 bits)
(16 bits)
(8 bits)
(8 bits)

<names> ::= <name> I <name>, <names>

All global variables except the 'static char' variable are set
to zero each time the START table is entered. The 'static
char' variable can therefore be used to report a status or a
small value to a following instruction. The instruction which
uses the value in the 'static char' variable should be locat­
ed in the near distance of the instruction which sets the
value. See also 'synchronization blocksize' if you are using
the static char variable in instructions in the far distance of
the instruction which sets the value.

The number of global variables is limited to 32 variables
and one 'static char' variable.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Constants

Examples

char c;
int offset, offset2;

static char status;

The syntax to declare constants is:
#define <name> <value>

<value> ::= <decdigits>

Examples

I 'Ox' <hexdigits>
I 'OX' <hexdigits>
I 'Ob' <bindigits>
I 'OB' <bindigits>
I 'Oo' <octdigits>
I '00' <octdigits>
I '<ASCII-char>'

#define MAX 255
#define DUMMY 0

Note: Constants that are referred to with user defined
symbolic names always are 16 bits. As a result no
long type constant definitions are allowed.

% % EQU Section , · ... ·· ···

The equate section is used to define aliases for user de­
fined labels and to declare disassembly tables. Two
different types of tables can be used in the tabular section.

Syntax

%%EQU

<equate definition> ::=
<lookup table definition>

I <index table definition>
I <label alias definition>

<lookup table definition> ::= 'LT' ':' <name list>

Page3-9

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-10

<name list>::= <name> I <name>',' <name list>

<index table definition> ::= 'IT' ':' <name list>

<label alias definition> ::=
<label id> ':' <label alias id list>

<label alias id list> ::=
<label alias id>
I <label alias id> ',' <label alias id list>

<label alias id> ::= <name>

Examples

%%EQU

LT : MAIN, Commands, BUSCYCLES
/* lookup tables */

IT : ADDR[MODE, REGSET
/* index tables*/

BWE : stat
/* status lines*/

ADR : address
/* address lines */

DATA : opcode, byte
/* data lines*/

Note: More than one label can be used to denote the
same group of channels. Based on the last equate
statement above the data for a disassembler state
can be accessed using either the label "DATA" or
"opcode" or "byte".

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

%% FORMAT
Section

Logo Definition

The format section is preceded by the "%%FORMAT"
header line and terminated by the next header line. This
section in fact allows you to specify the fields of the FOR­
MAT menu of the logic analyzer. It is used to inform the
disassembler which channels were used to capture the
data from the CPU and how these channels should be
grouped and displayed. Furthermore, a disassembler
name can be specified, which will appear at the top of the
disassembler output column in the state display.

The format section allows you to define:

• Disassembler name (logo)

• Disassembler output column title (header)

• Pod thresholds

• Symbols

• Synchronization block size

• Tab settings

• Clocks and their attributes

• Labels and their attributes

• Valid clock sequences

The logo definition allows you to specify a string that will be
shown in the logo which pops up when the custom disas­
sembler is loaded. The string is displayed on the first line
in this pop up immediately following the standard text:

"PF8629/30 - Custom Disassembler".

Syntax

< logo definition> ::=
'logo' ':' <logo specifier>

<logo specifier> ::=
<string> (max. 37 characters)

Page3-11

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Header Definition

Page 3-12

<string> ::=
"" <string symbol list> ""

<string symbol list>::=
<string symbol>

I <string symbol> <string symbol list>

<string symbol> ::=
<type1_string symbol>

I'*' I 'i' I':' I':' I'#' I'<' I'>'
I 'f I '}' I 'C I')' 1 T 1 T I'+'
I'-' I'=' I '\' I"' I'" I"·' I 'I'
I'!' I'?' I'%' I'$' l'@'I'&' I'.'
I' ' l lAI I 'I'

<type1_string symbol>::=
'a' I 'b' I .. I 'z' I 'A' I .. I 'Z' I '_'

Example

logo: "CDISA80 Example"

Note: Specification of the logo is optional. If no logo is
specified the logo field in the popup is left blank.

The header definition is used to specify the title for the dis­
assembler output column and the width of that column. The
width is specified as a number of characters.

Syntax

< header definition> ::= 'head'':' <header specifier>

<header specifier> ::= <string> <column width>
(max. 64 characters)

<column width> ::= <decimal number>

Example

head: "CDISA80 Example" 20

Note: Specification of the header is optional. If no header
is specified the default value: "Custom Disassem­
bler" 25 is taken.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Pod Threshold Definition

The pod threshold definition is used to specify the thresh­
old values for the pods. Thresholds specified are assigned
to Pod (n) high, low; Pod (n-1) high, low etc.

Syntax

<threshold definition> ..
'pods: threshold =' <threshold specifier>

<threshold specifier> ..
'{' <threshold pod specifier list> '}'

<threshold pod specifier list> ..
<threshold pod specifier>

I <threshold pod specifier>','
<threshold pod specifier list>

<threshold pod specifier> ..
'{' <threshold group> , <threshold group> '}'

<threshold group> ..
TTL I ECL I <var> <threshold value>

<var>

<threshold value>

Example

The following definition:

Pods: threshold = { {ECL, TTL}
{ -2, +5}

}

::= VAR I <empty>

-3.0 .. 12.0 (unit = V)

assigns the following threshold values to the pods:

Pod 2 bit 15-8 ECL

Pod 2 bit 7-0 TTL

Pod 1 bit 15-8 -2V

Pod 1 bit 7-0 +5V

Note: Definition of pod threshold values is optional. If
thresholds are not specified the default value TTL is
taken.

Page3-13

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Symbolic Output Control

Synchronization Blocksize
Definition

Page 3-14

The symbolic output control is used to specify if values se­
lected for symbolic printout in the disassembler column
should be displayed in symbolic format or not. This is a glo­
bal switch for symbolic support of the disassembler. The
symbolic output control is optional. If no symbolic output
control is given the disassembler will not produce symbolic
output. The disa parameters popup in the display menu will
have an (additional) Options field. This Options field can
be used to select if the disassembler output uses symbolic
values or not.

Syntax

<symbolic output definition> ::=
'symbolic' ':' <symbolic output specifier>

<symbolic output specifier> ::=
'yes' I 'no'

Note: If logic analyzer system software BEFORE 2.01 is
used on the PM3580/PM3585 logic analyzer the
custom disassembler does not support symbolic
output.

Example

symbolic: yes

For synchronizing the disassembler the measurement is
cut into parts. The size of the parts can be adjusted by
changing the block-size definition of the disassembler. The
synchronization blocksize definition is optional. The de­
fault blocksize is 32 disassembler states. The user can
change it by specifying 'BLOCKSIZE: <blocksize>

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Syntax

<block size definition>::= 'BLOCKSIZE' ':' <block size>

<block size> ::= '16'
I '32'
I '64'
I '128'
I '256'
I 'max'
I 'min'
I 'maximum'
I 'minimum'

If the synchronization blocksize is increased the time to
synchronize one block will increase. When max or maxi­
mum is used the disassembler will synchronize the
complete measurement. Min or minimum will set the block
size to 16.
Because of synchronizing the measurement in parts the
user should guarantee a consistent value of the static char
variable after some instructions (together at most 2 times
BLOCKSIZE disassembler states). If this is not done the
disassembler could give different output when moving
from disassembler state O to a certain disassembler state
and when moving from the last acquired disassembler­
state back to the mentioned disassembler state.

Example:

Suppose the disassembler is synchronizing a measure­
ment for displaying state line 600. To achieve this the
disassembler internally uses a part of the measurement.
The static char variable is initially O at the first state line of
this measurement part. Within the measurement part the
value of the static char can be changed. To get a consis­
tent disassembler output the value of the static char should
have the same value at state line 600 regardless of the first
state line number in the measurement part.
The result on the logic analyzer display menu could give
different output for state line 600 in both cases. If the same
value of the static char variable can not be guaranteed for

Page3-15

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Clock Definition

Page 3-16

state line 600 the BLOCKSIZE parameter should be
increased.
The static char variable should therefore best be used only
to report a sort of status to an instruction in the near dis­
tance.
The synchronization BLOCKSIZE should have a value
equal to or above the maximum value of:

a) The number of disassembler states which the disas­
sembler needs to assure a consistent value of the
static char variable (the global variable over the total
measurement).

b) The average number of disassembler states between
the lowest and the highest numbered disassembler
state on the display divided by 2.

c) 16.

The clock definition is used to specify which channel is
used for a clock, what edge should be used and the polar­
ity. It is also used to specify the clock qualifiers and clock
attributes.

Syntax

<clock definition>
'clock' ':' <clock id> '=' <clock specifier>

<clock id>

<identifier>

::= <identifier>

::= <name>

<clock specifier> .. -
'{' <clock parameter list> '}'

<clock parameter list> ::=
<clock parameter>

I <clock parameter>',' <clock parameter list>

<clock parameter>
<clock name definition>

I <clock polarity definition>
I <clock channel definition>
I <clock edge definition>

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Clock Name

Example

I <clock qualifier definition>
I <Clock merge definition>
I <clock timing definition>
I <clock required definition>
I <clock display definition>

clock: elk={ name= "CLK",
edge = rising,
channel = 31,
timing = dataandtrigger,
display= stateandtiming,
polarity = +,
required = yes,
mergeclock = none,
qualifier = { channels = { 30 },

levels = { high }
delays = { O },
required = yes

}
} ~

Note: The clock definitions must precede the definitions of
labels and clock sequences.

Note: The <clock id> must be used in clock sequence def­
initions; not the clock name specifier. This is be­
cause the clock name specifier may contain any
character including for example"/", spaces, etc.

Note: Below the syntax for the parameters is defined. The
specification of most parameters is optional. If a pa­
rameter is optional this is indicated in the left
margin by "(O)". The default value for those option­
al parameters is also shown in the left margin.
If no additional description for a parameter is given
its purpose can be derived from the PM 3580/
PM 3585 Reference Guide, chapters "Format
Menu"" and "Clock Attributes Menu" respectively. A
further explanation can also be found in the
PM 3580/PM 3585 User Manual, chapter "State
Clocks".

<clock name definition> ::=
'name' '=' <clock name specifier>

Page3-17

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-18

<clock name specifier>::=
<type1 _ string>

<type1_string> ::=
"" <type1_string symbol list>""

<type1_string symbol list>::=
<type1_string symbol>

I <type1_string symbol> <type1_string symbol list>

<clock definition> ::=
'polarity' '=' <clock polarity specifier>

<Clock polarity specifier> ::=
<polarity>

<polarity> ::=
'positive' I 'negative' I'+' I'-'

<clock channel definition> ::=
'channel' '=' <clock channel specifier>

<clock channel specifier> ::=
<channr>

<channr> ::=
0 .. 95

<clock edge definition> ::=
'edge' '=' <clock edge specifier>

<clock edge specifier> ::=
<edge>

<edge>::=
'rising' J 'falling' I 'any'

The clock merge definition can be used to specify whether
the samples captured with this clock should be displayed
on the same line as the samples captured by another clock
(compare the "Display on same line as" field in the Clock
Attributes Menu).

Syntax

<clock merge definition> ::=
'mergeclock' '=' <clock merge specifier>

<clock merge specifier> ::=
<clock id> I 'none'

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Clc,ekTiming (Q)
Di11!~1t; dataaodtrlgger

Clock Display . (0}
0.11.ult: st11t~ndUmlog

<Clock timing definition>::=
'timing' '=' <clock timing specifier>

<clock timing specifier> ::=
'none' I 'trigger' I 'dataandtrigger'

The "clock display definition" specifies whether the clock
signal should be shown in the state display only, the timing
display only, both displays or in neither of those two. Note
that you can always add a label later in your display menu
using the INSERT key on your logic analyzer.

Syntax

<clock display definition> ::=
'display' '=' <clock display specifier>

<clock display specifier>::=
'none' I 'state' I 'timing' I 'stateandtiming'

Clock Required
Default: yes

(0) The "clock required definition" specifies whether this state
clock is required for disassembly.

Clock Qi.la I ifier
Default; no qu1,11ifier

(0}

Syntax

<clock required definition> ::=
'required' '=' <clock required specifier>

<clock required specifier> ::=
'yes' I 'no'

Note: The clock definitions for clocks which are required
should precede the clock definitions for the non-re­
quired clocks.

Note: When a disassembler is loaded it is checked wheth­
er sufficient resources are available. If only
sufficient resources are available for those signals
required by the disassembler, the disassembler is
still loaded. Setups for the other microprocessor
signals will then not be loaded. Please also refer to
your PM 3580/PM 3585 User Manual, chapter "Dis­
assemblers".

<clock qualifier definition>::=
'qualifier' '=' <clock qualifier specifier>

Page3-19

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Qualifier Delays
Default: O

Page 3-20

<clock qualifier specifier> ::=
'{' <clock qualifier parameter list> '}'

<clock qualifier parameter list> ::=
<clock qualifier parameter>
I <clock qualifier parameter>','
<clock qualifier parameter list>

<clock qualifier parameter> ::=
<clock qualifier channels definition>
I <clock qualifier levels definition>
I <clock qualifier delays definition>
I <Clock qualifier required definition>

<clock qualifier channels definition> ::=
'channels' '='
<clock qualifier channels specifier>

<clock qualifier channels specifier> ::=
'{' <channel list> '}'

<channel list>::=
<channr> I <channr> ',' <channel list>

Note: If the channel list contains more than one channel
number (channr) the numbers should be specified
in a descending order, i.e. highest channel number
first.

<clock qualifier levels definition> ::=
'levels' '='
<clock qualifier levels specifier>

<clock qualifier levels specifier> ::=
'{' <level list> '}'

<level list> ::=
<level> I <level>',' <level list>

<level>::=
'high' I 'low'

Immediately after the system software has been loaded a
calibration procedure is executed. This procedure ensures
that the propagation delay is the same on all channels and

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Qualifier Required (O}
Defa1,1lt: yei;

that the set-up and hold times for the logic analyzer meet
their specification. Please refer to your PM 3580/PM 3585
"Service Manual" for a detailed discussion about set-up
and hold times.
Using the "clock qualifier delay definition" you can slightly
shift the time window (=t5u+th) for a specific qualifier with

respect to the edge of the clock. A positive delay value will
increase the set-up time and decrease the hold time for
that qualifier (shift the time window to the left}. A negative
delay will decrease the set-up time and increase the hold
time for that qualifier (shift the time window to the right}.
One delay step represents a value between 0.5 ns min.
and 2 ns max. For most microprocessors the default value
(0) is required.

<clock qualifier delays definition> ::=
'delays' '='
<clock qualifier delays specifier>

<clock qualifier delays specifier>::=
'{' <delay list> '}'

<delay list> ::=
<delay value>
I <delay value>',' <delay list>

<delay value> ::=
-2 I -1 I o I 1 I 2

<clock qualifier required definition> ::=
'required' '='
<clock qualifier required specifier>

<clock qualifier required specifier> ::=
'yes' I 'no'

Note: The qualifier definitions for the qualifiers which are
required for a clock should precede the definitions
for the qualifiers not required for that clock.

Page3-21

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Label Definition

Page 3-22

The label definition is used to specify which channel is
used for a label, what edge should be used and the polar­
ity. It is also used to specify the label qualifiers and label
attributes and label symbols.

Syntax

<label definition> ::=
'label' ':' <label id> '=' <label specifier>

<label specifier> ::=
'{' <label parameter list> '}'

<label id>::=
<identifier>

<label parameter list> ::=
<label parameter>

I <label parameter> <label parameter list>

<label parameter> ::=
<label name definition>

I <label polarity definition>
I <label channels definition>
I <label delays definition>
I <label radix definition>
I <label clocks definition>
I <label required definition>
I <label timing definition>
I <label display definition>
I <label symbolic definition>
I <label symbol viewsize definition>
I <label symbol definition>
I <label part definition>
I <label type definition>

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Label Name

Example

label: ADDRESS= { name= "ADDRESS",
timing = dataandtrigger,
display = stateandtiming,

polarity=+,
channels = {15, 14, 13, 12, 11, 10, 9, 8,

7, 6, 5, 4, 3, 2, 1, 0 },
delays = {O, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, O},
radix= hex,
required = yes,
symbolic = yes,
symbol viewsize = unique,
symbol = { "stack", Oxf ... },
symbol = { "1/0 lnit", Ox430},
symbol = { "RESET", OxO, Ox?},
clocks = { elk }

Note: A maximum of 32 labels may be specified in a .DSC
file.

Note: The <label id> must be used in label conditions; not
the label name specifier. This is because the label
name specifier may contain any character including
for example"/", spaces, etc ..

Note: Below the syntax for the parameters is defined. The
specification of most parameters is optional. If a
parameter is optional this is indicated in the left
margin by "(O)". The default value for those option­
al parameters is also shown in the left margin. If no
additional description for a parameter is given its
purpose can be derived from the PM 3580/PM 3585
Reference Guide, chapters "Format Menu"" and
"Label Attributes Menu" respectively. A further ex­
planation can also be found in the PM 3580/PM
3585 User Manual, chapter "State Clocks".

<label name definition> ::=
'name' '=' <label name specifier>

<label name specifier>::=
<type1_string>

Page3-23

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Laijel. P<>l~rity
D~illllt+.

Page 3-24

<label polarity definition> ::=
'polarity' '=' <label polarity specifier>

<label polarity specifier> ::=
<polarity>

<label channels definition>::=
'channels' '=' <label channels specifier>

<label channels specifier>::=
'{' <channel list> '}'

Note: If the channel list contains more than one channel
number {channr) the numbers should be specified
in a descending order, i.e. highest channel number
first.

Immediately after the system software has been loaded a
calibration procedure is executed. This procedure ensures
that the propagation delay is the same on all channels and
that the set-up and hold times for the logic analyzer meet
their specification. Please refer to your PM 3580/PM 3585
"Service Manual" for a detailed discussion about set-up
and hold times.
Using the "label delay definition" you can slightly shift the
time window (=t5u+th) for a specific label with respect to the

edge of the clocks. A positive delay value will increase the
set-up time and decrease the hold time for that label (shift
the time window to the left). A negative delay will decrease
the set-up time and increase the hold time for that label
(shift the time window to the right). One delay step repre­
sents a value between 0.5 ns min. and 2 ns max. For most
microprocessors the default value (0) is required.

Syntax

<label delays definition>::=
'delays' '=' <clock delays specifier>

<label delays specifier>::= '{' <delay list>'}'

The "label radix definition" specifies in which radix {base)
the label data should be shown in the Trace Menu and the
State Display.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Label Cl<>cks (Q)
Default: all clacks defined

Labi,,I Required
Default: yes

(0)

Note that you can always change this base on the Trace
Menu and the State Display.

Syntax

<label radix definition> ::=
'radix' '=' <label radix specifier>

<label radix specifier> ::= <radix>

<radix> ::= 'bin' I 'oct' I 'dee' I 'hex' I 'ascii'

<label clocks definition> ::=
'clocks' '=' <label clocks specifier>

<label clocks specifier> ::=
'{' <clock id list> '}' I '{' 'none' '}'

<clock id list> ::=
<clock id> I <clock id> ',' <clock id list>

The "label required definition" specifies whether this label
is required for disassembly.

Syntax

<label required definition> ::=
'required' '=' <label required specifier>

<label required specifier>::= 'yes' I 'no'

Note: The label definitions for labels which are required
should precede the label definitions for the non-re­
quired labels.

Note: For only 16 labels the label required definition may
be 'yes'.

Note: When a disassembler is loaded it is checked wheth­
er sufficient resources are available. If only
sufficient resources are available for those signals
required by the disassembler, the disassembler is
still loaded. Setups for the other microprocessor
signals will then not be loaded. Please also refer to
your PM 3580/PM 3585 User Manual, chapter "Dis­
assemblers".

Page3-25

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

~beLTimift9 (O} · <label timing definition> ::=
Default: dataatJt:!trjgger · 'timing' '=' <label timing specifier>

<label timing specifier> ::=
'none' I 'trigger' I 'dataandtrigger'

Labei oispiav · c<>> The "label display definition" specifies whether the label
data should be shown in the state display only, the timing
display only, both displays or in neither of those two. Note
that you can always add a label later on to your display us­
ing the INSERT key on your logic analyzer.

Defa1Jlt: stateandtlmlng /

Label Part
Default: 1·•··•··

LabelType
Default: blg endiari

Page 3-26

Syntax

<label display definition> ::=
'display' '=' <label display specifier>

<label display specifier> ::=
'none' I 'state' I 'timing' I 'stateandtiming'

The "label part definition" defines the number of parts in
which this label is split when used in the tabular section.
The label parts definition should be used when more than
one instruction can occur in one disassembler state. E.g.
the 68030 microprocessor has a 32 bit data bus. The min­
imum instruction size is 16 bits and as such it is possible to
have 2 instructions in one disassembler state. To handle
this kind of microprocessors it is possible to define (only)
one label which can be accessed in equally sized parts.

Syntax

<parts definition> ::= 'parts' '=' <number of parts>

<number of parts> ::= '1' I '2' I '4'

Example

parts = 2 /* for 68030 data label */

(0} The label type definition should be used together with the
label parts definition to define the type of the parts label.
Two types are possible:

• big endian format(e.g. Motorola 680x0 format)

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

The most significant part in the label is the first part used
by the microprocessor and is part 'O' for the disassem­
bler.

• little endian format(e.g. Intel 80x86 format)

The least significant part in the label is the first part used
by the microprocessor and is part 'O' for the disassem­
bler.

If no label type definition is given the default label type is
big endian.

Syntax

<label type definition> ::=
'type' '=' <label type>

<label type>::=
'little'

I 'little_endian'
I 'big'
I 'big_endian'

Example

type = little

Label Symbolic
Default: no

(O} The "label symbolic definition" specifies if the label should
be displayed symbolic in the trace and display menus.

Label Symbol Viewsize
(0)
oe1au1t:maximum

Syntax

<label symbolic definition>::=
'symbolic' '=' <symbolic output specifier>

The label symbol viewsize definition specifies the symbol
viewsize for this label.

Syntax

<label symbol viewsize definition>::=
'viewsize' '=' <symbol viewsize specifier>

Page3-27

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-28

<symbol viewsize specifier>::=
·max·

I 'maximum'
I 'uniq'
I 'unique'
I <decimal number>

(min.1, max. 32)

Example

viewsize = unique
viewsize = 1 2

The "label symbol definition" specifies the symbolic names
for label values and ranges of label values. A label may
have several label symbol definitions.

Syntax

<label symbol definition> ::=
'symbol' '=' <symbol specifier>

<symbol specifier> ::=
'{' <symbol name>',' <symbol value or range>'}'

<symbol name>
<type1_string>

<symbol value or range>::=
<symbol value>

I <symbol range>

<symbol value> ::=
<bitpattern>

I <decimal number>

<symbol range>::=
<symbol value>',' <symbol value>

Examples

symbol = { "Super Data" , 5}
symbol = { "stack" , Oxf ... }
symbol = { "reset" , OxO, Ox?}

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Clock Sequence Definition

Disassembler State

Disassembler
States

Clock Sequence

Depending on the microprocessor one or more state
clocks may be required to capture the state information for
the microprocessor. If more than one state clock is re­
quired it is possible that the samples captured by two or
more clocks together form one logical state (referred to as
disassembler state) provided that the samples were cap­
tured with a specific sequence of those clocks.
As an example consider a microprocessor having a multi­
plexed address/data bus. The addresses are valid for
CLK1 and the data is valid for another clock, CLK2. The
data is read from or written to the address immediately pre­
ceding the data on the multiplexed address/data bus. The
samples captured in sequence by CLK1 and CLK2 respec­
tively therefore together form one logical state
(disassembler state).
In the state display below the disassembler states are indi­
cated.

.,

fS
·Y ..

Clock sequence definitions are used to define specific se­
quences of clocks. Consecutive samples, together
represent a valid disassembler state if and only if the sam-

Page3-29

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-30

pies were captured by a defined clock sequence. Only
clocks that are specified in the disassembler description
file are effective in the clock sequence.

In most cases one clock sequence is used for each clock.
Such a clock sequence only contains one clock id:

clockseq: SEQ1 = { clka}

where SEQ1 is the clock sequence id, which can be used
as a condition in look-up tables, and clka is the clock id of
a previously defined clock. Each required clock id must be
used at least in one clock sequence.

Clock sequences may be parts of each other. The disas­
sembler always tries to recognize the longest sequence.

Syntax

<clock sequence definition> ::=
'clockseq' ':' <clock sequence id> '='
<clock sequence specifier>

<clock sequence id> ::=
<identifier>

<clock sequence specifier> ::=
'{' <clock id list> '}' I '{' 'none' '}'

<clock id list> ::=
<clock id>
I <clock id> ' ' <clock id list>

Examples

For the example given above the following clock sequence
should be specified

clockseq: disastate = {CLK1, CLK2}

As another example consider the 8085 microprocessor
from Intel. For this microprocessor three clock sequences
need to be defined as can be derived from the description
in the PM 3580/PM 3585 User Manual, chapter "State
Clocks", section "Multiplexed Susses". These clock se­
quences are (it is assumed that ALE, RON, WAN and
INTAN are defined as clock id's, not only clock names):

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Tab Settings

clockseq: read = {ALE, RON}

clockseq: write = {ALE, WRN}

clockseq: inta = {ALE, INTAN}

See also the "Clock Merge" section for displaying the 8085
disassembler states on one line instead of split over two
lines: one line for each clock.

Note: No defaults are specified for clock sequences. At
least one clock sequence should be defined.

When some opcodes are longer than others a clean
screen layout can still be created when tabs are used. For
this purpose tab settings can be specified in the descrip­
tion file using the 'tab' command. The arguments the TAB
command takes have two meanings. The first arguments
separated by commas, specify absolute tab positions. The
last argument, separated from the others by a space,
specifies the tab spacing (number of characters) to the
next position, starting from the last absolute tab position.
The default first tab position is 7. The default tab space is
8 characters.

Syntax

<tab definition> ··
'TAB' '·' < tab pos>'' <tab spacing>

<tab pos> :: = <decdigits> ',' tab pos
I <decdigits>

<tab spacing>
I <decdigits>

Example
TAB: 10,207

<empty>

sets tab stops at positions 10, 20, 27, 34, etc.

Page3-31

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

%%START
Section

Page 3-32

The start section is the last predefined header line and
contains the first phase of the disassembly process. This
section is made up of an optional pattern condition and a
mandatory command chain. The pattern condition quali­
fies each line for disassembly. If the current line that is
disassembled does not meet this qualification, the disas­
sembler looses instruction synchronization and will display
"-" in the disassembly output column. Thus, the pattern
condition can be used to synchronize the disassembly pro­
cess. The second part consists of a command chain.

No relational conditions, clock sequence conditions or lo­
cal variables are permitted in the START section.

The disassembler state accessed when entering the
START-table is the first state of the instruction.

Syntax

%%START

<start definition>::=
<opt pattern condition list> <command chain>

<opt pattern condition list>::=
'(' <pattern condition list> ')' I <empty>

<pattern condition list>::=
<pattern condition>
!<pattern condition>',' <pattern condition list>

Examples

%%START
(status=Ob0100) ! MAIN !

or

%%START

! LTO !

Note: No relational conditions, clock sequence conditions
or local variables are permitted in the START sec­
tion.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Tabular Section
(%%<name>)

Lookup Tables (LT)

Index Tables (IT)

The tabular section contains lookup tables (LT) and/or in­
dex tables (IT). Each entry in a lookup table consists of a
condition followed by a command chain. Index table en­
tries consist of an optional pattern expression and a
command chain. The function of these tables is explained
in the following paragraphs.

Lookup tables are used to scan for a specific condition.
These tables are scanned from top to bottom. The first
entry that contains a true condition will cause execution of
the command chain for that entry.

Syntax

%%<name>
<condition>
<condition>

<command chain>
<command chain>

Note: The number of lookup tables cannot exceed 64.

Index tables are direct access tables. A call to an index
table is made with an offset parameter which must be a
variable (global or local) or a constant. The entry pointed
to by this parameter is accessed and the command chain
found at that position is processed.

The optional pattern expression at an index table entry is
used only to obtain values from the current disassembler
state or from global variables.

Conditions are not allowed in the index table.
Examples for the use of the pattern expression in an index
table are:

Page3-33

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-34

• calculate destination addresses for branch instructions.

• calculate the result of mathematical instructions on im­
mediate data.

• extract the index to be used for calling another index ta-
ble.

Syntax

%%<name>
<index table line>
<index table line>

<index table line> ::=
<command chain>

I <pattern expression> <command chain>

<pattern expression> ::=
'(' <pattern expression list>')'

<pattern expression list> ::=
<pattern>

I <pattern>',' <pattern expression list>

<pattern>
<label or variable> '=' <bitpattern>
<label or variable> '==' <bitpattern>

<label or variable>
<label id>
<variable name>

<label id> is the label identifier.
<variable name> is the name of a global variable. Please
refer to section "Label Definition" or "Global Variables" for
more details

Note: A label-id as parameter for an index table call is not
allowed.

Note: The maximum number of index tables is 64.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

General Elements

Lines

Comments

The CD1SA80 compiler expects line oriented input files.
This is one reason why you may want to use a program­
mers text editor instead of a word processor. Each
language element or statement must be confined to one
line.

Lines can be up to 255 characters long but it is good prac­
tice to restrict each line to what fits on the screen (80
characters).
Language elements can be extended over more than one
line using the continuation character (backslash '\'). This
allows for statements that exceed the screen limit (80 char­
acters), the maximum line length limit (255 characters) or
for formatting practices that make the source files more
readable.

Syntax

<1 .. 255 characters> CR/LF

continuation character : \

Examples

single line statement :
(opc=Oxff) !"ADD INT BCD\!" PREV V[3] GOT0[5]!

multi line statement :
(opc=0X4.) !"MOVE REG\t" REGADR V[1] \

next GOT0[2] "internal"!

Comments can be placed anywhere in a description file
where spaces or tabs are permitted, provided they are en­
closed with the /* and */ delimiters. The use of comments
throughout the description file is highly recommended for

Page3-35

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Spaces and Tabs

Upper and Lower Case
Characters

Page 3-36

maintenance purposes. If in the future you ever have to up­
grade to a microprocessor with an enhanced instruction
set, it will be so much easier to modify a well documented
source file.

Syntax

/* <any number of characters>*/

Examples

/* This is a comment*/

/* This comment extends over more than one line and
also has some tabs included */

Note: Continuation characters are not required for
multi-line comments since anything between com­
ment delimiters (/* ... */) is ignored by the compiler.

Like most compilers, the CD1SA80 compiler program is not
sensitive to spaces and tabs in source files. Consequently,
spaces and tabs can be used freely throughout the source
file for formatting purposes and to enhance legibility.

The only exception to this are the header lines (lines start­
ing with %% ..) which must start at the beginning of a line
and strings where spaces and tabs are interpreted as
"characters".

Commands may be entered in any mixture of upper and
lower case. The compiler interprets upper and lower case
characters literally in strings as well as variable names.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Conditions and Commands

Conditions

Pattern Conditions

In general, a description file consists of tables. Each table
contains lines consisting of a condition or expression and
a command chain. In the following paragraphs we will dis­
cuss the generics of the conditions, expressions and the
command chains.

A condition is always enclosed in brackets "(.....)" and typ­
ically starts at the beginning of each line in a table. Leading
spaces or tabs are allowed. A condition consists of a com­
bination of pattern conditions, relational conditions, and/or
clock sequence conditions, separated by commas. Pattern
conditions, relational conditions and clock sequence con­
ditions are introduced in the following paragraphs.
In lookup tables conditions are evaluated. When the con­
dition evaluates to TRUE, the corresponding command
chain is executed.

Syntax

<condition>
'(' <pre-condition list> ')'

<pre-condition list>

<pre-condition>

<pre-condition>
<pre-condition>',' <pre-condition list>

<pattern condition>
<relational condition>
<clock sequence condition>

Pattern conditions have two functions. One is to compare
individual bits to a value of 0, 1 or "don't care". The other
is to extract values of one or more bit fields in a label or
variable.

Page3-37

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-38

Syntax

<pattern condition> <pattern>

<pattern>
<label or variable> '=' <bitpattern>

. I <label or variable> '==' <bitpattern>

<label or variable>
<label id>
<variable name>

'=' and '==' both mean 'equal to'.
A <bitpattern> is used to express a value in hex, binary or
octal format. It must exactly match the length of the label
or global variable. This bit pattern can contain any number
of periods ('.') as don't cares.

Repetitions of two or more identical digits or periods in a bit
pattern expression can be abbreviated with the "<i>n"
structure, where n stands for the number of times the digit
is to be repeated and "i" stands for the digit or period to be
repeated. This allows for a more compact notation of long
binary strings. The repetition factor has to be separated
from any subsequent digits by means of the underscore
character('_'). The underscore can be used at any time in
a bit pattern for spacing purposes. Spaces and tabs, how­
ever, are not allowed in bit patterns.

Syntax

<bitpattern>

<hexpattern>

'Ox'< hexpattern >
I 'OX'<hexpattern>
I 'Ob'<binpattern>
I 'OB'<binpattern>
I 'Oo'<octpattern>
I 'OO'<octpattern>

::= <hexdigit+>
I <hexdigit+> <hexpattern>
I <hexpattern> <hexdigit+>
I '[' <hexpattern> ']'
I <hexpattern> '_'

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Local Variables

<hexdigit+>

<binpattern>

<bindigit+>

<octpattern>

<OCtdigit+>

I '_' <hexpattern>
I '<' <hexdigit+> '>' <decdigits>

<hexdigit> I '.'

<bindigit+>
I <bindigit+> <binpattern>
I <binpattern> <bindigit+>
I '[' <binpattern> ']'
I <binpattern> '_'
I '_' <binpattern>
I '<' <bindigit+> '>' <decdigits>

<bindigit> I ·:

<OCtdigit+>
I <octdigit+> <octpattern>
I <octpattern> <octdigit+>
I '[' <octpattern> ']'
I <octpattern> '_'
I '_' <octpattern>
I '<' <octdigit+> '>' <decdigits>

::= <octdigit> I '.'

'[' <pattern> ']' are local variable assignments. They are
described in the next paragraph.

Examples

(A= Oxff ..)
(A= Oo3.14)
(A= Ob10<.>4_0.1<1>4.)
(A= Ob<1 >11_0101)

/* Ob11111111xxxxxxxx */
/* Ob011xxx001100 */
/* Ob1 Oxxxx0x11111x */
/*Ob111111111110101 */

Local variables are used to pass values from the acquired
data or global variables to the command chain. Values of
bit fields in the bit pattern of the conditional section are as­
signed to local variables. To indicate what part of the
actual value in a bit pattern is to be assigned to a local vari­
able, brackets ('[' and ']') are placed around positions in the
pattern. More than one occurrence of these bracket pairs
can occur in a single string. Local variables are assigned

Page3-39

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Relational Conditions

Page 3-40

to identifiers $1, $2, $3 etc. from left to right. Up to 9 local
variables ($1 to $9) may be used.

Local variables are useful for extracting addressing infor­
mation that is embedded in instruction codes. Examples
are internal register addresses that are commonly embed­
ded in register move instructions. The local variable can be
used as an offset in an index table containing the mnemon­
ics for the various internal registers. Local variables are
also used in tables for the output of acquisition data into
the disassembled text. Examples are immediate data that
is part of an opcode or offsets for branch instructions.

Examples

If label A contains 10101001 then

(A= Ob10[...][...]) /* $1 = Ob101 and $2 = Ob001 */

(A= Ob .. [LO] ..) /* $1 = Ob1010 */

Note: The scope of local variables is one (possibly folded)
line of a table. In order to transfer the value of a lo­
cal variable to another line in the same table or to
another table, it must be assigned to a global vari­
able.

Note: Nesting of brackets, i.e. Ob.[.[..]].1 is not allowed.

Relational conditions are used to test the value of a global
variable or label against another global variable or a con­
stant value. Global variables are defined in the %%DEF
section of the description file and can be used throughout
the entire description file.

Syntax

<relational condition> ..
<name> <operator> <value>
I <name> <operator> <name>
I <label_id> <operator> <value>
I <label_id> <operator> <name>

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Clock Sequence
Conditions

<operator> ::= '==' I '=' I '!='
I '>' I '<' I '>=' I '<='

'!='

is the 'equal to' condition
is the 'equal to' condition
is the 'not equal to' condition
is the 'greater than' condition
is the 'less than' condition

'>'
'<'
'>='
'<='

is the 'greater than or equal' condition
is the 'less than or equal' condition

<value> stands for integer values expressed in C notation
or integer values declared in the %%DEF section of the
declaration part of the .DSC file as either a variable or a
constant.

Note: A label_id at the right hand side of a relational con-
dition is not allowed.

Examples

(i < 3)

(mvr != 12)

(x >= y)

(ADDRESS <0x3f0)

The clock sequence condition is true if the current sample
is recognized as part of the specified clock sequence.
Please refer to section "Clock Sequence Definition" for
more details.

A Clock sequence condition is used to test if a clock se­
quence is valid for the current sample. This is useful in
cases where two clock sequences are defined, for exam­
ple one for a read cycle and one for a write cycle. In this
case clock sequence conditions can be used to distinguish
between a read or a write cycle.

Examples

(rdclkseq)

(wrclkseq)

/* read cycle*/

/* write cycle */

Page3-41

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

AND-ing and OR-ing of
Conditions

Pattern
Expressions

Page 3-42

Multiple conditions can be used to qualify the same com­
mand chain for execution. These multiple conditions have
to be AND-ed or OR-ed together for this purpose. To AND
two or more conditions, they have to be enclosed by brack­
ets('(' and')') and separated by commas(',').

In order to OR conditions together, the conditions must be
positioned on subsequent lines, not followed by a com­
mand chain, except for the last conditional section of the
OR-ed group. This effectively means that each conditional
section has the same command chain associated with it.

Combinations of AND-ing and OR-ing is also possible.

Examples

Both conditions must be met:

(status=Ob0101, opcode=Ox4f)

/*both status and opcode conditions must be satisfied. */

Either condition must be met:

(opc=Ox45)

(opc=Ox47)

(opc=Ob01001 ...) !"command chain for all conditions"!

/* Either of these conditions has to be valid for the
command chain to be executed.*/

Pattern expressions are optional expressions preceding
the commands in index table lines. The pattern expres­
sions are only used to assign values of one or more
bitfields in a label or global variable to local variables. They
look like pattern conditions in lookup tables with the excep­
tion that digits other than the don't care digit ('.') are not
allowed for a bitpattern. See 'bit patterns' and 'local vari­
ables' in the Conditions section described before for the
syntax description of pattern expressions.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Commands

Syntax

<pattern expression> ::=
'(' <pattern expression list>')'

<pattern expression list> ::=
<pattern>

I <pattern>',' <pattern expression list>

<pattern> ::=
<label or variable> '=' <bitpattern>
J<label or variable> '==' <bitpattern>

<label or variable> .. -
<label id>
<variable name>

Examples

(DATA= Ox(....])

/* the value of the 4 digits is assigned to $1 */

Commands exist to perform all kinds of operations: output
strings, interpret other tables, perform assignments to glo­
bal variables, positioning in the measurements, display
selection, etc.

Commands have to be enclosed in'!' signs. All commands
together between two '!' signs form a command chain.

Tables of the tabular section can be used as procedures,
i.e. when called from a command chain, control of the pro­
gram is transferred to that table. Much like a subroutine
call in a programming language when the end of a com­
mand chain is reached, control is passed back to the
calling process. If the calling process was the %%START
section and if the end of the command chain in the START­
section is reached, then disassembly of one instruction is
completed and disassembly of the next instruction is start­
ed.

Page3-43

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Display Selection
Commands

Page 3-44

The format of each command is explained in detail in the
following paragraphs.

Syntax

<command chain> ··

<commands>

<command>

'!' <commands> '!'

<command>
<command> <commands>

<instruction blk>
I <print_string>
I <acq_ update>
I <table>
I <key_word>
I <display_sel>

To tell the disassembler how to display a disassembler
state or part of a disassembler state a number of com­
mands are incorporated in the disassembler description
language. These commands are:

• PROG

• UNUSED

• SKIP

• MR

•MW

• IOR

• IOW

These commands should be used to tell the disassembler
in which manner the current disassembler state or the cur­
rent part of the disassembler state has to be displayed in
the logic analyzer display menu. The display selection
commands give the user maximum flexibility in using the
display part of the disassembler parameters popup menu
of your PM 3580/PM 3585 logic analyzer.
For general information on instruction representation and

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

PROG

display selection see chapter 7 "Disassemblers" of your
PM3580/PM3585 User Manual.

The first three commands (PROG, UNUSED and SKIP)
are used the make a selection for instruction opcodes
needed for 'Program Context Mode'. The last 4 commands
(MR, MW, IOR, IOW) are used to treat disassembler states
as data transfer according 'Show Data Transfers'.

Once a disassembler state is selected by one of the dis­
play selection commands it can not be altered, unless the
UNGET command is used. If the display selection is
altered the disassembler looses synchronization status.

This command indicates that the current state or current
part of a state has to be displayed with all disassembler
display options. The generated text by the disassembler
will be displayed with the first state selected with this
'PROG' command. The first state accessed in the START­
section is default selected as PROG when reaching the
end of the ST ART table command chain. Other disassem­
bler states are default selected as SKIP (described on the
next page). It is allowed to overwrite this default. The next
disassembler states selected with the 'PROG' display se­
lection commands will produce an empty field in the
disassembler column if program context mode is enabled.
If program context mode is disabled a field with the text
"ope" (opcode fetch) is displayed in the disassembler col­
umn.

Syntax

<key_word> ::= 'PROG' I 'prog'

Page3-45

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

UNUSED

SKIP

Page 3-46

The command 'UNUSED' can be used to suppress the cur­
rent state or part of a state from the display if program
context mode is enabled.
The states or part of states for which the 'UNUSED' com­
mand is specified are only displayed when program
context mode is disabled. The disassembler state or part
of a state given the command 'UNUSED' is then displayed
as "unused ope" in the disassembler column.

Syntax

<key_word> ::= 'UNUSED' I 'unused'

Note: Using a 'PROG' or 'UNUSED' command on a disas­
sembler state results in treating all default states
between the current and the first state as 'UNUSED'
when reaching the end of the START table com­
mand chain. The first state or first state part is left
unchanged (default PROG).

If the current state or part of a state is to be used in the next
'START' the user is able to skip this state for usage in the
current instruction. The command to do this is 'SKIP'. By
using this command the current state or part of state will be
made available for a next 'ST ART'. After a state or part of
a state for which the command 'SKIP' was used, only data
transfer selection commands (MR, MW, IOR and IOW) are
allowed. If no display selection command is specified for a
disassembler state, 'SKIP' is the default for all disassem­
bler states following the last UNUSED or PROG when
reaching the end of the START table command chain. The
default disassembler states preceding the last UNUSED or
PROG are treated as if an UNUSED command was given.

Syntax

<key_word> ::= 'SKIP' I 'skip'

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

MR

By using the MR command, the current disassembler state
is selected as a data transfer 'memory read' action accord­
ing the disassembler parameters popup menu of your
PM3580/PM3585 logic analyzer.

Concerning the data transfer display selection commands
(MR, MW, IOR, IOW) some general remarks can be made.
Where in the following part MR is used it can be replaced
by other data transfer commands (MW, IOR or IOW) which
will be described later.

Two cases can be distinguished for data transfer com­
mands.
1. The current state, for which a MR command is speci­

fied, is the first disassembler state after START. In this
case the current state will be displayed as an unrelated
data transfer: 'mr (unrel)'.

2. The current state, for which a MR command is speci­
fied, is not the first disassembler state after START.
The first disassembler state is either default or a spec­
ified 'PROG' or 'UNUSED' command. In this case the
disassembler state is displayed as 'mr' on your
PM3580/PM3585 logic analyzer display menu.

If the disassembler state is preceded by one or more
disassembler states for which the 'PROG' display se­
lection command is used the data transfer will be
displayed immediately after the last 'PROG' disassem­
bler state of the current 'START' sequence if program
context mode is enabled.
This gives the user the possibility to compensate micro­
processor pipelines in which results of an instruction
appear on the microprocessor bus after other instruc­
tion fetches.

When 'parts' (see 'Label parts definition') is used the disas­
sembler state for which a data transfer display selection
command is specified has only one part anymore. On
accessing the disassembler state for getting values of the
part-label only the value of the first part can be accessed.

Before using the MR command for a disassembler state

Page3-47

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

MW

!OR

/OW

Page 3-48

the user should save all requested values from the other
parts in the disassembler state. The other parts can not be
accessed after the MR command is given.

Data transfer commands are not allowed if another display
selection command is already specified for any part of the
disassembler state. The disassembler will then loose syn­
chronization status.

Syntax

<key_word> ::= 'MR' I 'mr'

The current disassembler state is selected as a data trans­
fer 'memory write' which is displayed as 'mw' on your
PM3580/PM3585 logic analyzer display menu.
See the 'MR' display selection command for general
remarks on data transfer selection commands.

Syntax

<key_word> ::= 'MW' I 'mw'

The current disassembler state is selected as a data trans­
fer '1/0 read' which is displayed as 'ior' on your PM3580/
PM3585 logic analyzer display menu.
See the 'MR' display selection command for general
remarks on data transfer selection commands.

Syntax

<key_word> ::= 'IOR' I 'ior'

The current disassembler state is selected as a data trans­
fer '1/0 write' which is displayed as 'iow' on your PM3580/
PM3585 logic analyzer display menu.
See the 'MR' display selection command for general
remarks on data transfer selection commands.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Positioning in a
Measurement

GOTO [i]

Syntax

<key_word> ::= 'IOW' I 'iow'

·•·•·•·•·•·•·•·•·•·•·•·•·•·•·•·•·•·••·•·:..:.Kz.!: _...

For positioning in the measurement a number of com­
mands are incorporated in the Disassembler Description
Language:

• GOTO [i]

• TELL

• NEXT

• PREV

• GOTOPART [i]

• TELLPART

• NEXTPART

• PREVPART

• UNGET

The disassembler steps through a measurement by disas­
sembler states. All positioning and access in the
measurement is therefore done in complete disassembler
states. Please refer to section "Clock Sequence Definition"
for more details on disassembler states.
Some microprocessors can have more than one instruc­
tion in one disassembler state. Examples are 68020 or
80x86 microprocessors. Positioning only on disassembler
states is not enough in such cases. For this reason a posi­
tioning within a disassembler state can be achieved by use
of the commands 'GOTOPART', 'TELLPART', 'NEXT­
PART' and 'PREVPART'.

The GOTO command is used to instruct the disassembler
to proceed to relative position i of the measurement. The
first disassembler state used for disassembly of an instruc­
tion is the current state when the START-table is entered.
This state is always state 1. The parameter i denotes the
position relative to this first state. States for which a display

Page3-49

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-50

selection command other than SKIP was specified in the
previous START are not considered within the current
START command chain. As such positioning on these al­
ready selected states is impossible.
When the end of the command chain in the 'START' table
is reached, the disassembler proceeds to:

• The first disassembler state or state part for which the
'SKIP' command was specified.

• The first default disassembler state or state part after the
last 'UNUSED' or 'PROG' disassembler state.

• The second disassembler state or the next state part of
the current first disassembler state, if the disassembler
lost synchronization status.

This disassembler state becomes state 1 when entering
the START table for decoding the next instruction.

If the GOTO[i] command results in a positioning to a disas­
sembler state outside the measurement the disassembler
looses synchronization status.

See also the TELL, NEXT and PREV command.

Syntax

<acq_update> ::= 'GOTO[' <name or constant>']'

Examples

! GOT0[4] !

! GOTO[oldstate] !

Note: The maximum value of <name or constant> is 32.
As such, the disassembler can look ahead 32 dis­
assembler states. Negative values are not allowed
so there is no look-back capability. To report a sta­
tus of an instruction to a following instruction one
can use the 'static char' global variable (See section
'Global Variables').

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

TELL

NEXT

A command which is closely related to positioning in mea­
surement with the GOTO command is the 'TELL'­
command. This command returns the value of the relative
position of the current disassembler state. The command
can be used in relational conditions and in instructions in
the command chain.

Syntax

<key_word> ::= 'TELL' I 'tell'

Examples

{TELL < 5) /* is relative position < 5 */

! { oldstate = TELL} ! /* the global variable oldstate gets
the value of the current relative
position. This variable can later
be used for repositioning with
the 'GOTO' command. */

The next state from the measurement becomes current.
If the current state is the last state of the measurement the
command NEXT results in loosing synchronization status.
States for which a display selection command other than
SKIP was specified in the previous START are not consid­
ered within the current START command chain. As such
positioning on these already selected states is impossible.

Syntax

<key_word>

Examples

'NEXT' I 'next'

! GOT0[3] NEXT!/* After 'next' state 4 is current*/

Page3-51

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

PREV

GOTOPART[i]

Page 3-52

The previous state from the measurement becomes cur­
rent. If the current state is the first state (GOT0[1]) the
command PREV results in loosing synchronization status.
States for which a display selection command other than
SKIP was specified in the previous START are not consid­
ered within the current START command chain. As such
positioning on these already selected states is impossible.

Syntax

<key_word>

Examples

'PREV' I 'prev'

! GOT0[3] PREV !/* After 'prev' state 2 is current*/

If the disassembler can have more than one instruction in
one disassembler state the user has the ability to define
one label which can be accessed in parts. For example a
68030 32-bit databus can contain 2 NOP instructions in
one disassembler state (the NOP instruction is 16-bits).
Because the databus is 32-bits wide and the minimum
instruction size is 16-bits it is possible to have 2 instruc­
tions per disassembler state. To be able to properly handle
the instructions the databus label can be accessed
sequentially in parts of 16-bits. See section 'label-type' and
'label-parts' definition for defining such a label. If the data­
bus label is accessible in 2 parts of 16 bits, 'GOTOPART'
can be used to position on the proper part of the databus
label. The label which can be accessed in parts may have
up to 4 parts. GOTOPART may be called with part Oto 3.
GOTOPART to a part which is not valid will result in loos­
ing instruction synchronization status.

The part number given as parameter in the GOTOPART
command is absolute within the current disassembler
state. At entering the START-table the current part number
probably is not zero. This in contradiction to the GOTO[i]

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

TELLPART

NEXTPART

command where the disassembler state at entering the
START-table is always 1.

Syntax

<acq_update> ::= 'GOTOPART[' <name or constant>']'

Examples

! GOTOPART[O] !
! GOTOPART[oldpart] !

A command which is closely related to positioning in a dis­
assembler state with the GOTOPART command is the
TELLPART-command. This command returns the value of
the current part in the current disassembler state. The re­
turned value can be O to 3. The command can be used in
relational conditions and in instructions in the command
chain.

(TELLPART == 0)
/*is current part in the current disassembler state O */

! { oldpart == TELLPART} !
/* the global variable old part gets the value of the cur­

rent relative part. This variable can later be used for
repositioning with the 'GOTOPART' command. */

The next part of the current disassembler state becomes
current. If the current part is the last part of the current dis­
assembler state or there is only one part per disassembler
state the first part of the next disassembler state becomes
current. In this case 'NEXTPART' behaves like 'NEXT'

Syntax

<key_word> ::= 'NEXTPART' I 'nextpart'

Page3-53

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

PREVPART

Page 3-54

Examples

Suppose a label with 4 parts is defined in the FORMAT
section.

! NEXT NEXTPART NEXTPART !
/* after the next command the current part in the cur­

rent disassembler state is 0. After 2 times
'NEXTPART' the part number 2 is the current part of
the current disassembler state*/

Note: If a label is defined which has more than one part
the 'NEXT' command will proceed to the first part of
the next disassembler state, regardless what the
current part was before the 'NEXT' command.

The previous part of the current disassembler state be­
comes current. If the current part is already the first part of
the current disassembler state, the last part of the previous
disassembler state becomes current. In this case 'PREV­
PART' behaves line 'PREV'.

Syntax

<key_word>

Examples

::= 'PREVPART' I 'prevpart'

Suppose a label with 4 parts is defined in the FORMAT
section.

! PREV PREVPART !
/* after the prev command the current part in the cur­

rent disassembler state is the last part (in this case
3). After 'PREVPART' the part number 2 is the cur­
rent part of the current disassembler state*/

Note: If a label is defined which has more than one part
the 'PREV' command will proceed to the last part of
the previous disassembler state, regardless what
the current part was before the 'PREV' command.

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

UNGET

The Custom Disassembler keeps track of the disassem­
bler states which were accessed since START and which
of them were selected for displaying. (See section 'Display
Selection'). The status of the last accessed entire disas­
sembler state can be reset to the default status by using
the 'UNGET'-command. From then on it is treated as not
accessed. It could be regarded as a push back operation
on the disassembler input.

Syntax

<key_word>

Example

(dt=Ox ..)

%%LX
(dt=OxOO)

{dt=Ox[..])

'UNGET' I 'unget'

! "opcode" NEXT UNUSED LX !

/* start line*/

! unget !
/* Pattern 00 is always the start of an

instruction */

! "continuation" ... !
/* All other patterns must be the

continuation of an instruction */

Note: The highest disassembler state number is the high­
est number the disassembler reached while using
the positioning commands. So in the command
chain ! NEXT NEXT GOTO[?] PREV PREV ! the
highest number is 7 even though two prev com­
mands follow the command GOTO[?]. To
decrement the highest number the unget command
must be used. For each unget command the high­
est number is decreased by 1.

Note: If the highest number equals 1 the unget command
has no effect.

Page3-55

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Instructions

Page 3-56

;,,.,•,•,•,•,•.•,•.•.•.•.•.•.'.'.'.'.'.',','•'.,;,.:,,,,,,,·,,,,,,,,,,,,··.,,,.,,.,,,•,•,•,•,•,•,•.•.•.•.•.•.• .. •uu .. •,.'NN,'·,,:;··,.....,,

Instructions are operations upon local or global variables
and are comparable to C program blocks. They should be
enclosed in '{' and '}'. Multiple instructions can occur within
one block, provided they are separated by a semi-colon
(';').

Syntax

<instruction blk> ::=
'{'<instructions> '}'

<instructions>
<expression>
I <expression> ';' <instructions>

<expression>
<name> '=' <name>

I <name> '=' <name> <operator> <name>
I <name> '=' <name> <operator> <constant>
I <name> '=' <name> <operator> <value>
I <name> '=' <instr cond>
I <name> '=' <name> <operator> <instr cmd>

<instr cmd>

'TELL' I 'tell' I 'TELLPART' I 'tellpart'
<operator>

'+'

'' *
'/'
'o/a'
'&'

'I'
'>>'
'<<'

add
subtract
multiply

divide

'+' I
I'&'

'*' I '/' I '%'

'I' I ·»· I '«'

remainder after division (mod).
bitwise AND
bitwise OR
'shift right'
'shift left'

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Print Commands

Examples

{temp= max; $1 = temp - $1}

{offset = offset+ 12; dest = $2 + offset}

{state = TELL}

Note: An instruction like for example:
{dest = $2 + offset + 12} is not allowed but should
be done as in the second example above.

Print commands are used to output character strings. Typ­
ical examples are instruction mnemonics or names for
registers. In general, anything that you want to appear on
an output line is processed through print statements. For­
matting of print statements conforms to the C language
syntax and includes the use of the tabulation notation ('\t')
and the new line notation ('\n'). Also refer to section Tab
Settings of this chapter. Always enclose the string to be
printed between quotes ("").

Data values can be printed by defining local variables. For
formatting purposes, the C language style for hexadeci­
mal, binary, octal, decimal and character output are
available. An additional format modifier for symbolic output
of a local variable is available. Values of the local variables
$1, $2, $3 etc. are used for printing according the respec­
tively format modifiers found within a command chain.

For the symbolic printout format the value of the local vari­
able is matched against the defined symbols for the
specified label in the logic analyzer. If a matching symbol
can be found, the corresponding symbol text is printed in­
stead of the value of the local variable. If no matching
symbol can be found the value will be printed in the radix
of the specified label. (Symbolic printout is only effective
with logic analyzer system software version 2.01 or up).

If the output line exceeds the disassembler column width,
defined in the header definition (see section 'Header Defi­
nition'), the disassembler will automatic fold the rest of the
resulting disassembler text to a new disassembler line.

Page3-57

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-58

This folding will be done on the last spacing character in
the output line before the column width is exceeded.

The total output line may not exceed 255 characters. If this
maximum is exceeded remaining characters are silently
truncated. Where local variables are used in a command
chain they are inserted in the sequence $1, $2, ... , $9.

Syntax

<print string>
<print commands> ""

<print commands> ::=
<ASCII-character>
I <format_command>
I <ASCII-character> <print_commands>
I <format-command> <print_command>

<ASCII-character> ::=
printable character
I \t (tab)
I \n (new disa output line)

<format_command> ::=
<format specifier>

<format specifier> .. -
<width and type>

< width and type>
'c'
I <width> <type>
I <symbol format>

<Width>
<decdigits> (field width equals n po-

<type>

sitions with leading
blanks)

I 'O' <decdigits> (field width equals n po-

I <empty>

'b' I 'o' I'd' I 'x'

sitions with leading
zeroes)

(binary, octal, deci­
mal, hexadecimal)

F

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

Special
Commands

<symbol format> ··
'<' <label> '>' <symbol viewsize> 's'

<symbol viewsize> ::=
'.' <Width>
J<empty>

Examples

If label A is Ob00100110 then

(A=Ox ..) !"This text will be printed."!
/* This text will be printed */

(A=Ox[.].) !"address= %d"!
/* address = 2 */

(A=Ox[..]) !"opcode=\t%04x\tin hex."!
/* opcode=0026 in hex. */

(A=Ox[.][.]) !"opc1 =%02x opc2=%02x"!
/* opc1 =02 opc2=06 */

(A=Ox ..) ! "Percent sign: %%" !
/* Percent sign: % */

(variable= Ox[....]) ! "%<ADDRESS>s" !

(ADDRESS = Ox[....]) ! "%<ADDRESS>.10s" !
Will print the symbolic value of
ADDRESS in exactly 10 characters.

Note: <symbol format> is only effective if logic analyzer
system software version 2.01 or up is used

Note: Zero width can be specified to skip local variables.
"%0x%02x" will print the value of $2.

Two special commands related to printing are available:

• UNPUT

• ERROR

Page3-59

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

UNPUT

ERROR

Transfer Control
to other Tables

Page 3-60

The last character that was printed with a print-string com­
mand, is erased. The effect is similar to a backspace in a
text editor.

Syntax

<key_word> 'UNPUT' I 'unput'

The error command is intended for debugging purposes
while developing a disassembler.
The string "? ERROR: [i]" will be displayed to indicate the
occurrence of an unknown condition or data value. The
value "i" is the relative disassembler state according the
GOTO and TELL command, within the current START-ta­
ble command chain.
The error command could be placed at the end of a lookup
table to signal a no-match situation.

Syntax

<key_word>

Examples

%%MAIN LOOKUP

'ERROR' I 'error'

(opcode=Ox ..) ! error ! /* No match found */

Calls to other lookup or index tables can be made from
within a command chain. When a table call is encountered,
control is transferred to this new table. If the table is an in­
dex table, an offset must be supplied between square
brackets ('(' and ']'). This offset can be a constant, a vari­
able or a local variable. No offset can be specified for

PF 8629/30 Custom Disassembler Disassembler Description Language Reference

lookup tables as these are always scanned from top to bot­
tom.

Calls to tables can be nested and any table can be called
recursively. The names used to call other tables must have
been declared in the %%EQU section of the disassembler
description source file.

Note: The first entry position (index) in an index table is
always zero (0).

Note: The total nesting of tables is limited to a depth of
128. The generated custom disassembler will auto­
matically display the following error message in the
disassembler output column if this number is ex­
ceeded: "? maximum table nesting exceeded: [i]",
where "i" is the relative position in the measure­
ment. When this error occurs you probably defined
an infinite loop in accessing tables.

Note: If a value of a sample is not found in a lookup or in­
dex table it is accessed outside its boundaries. The
disassembler will automatically print"-" in the dis­

assembler output column indicating that the
disassembler lost synchronization status. (Com­
pare chapter 7, "Disassemblers", of your PM 3580/
PM 3585 User Manual). The disassembler will then
automatically proceed with the disassembler state
following the first accessed disassembler state.

Syntax

<table>

<name-lookup>

<name-index>
<offset>

<lvdigit>

<name-lookup>
I <name-index> '[' <offset> ']'

<name> (lookup table name)

<name> (index table name)
<name>

I $<ivdigit> (local variable)

I <value>

I <constant>

1 .. 9

Page3-61

Disassembler Description Language Reference PF 8629/30 Custom Disassembler

Page 3-62

Examples

!"ld\t" REG[$1] GOT0[2] MAIN!

/* Print mnemonic then register type,then
process next line*/

! 1Dx[6] ! /* Jump to index table entry*/

! lnd[$3] ! /* Take local variable 3 as the offset in index
table Ind*/

! it[dw] ! /* Take global variable dw as offset in index
table it*/

PF 8629/30 Custom Disassembler

Chapter 4

Writing a 68000
Disassembler

Disassembler labels 4-3
Disassembler Status Selection 4-4
Instruction Decoding 4-4
Finding additional opcodes 4-5
Display additional opcodes 4-7
Computing branch offsets 4-7
Sub values in the instruction 4-9
Computing return address 4-9
Searching datatransfers 4-9
Suppressing unused opcodes from display 4-10
Processing data transfers 4-13
Branch instruction 4-13
Conditional branches 4-14
Static char variable usage 4-15
Finishing the example disassembler 4-17

Writing a 68000 Disassembler PF 8629/30 Custom Disassembler

Hlf!I
::;;+@!J18 1€n£t

+l~Hil19 1(U~l
+0,~21 10f9
+sJl?J2.3 lijHIJ

Page 4-2

110
110
110
11,,,
111ft
101

S uppose a 68000 disassembler has to be written to
disassemble the DEM68000.NEW measurement
delivered with your custom disassembler software
package.

The disassembler should produce the next output in the
display menu of your PM 3580/PM 3585 logic analyzer if
program context mode is enabled.

(!82f1it
l~1B211r:.:
t:l8211e
1;182120
082122
g32114
(r822Gh1i

fifZH~18
2..18(~.
66f'1 8~1E
3212 MOVE. IJJ
tiJO<ZH:l

The measurement file is available on disk with the
filename DEM68000.NEW.
The disassembler description file is available on disk
with the filename DEM68000.DSC. Use the CD1SA80
compiler to create a loadable disassembler
DEM68000.D1S.

If program context mode is disabled the following output
should be produced. The differences can be seen in the
order of disassembler states shown and at the unused
opcode fetches on disassembler state +0005, +0011 and
+0020.

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

Mt!Ul#@ WM!M
Label, ;OSi.:tffiiJ
·Base: @jifif'.'.'.t
+t°:Hl11}12 1faf~}
+%183 · rn~r
+1J11:')1Z,4 lf!)13)

-j-J,ll:113S 1!:liJI.
+i!H~t!r6 Et@f~
+€!~i iIJ 7 t~#£u;
+GH,88 1%1
+0i::108 100
+ 1)1:11 0 f1E10
+l!ll:111 101!1

+!lHll 13 11)1Il

+f99l4 10Gl
+fH3l5 Hu3
+l!llir16 10fl
+liHB17 lCll'J
+l~U}l18 1(H~}

+l~H~l 19 1 (JGf
+•31•312(• 1%)
+1,1E12J lfnZI

Disassembler labels

[1 l'.:,F LHY Feb 19 1993 01:13p

t18211E,
€J822Glfl
t,182118
08•31efG
(l8fief2
f.?8213f~l
082132
(1821:)121
1)82134

f18f1ef2
1)821.18
l38211a
El8211c
111a211e
f}!8212t~I
fZIS2122
@32124
E:182114

l)J1;)13i1')

5343
GE)frt3.
2118
3a81 1'!0\/E. IJJ

(JJ)l)t~l._

(ll!i(!)fl

2118
5343 SUBQ.IJJ
67f4 · BEQ
267c l'lOVEA. L
(IHE'.!8
2rn1;,
E.E.f€• Bt,E
4e71
3212 110\IE. IJJ

m,·
(inused opr-:
mw
m1.1J

DL \AE,.l

fflb)

1:.u-1u:;3ed 6pc
mr
mr
.. 1,oa

1"', L

#EHIHI1:3 21:Eff~l;; A.3
op,:
(4')t::

-lfa
unu:2,ed ope
<AZ>, Dl

(138211€•}

{i~i82ll4}

The instructions which are shown in the measurement are:

• MOVE - general move instruction

• BSR - branch to subroutine

• RTS - return from subroutine

• SUBQ - subtract

• BEQ - branch on equal

• MOVEA - move to an address register

• BNE - branch on not equal

Before one can write such a disassembler we should know
some information specific for the 68000.
The 68000 has labels 'DSCTRL', 'FC2_0', 'ADDRESS' and
'DATA' and the clocks 'UDSN' and 'LDSN'. These two
clock labels contain no relevant information for the user.
They are only relevant to the disassembly process
because they identify applicable disassembly states. The
3 channel label 'DSCTRL' (data size control} contains the

Page4-3

Writing a 68000 Disassembler

Disassembler Status
Selection.

%% STATUS TAB

PF 8629/30 Custom Disassembler

following information
(the most significant channel is the R/WN channel):

000
100
others

memory write state 16-bit databus.
memory read state 16-bit databus.
not supported for this example.

The 3 channel label 'FC2_0' (function code) contains the
following information:

1 0 1
1 1 0
others

memory action in data area.
memory action in program area.
not supported for this example.

The 'DATA'-label contains the opcodes of the instructions
to be disassembled as well as the data transfers caused by
the instruction. Each instruction has an opcode of 16-bits
or a multiple of 16-bits. An instruction starts with a 16-bit
databus memory read action in program area.

The FC2_0 and DSCTRL labels contain information about
the bus status. For an instruction opcode fetch state these
labels should have the following values:
FC2_0 = 1 1 0 and DSCTRL = 1 0 0.

With this knowledge instruction states can now be distin­
guished in the disassembler from data transfer states by
setting up the following table:

(FC2 0 ObllO, DSCTRL=OblOO)
(FC2_0 OblOl, DSCTRL=Obl ..)
(FC2_0 OblOl, DSCTRL=ObO ..)
(FC2 0 Ob .••)

11 instruction 11 !
rnr ! I* memory read*/
mw ! /* memory write *I
"reserved" ! /* not supported*

Instruction Decoding

Page 4-4

A distinction is made between instruction and memory
actions of the microprocessor by using the available status
labels 'FC2 O' and 'DSCTRL'.
Below you see the binary format of the instructions in the
measurement we want to disassemble:

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

MOVE.W
MOVE.W
BSR
MOVE.W
RTS
SUBQ.W
BEQ.B
MOVEA.L
BNE.B

#<immediate>,D3 OOll OllO OOll llOO <16-bit immediate data>

(A2) ,Dl 0011 0010 0001 0010
<addr-offset> OllO 0001 <B-bit signed addr-offset>

Dl, (AS) OOll 1010 1000 0001
0100 lllO Olll 0101

#<value>,D3 0101 <3-bit value>l 0100 0011
<addr-offset> OllO Olll <8-bit signed addr-offset>
#<immediate>,A3 0010 0110 Olll llOO <32-bit immediate data>
<addr-offset> OllO 0110 <8-bit signed addr-offset>

Instead of printing "instruction" a sub-table for decoding
the instructions contained in the 'DATA' label is now called.
Some command lines in the 'decode' table contain the
names of other, not yet defined, tables.

%% decode !• in a condition is only used for readability•/
"MOVE.W\t#" immediatel6 ",D3" !

"MOVE.W\t(A2) ,Dl" !

(DATA Ob0011_0110_0011_1100)
(DATA
(DATA
(DATA

Ob0011_0010_0001_0010)
ObOllO 0001 •••.••.•)
ObOOll 1010 1000 0001)

"BSR\t" addr_offset !

"MOVE.W\tDl,(AS)" !

(DATA Ob0100_1110_0111_0101)
(DATA ObOllO_Olll_ _)
(DATA Ob0101 ... 1 0100 0011)

"RTS\t" cornpute_addr !

"BEQ\t" addr_offset
"SUBQ.W\t#" val3bit ",D3"

(DATA ObOllO OllO) "BNE\t" addr_offset !

(DATA ObOOlO 0110 0111 1100) "MOVEA.L\t#" irnrnediate32 ",A3" !

Finding-additional
opcodes

For the first MOVE immediate instruction the following dis­
assembler state with a function-code in program area and
a memory read of 16-bits contains the immediate data for
this instruction. Now suppose that this state is always the
next disassembler state in the measurement. The call to
immediate16 could then be replaced by:

"MOVE.W\t#" NEXT print[O] ",D3" !

%% print
(DATA=Ox[....]) ! "%04x"

in which print[O] is a call to the 'print' table with offset O.

The 68000 is a pipelined micro-processor, which means
the 68000 is already fetching another instruction opcode
before the current instruction is completed. So the next dis­
assembler state is probably not the disassembler state
which contains the immediate data.

Page4-5

Writing a 68000 Disassembler

%% FindNextOpc

(ADDRESS=Ox[•••...])

%% ChkNextOpc

PF 8629/30 Custom Disassembler

The next disassembler state could also be a data-transfer
disassembler state which is a result of a previously exe­
cuted instruction. Due to the microprocessor internal
opcode pipeline it can appear now on the bus. To handle
this case a search to the next instruction opcode should be
done. The next instruction opcode state should meet the
following conditions:

• The FC2_0 label function-code must be in program area

• The DSCTRL-label must be a memory read over 16-bits.

• The ADDRESS of the opcode-state must be 2 higher
than the address of the first MOVE-opcode disassembler
state.

• It must be the first disassembler state with function-code
in program area and a16-bit memory-read action.

The call of command 'NEXT' must be replaced by a table
which searches the next opcode state: 'FindNextOpc'.
This can be an index table. The call should then be 'Find­
NextOpc[O]'.
The next instruction opcode state should be present in the
measurement. If it is not something is wrong and the dis­
assembler should loose synchronization status.
This results in the following tables for finding an additional
opcode for an instruction.

/* index table, compute next opcode
address, and search for it*/

! { nopc_addr = $1 + 2 } NEXT ChkNextOpc !

I* lookup table*/
(ADDRESS= nopc_addr, FC2 0
(FC2_0 != ObllO)

ObllO,DSCTRL = OblOO)I/* found next opcode*/!
I NEXT ChkNextOpc !

Page 4-6

/* next opcode not found yet, look forward
Function-code FC2_0 = ObllO is illegal.
The disassembler looses synchronisation
status */

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

Assume the next opcode of the instruction is found. To dis­
play this opcode with the rest of the instruction a display
selection command for this state has to be specified.
Because it is an instruction opcode there are 3 possibili­
ties:

PROG

UNUSED

SKIP

PROG means display the current state in all possible dis­
play modes on your logic analyzer display menu.
UNUSED means display state only if program context
mode is disabled.
SKIP means do not use this state now, use it in another
START for decoding in a following instruction.

In this case the opcode belongs to the instruction, so it
should be displayed: PROG is then the one to use. Which
makes the handling of the MOVE instruction complete:

(DATA= Ob0011_0110_0011_1100) "MOVE.W\t#" FindNextOpc[O] \
PROG print[O] ",D3" !

The other MOVE instructions are already completely
decoded.

(DATA= Ob0011_0010_0001 0010)
(DATA= Ob0011_1010_1000_0001)

! "MOVE.W\t(A2) ,Dl" !

! "MOVE .W\tDl, (AS)" !

The MOVEA instruction can be handled in a similar way as
the MOVE immediate explained before. The only differ­
ence is that it requires two additional opcodes in which the
immediate address is contained. This results in the follow­
ing lines for this instruction:

(DATA= Ob0010_0110_0111 1100) ! "MOVEA.L\t#" FindNextOpc[O] PROG \
print[OJ FindNextOpc[O] PROG \
print[OJ ",A3" !

Computing branch
off$ets

The BSR instruction contains in the lower 8-bits a relative
offset from the current address to the address at which the
microprocessor will start executing the subroutine.
The relative offset can be used to compute the address at
which the microprocessor will continue execution of
instructions. The sign bit in the offset should be used to
compute the correct address.

Page4-7

Writing a 68000 Disassembler PF 8629/30 Custom Disassembler

The computed address value should be printed which is
done through a new entry in the 'print' index table. This
new entry extracts the value of the computed address in a
local variable and prints it in exactly 6 hexadecimal digits
including leading zeros.
The resulting line in the 'decode' table and the new tables
or table lines look like:

(DATA= Ob0110_0001_ _ ...•) ! "BSR\t" Compute8bitBrAddr print[l] !

%% Compute8bitBrAddr /* data label contains 8-bit signed off­
set to ADDRESS*/

(DATA=Ob<.>8 0[<.>7], ADDRESS=Ox[.....• J) l /* positive offset*/\
{dest_address = $2 + $1,\
/* compute destination address*/ \
dest_address = dest_address + 2 }\
/* adjust value*/ \
"+%ct" I* print offset*/

(DATA=Ob<.>8_1[<.>7], ADDRESS=Ox[...... J) ! /* negative offset•/ \

%% print
(DATA=Ox[....])

{$1 = $1 - Ox80, /* sign extend $1 *I\
dest_address = $2 + $1,\
/* compute destination address *I \
dest_address = dest_address + 2 }\
/* adjust value•/ \
"%d" I* print offset*/ !

(dest_address Ox .. [....•. J)

"%04x" !

"\ t{%06x}"

Note: In the first condition of the Compute8bitBrAddr table
the notation "<.>8 " is a short hand notation for 8
don't care digits. So instead of 8 dots representing
8 don't care digits the user can also use the short
hand syntax

"<"digit">" decimal_number "_"

in which digit can be a dot (don't care) or any digit in
the range of the given radix.

Two other instructions (BEQ and BNE) look almost the
same as the BSR instruction. The entry for these instruc­
tions in the decode table looks like:

(DATA Ob0110 0111 •..•....) ! "BEQ\t" Compute8bitBrAddr print[l] !
(DATA Ob0110_0110_ _) ! "BNE\t" Compute8bitBrAddr print[l] !

Page 4-8

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

Sub values in the
instruction< · ..

The next instruction to disassemble is the SUBQ instruc­
tion. The SUBQ instruction is 16 bits long. The immediate
substract operand is encoded in the instruction opcode as
a 3-bit value. This value can be extracted directly from the
DATA label and formatted in the final disassembly text by
using a local variable. The decode line for the SUBQ
instruction will then be:

(DATA; ObOlOl_[...]1_0100_0011) ! "SUBQ.W\t#%d,D3"

Comp1,1t111g·r~um
address ··

There is only one instruction left which is not completely
decoded yet: 'RTS'. For this instruction the return address
is incorporated in 2 disassembler states with function code
in data-area and read-actions of 16-bit. The return address
should be printed the same way as is done for the BNE,
BEQ and BSR instruction.
Because of the pipeline of the microprocessor another
instruction opcode prefetch is done before the 2 disassem­
bler states in data-area appear which contain the return
address. So a search is started to find the data read. After
this search the return address from the RTS instruction
can be computed and printed the same way as is done for
the BSR instruction. The decoding of the RTS instruction
then looks as:

(DATA; Ob0100_1110_0111_0101) ! "RTS\t" FindDataRead \
ComputeReturnAddr[O] print[l]

%% FindDataRead
(FC2 0 OblOl, DSCTRL; OblOO)
(FC2 0 ; Ob ...)

/* found, stop searching *I !

I* not found yet *I NEXT FindDataRead

%% ComputeReturnAddr
(DATA;Ox[.... J)

(DATA;Qx[., ..])

S&arching data transfers

! { dest_address; $1 << 16 } MR\
FindDataRead ComputeReturnAddr[l]
I { dest_address; dest_address + $1 } MR !

After decoding the instruction the data transfer is searched
by a call to the table 'FindDataRead. If the data read is
found the address which will be next on the bus is com­
puted in the table 'ComputeReturnAddr'. This return
address is then printed.
A command already used in the example in chapter 2 is
specified in the ComputeReturnAddr table: 'MR'. This

Page4-9

Writing a 68000 Disassembler

Suppressing unused
opcodei;; from display

Page 4-10

PF 8629/30 Custom Disassembler

command is one of the 4 possible display selection com­
mands to select a disassembler state as a data transfer.
The possible data-transfer display commands are:

• MR : for memory read

• MW : for memory write

• IOR : for 1/0 read

• IOW : for 1/0 write

Data transfer states are displayed together with the instruc­
tion if program context mode is enabled.
If program context mode is disabled the disassembler
states are displayed in chronological order. The data trans­
fer states are suppressed from the display if show data
transfer mode is disabled. These modes can be selected in
the disassembler parameters popup menu on your
PM 3580/PM 3585 logic analyzer.
Seven display selection commands are available to deter­
mine the way the display of states is affected by the LA's
display modes.

These commands are:

For instruction opcode selection: PROG, UNUSED, SKIP.

For data transfer selection: MR, MW, IOR, IOW.

Using these commands the user has maximum flexibility to
allow or suppress disassembler states from the PM 3580/
PM 3585 logic analyzer display menu by means of the dis­
assembler parameters popup (See Chapter 7,
"Disassemblers" of your PM 3580/PM 3585 User Manual).

The RTS instruction is decoded and the return address is
computed and printed. The disassembler state with the
computed return address in the ADDRESS-label contains
the opcode which will be executed next after the RTS
instruction. The opcodes fetched on other disassembler
states after the RTS instruction and before the disassem­
bler state with the computed return address in the
ADDRESS-label are not executed opcodes.
If program context mode is enabled these not executed
opcodes should not be displayed. To achieve this, the pre­
vious tables must be extended.

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

After the return address is computed the search for the dis­
assembler state with the return address in the ADDRESS­
label is started from the last opcode disassembler state of
the ATS instruction. The computed address most likely is
an address which is not in sequence with the value on the
ADDRESS-label for the current ATS opcode disassembler
state. A search is started to find an opcode fetch with a
value on the ADDRESS-label which is not in sequence
with the address value of the last opcode fetch.
If this so called sequence break can be found the address
value is compared with the computed return address of the
ATS instruction. If these are the same the opcode fetches
found between the last opcode disassembler state of the
ATS instruction and the current disassembler state are
'unused opcodes'.
The unused opcodes can be suppressed from the default
logic analyzer display menu by the 'UNUSED' command.
The disassembler states will then only be shown if the pro­
gram context mode is disabled in the disassembler
parameters popup on your PM 3580/PM 3585 logic ana­
lyzer. With this knowledge the full decoding of the ATS
instruction requires the following tables.

Page4-11

Writing a 68000 Disassembler PF 8629/30 Custom Disassembler

(DATA Ob0100_1110_0111_0101) ! "RTS\t" \

%% FindDataRead
(FC2 0 OblOl, DSCTRL
(FC2_0 = Ob ...)

%% CornputeReturnAddr
(DATA Ox[....]

(DATA= Ox[•.••]

%% FindNewOpcAddress
! FindNextOpc[O] { state

%% FindAddrSeqBrk
(pipeline > 2)
(ADDRESS= Ob[<.>24])

%% ChkAddrSeq
(FC2 0 = ObllO, ADDRESS
(FC2 0 != ObllO)
(FC2 0 = ObllO)

%% CheckBrAddress

OblOO)

{ last_opc =TELL} \
FindDataRead \
CornputeReturnAddr[O] \
print[l] \
GOTO[last_opc] \
FindNewOpcAddress[O] CheckBrAddress

/* found, stop searching*/ !
/* not found yet*/ NEXT FindDataRead

! { dest_address = $1 << 16 } MR\
FindDataRead CornputeReturnAddr[l]
! { dest address dest address+ $1 } MR

TELL} FindAddrSeqBrk

! /* not found, reposition*/ GOTO[state]
! {nopc_addr = $1; \
pipeline= pipeline+ l} \
NEXT ChkAddrSeq !

nopc_addr, DSCTRL = OblOO) ! FindAddrSeqBrk !
! NEXT ChkAddrSeq !

/* found a break in the opcode addr
sequence, ready *I !

(ADDRESS= dest_address /* dest_address is computed before*/)\
/* branch executed*/\

(ADDRESS Ox)

%% SelUnused
(state< new state, FC2 0
(state new_state)
(state Ox ..•.)

Page 4-12

!{ new_state = TELL} GOTO[state] SelUnused
! /* branch not executed*/ !

ObllO) ! UNUSED NEXT {state= TELL} SelUnused
I* ready*/ !

! NEXT { state= TELL} SelUnused !

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

"?:\\:;"'.'.'.::··. ..::··

~rci~~~j~g daJ.i transfers ·.·.··.· ... ·

At this point all the instructions occurring in the measure­
ment are decoded.
Some instructions are not handled completely yet.
A few instructions result in data transfers as e.g. the RTS
instruction.
Other instructions result in 'unused opcodes'.

After decoding an instruction the number of data-transfers
following the instruction is known. These data transfers
should be treated as part of the instruction.
As an example how to handle this the decoding of the
MOVE.W instruction (line +0002) is given in the next table
line:

(DATA= Ob0011_0010_0001_0010) ! "MOVE.W\t(A2),Dl" FindDataRead MR!

The search for the data transfer is done by means of the
FindDataRead table which is already described with the
RTS instruction before.
The resulting data transfer of this instruction can be found
on line +0004. Due to the microprocessor pipeline the next
instruction opcode (line +0003) is fetched before the
MOVE instruction data appears on the bus.
The next opcode is part of the following instruction and
may not be treated as an unused prefetch (UNUSED) or
part of this instruction (PROG).
It could be given the command 'SKIP' but because that is
the default display selection command on all except the
first disassembler state no display selection command at
all is given when searching the data transfer.
The instruction in the subroutine (line +0008) is an instruc­
tion resulting in a memory write action. The disassembly
procedure for this instruction is almost the same as for the
previous MOVE-instruction.

(DATA = Ob0011_1010_1000_0001) ! "MOVE.W\tDl, (AS)" FindDataWrite MW

%% FindDataWrite
(FC2_0 OblOl, DSCTRL = ObOOO) /* found, stop searching*/ !

(FC2_0 =Ob ...) I* not found yet *I NEXT FindDataWrite

Branch instruction In this way the other instructions resulting in data transfers
can also be handled. Now the handling of the possible
'unused opcodes' for the BSR, BNE and BEQ instructions
has to be done.

Page4-13

Writing a 68000 Disassembler PF 8629/30 Custom Disassembler

The effect of the BSR instruction in this example is a
branch to the computed address. How to compute the
address is explained before. The effect of the RTS instruc­
tion explained before also has a branch to a computed
address. The search for the computed address can be
done the same way as it is done for the RTS instruction.
Additionally the BSR instruction causes two data transfer
memory write actions in which the current program counter
is written to the stack.
The disassembly for the BSR instruction then looks like:

(DATA= Ob0110_0001_ •••• _ .•.•) ! "BSR\t" \
CornputeBbitBrAddr print[l] \
{ last_opc =TELL} \
FindNewOpcAddress[OJ CheckBrAddress \
GOTO[last_opc] \
FindDataWrite MW NEXT FindDatawrite MW

The conditional branches BEQ and BNE do not result in
data transfer actions.
Because the BNE and BEQ instructions are conditional the
next opcode is sometimes an unused opcode as seen with
the BSR instruction and sometimes it is the first opcode of
the following executed instruction.
The only possibility for the disassembler to distinguish
these two cases is to investigate if the branch was taken or
not by looking ahead and testing the ADDRESS label for
appearance of the computed branch address.
If it appears the branch is assumed and the opcode after
the instruction is an unused opcode. Otherwise the branch
is not taken and the first opcode after the instruction is the
beginning of the following instruction. The look ahead pro­
cess is already used with the RTS instruction in the tables
FindNewOpcAddress and CheckBrAddress together with
their sub tables.
The CheckBrAddress will automatically select the possibly
unused opcode prefetches with the 'UNUSED' commands
if the branch is taken. This results in the following table
lines:

(DATA = ObOllO 0111) ! "BEQ\t" \

(DATA= Ob0110_0110_ _)

Page 4-14

Cornpute8bitBrAddr print[l] \
FindNewOpcAddress[O] CheckBrAddress
! "BNE\t" \
Cornpute8bitBrAddr print[l] \
FindNewOpcAddress[O] CheckBrAddress

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

Static ctlar variable
us~ge

The instructions are all completely handled with the disas­
sembler descriptions made sofar. The only thing to do yet
is to report errors if the disassembler does not automati­
cally loose instruction synchronization.
An example how to do this can best be illustrated for the
unconditional branch instructions BSR and RTS. If the
instruction is decoded the computed new opcode address
must appear on the address label. If the computed address
can not be found the disassembly is not ok and the disas­
sembler should loose synchronization status. One way to
loose instruction synchronization within the custom disas­
sembler is calling an empty lookup table or an index table
with a non existing index. This would result in displaying
'-' when decoding the instruction. Because the instruction
itself was decoded properly but the result of the instruction
was not correct the disassembler should loose synchroni­
zation status at the start of the next instruction. This can be
achieved by reporting a status from this instruction to the
next by use of the 'static char' variable. Before starting the
decoding of the next instruction the disassembler should
check this status and loose instruction synchronization.

The static char variable can be declared in the 'DEF' sec­
tion:

static char instr_status;

To detect if an illegal branch or return instruction is
encountered a new table with the test on the required
address is created. If the required address is not found the
static char variable is set. When decoding the next instruc­
tion the value of the static char variable is checked on the
first line in the STATUS_TAB.

If the static char variable is set a lookup table sync_lost is
called which results in loosing synchronization status and
printing '-' in the disassembler output column on your
logic analyzer. For the RTS instruction this results in a
additional call to the CheckSync table after the
CheckBrAddress is done.
The BSR instruction will have a similar call to the
CheckSync table after the CheckBrAddress. The BEQ and
BNE instructions do not have the call to the CheckSync

Page4-15

Writing a 68000 Disassembler

%% STATUS_TAB
(instr_status = SYNC _LOST)

PF 8629/30 Custom Disassembler

table because these are conditional branches.
For readability purposes the value for the static char vari­
able to report the synchronization lost status is given in a
constant definition 'SYNC_LOST'. Because the static char
variable initially is 0, the constant definition for synchroni­
zation lost can be any value except 0. The value O is
defined as SYNC OK.
The resulting tables and the RTS instruction decoding then
look like:

sync_ lost { instr status - = SYNC - OK } !
(FC2 0 FC _PROGRAM, DSCTRL=OblOO) I decode
(FC2 0 FC _DATA, DSCTRL=Obl ..)
(FC2 0 FC _DATA, DSCTRL=ObO ..)
(FC2 0 Ob ...)

%% decode

(DATA= Ob0100_1110_0111_0101)

%% CheckSync
(ADDRESS= dest_address)
(ADDRESS I= dest_address)

%% sync_lost
(instr status SYNC_OK)

MR ! !• memory read •!
MW ! !• memory write
"reserved function code"

! "RTS\t"
{ last_opc TELL} \
FindDataRead \
ComputeReturnAddr[O] \
print[l] \
GOTO[last_opc] \

•!
!

FindNewOpcAddress[O] CheckBrAddress \
CheckSync !

instr status
instr status

SYNC_OK}
SYNC LOST

!{ instr_status = SYNC_LOST} sync_lost !

The BSR instruction decoding can be changed the same
way as is done for the RTS instruction.

Page 4-16

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

F\nl~tliqging the exam pie
alsanemblet· ·.

%% DEF

The complete description of the example 68000 disassem­
bler is given below.
In this table you will notice a change of the FindDataRead
and FindDataWrite tables. A check to assure the searched
data transfer is found after the microprocessor opcode
fetch pipeline is added. This is another possibility to syn­
chronize the disassembler with the measurement.
The use of the tab-positions keyword 'tab' is shown in
which two absolute tab-positions are given and an offset
starting from the last absolute tab position to the next tab
position.
For readability purposes a few constant definitions were
added. For the FC2_0 label the constants can be used in
the lookup tables The constants are FC_PROGRAM and
FC _DATA. They are used in conditions instead of the val­
ues Ob11 O and Ob101 which makes the condition for the
FC2_0 label easier to understand.

long nopc_addr, dest_address;
int pipeline;
int datatr_opcpipe;
int last_opc;
int state;
int new_state;
static char instr_status;

#define

#define
#define

#define
#define

%% EQU

MAXPIPE

FC DATA
FC PROGRAM

SYNC_OK
SYNC LOST

/* lookup tables*/
LT: STATUS_TAB, decode, ChkNextOpc

OblOl
ObllO

LT: Cornpute8bitBrAddr, FindDataRead, FindDataWrite
LT: CheckBrAddress
LT: ChkAddrSeq
LT: FindAddrSeqBrk
LT: SelUnused
LT: CheckSync
LT: sync_lost

Page4-17

Writing a 68000 Disassembler PF 8629/30 Custom Disassembler

/* index tables */

IT: FindNextOpc, print, ComputeReturnAddr
IT: FindNewOpcAddress

%% FORMAT

logo: "68000 C-DISA Example"

head: "68000 C-DISA Example" 39

tab: 10,32 7

pods: threshold {{TTL, TTL},
{TTL, TTL},
{TTL, TTL},
{TTL, TTL}
}

clock: udsn ={ name = "UDSN",
edge= rising,
channel= 31,
qualifier= {channels= { 52 },

required no,
levels= {high}

clock: ldsn ={ name = "LDSN",
edge= rising,
channel= 30,
qualifier= {channels= { 52 },

required no,
levels= {high}

label: DSCTRL {name= "DSCTRL",
radix= bin,
channels= { 29, 28, 27 }

label: FC2 0 ={ name = "FC2 0",
radix= bin,
channels= { 26, 25, 24 }

label: ADDRESS ={ name = "ADDRESS",
channels = { 23, 22, 21,

15, 14, 13,

7' 6' 5'

Page 4-18

20, 19,
12, 11,

4, 3,

18, 17, 16,
10, 9, 8,

2' 1, O}

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

label: DATA={ name "DATA",

channels = { 47, 46, 45, 44, 43, 42, 41, 40,
39, 38, 37, 36, 35, 34, 33, 32}

clockseq: SEQl
clockseq: SEQ2

%% START
STATUS TAB

udsn
ldsn

%% STATUS TAB
(instr_status = SYNC LOST)
(FC2 0 FC_FROGRAM, DSCTRL=OblOO)
(FC2 0
(FC2 0
(FC2 0

FC_DATA,
FC_DATA,
Ob •••)

DSCTRL=Obl ..)
DSCTRL=ObO ..)

sync_lost { instr_status

decode
MR 1/* memory read *I
MW !/* memory write*/
"reserved function code"

SYNC OK

%% decode I* _ in a condition is only used for readability * /
(DATA Ob0011_0110_0011_1100) ! "MOVE.W\t#" FindNextOpc[O] FROG \

print[OJ ",03" 1

(DATA
(DATA
(DATA

(DATA

(DATA
(DATA

(DATA

Ob0011_0010_0001_0010)
Ob0011_1010_1000 0001)
Ob0010_0110_0111_1100)

Ob0110_0001_ _)

ObOlOl_[...]1_0100_0011)
Ob0100_1110_0111_0101)

ObOllO 0111)

"MOVE.W\t(A2),Dl" FindDataRead MR
! "MOVE. W\tDl, (AS)" FindDataWrite MW
! "MOVEA.L\t#" FindNextOpc[O] FROG\
print[OJ FindNextOpc[OJ FROG\
print[O] ",A3" !
! "BSR\t" \
Compute8bitBrAddr print[!] \
{ last_opc =TELL} \
FindNewOpcAddress[OJ CheckBrAddress \
CheckSync \
GOTO[last_opc] \
FindDataWrite MW NEXT FindDataWrite MW

"SUBQ.W\t#%d,D3" !

! "RTS\t" \
{ last_opc =TELL} \
FindDataRead \
ComputeReturnAddr[OJ \
print[!] \
GOTO[last_opc] \
FindNewOpcAddress(O] CheckBrAddress \
CheckSync !

! "BEQ\t" \ Cornpute8bitBrAddr \

print[1 J \
FindNewOpcAddress[O] CheckBrAddress

Page4-19

Writing a 68000 Disassembler PF 8629/30 Custom Disassembler

(DATA Ob0110_011D_ ..•. _) I "BNE\t" \

%% FindNextOpc
(ADDRESS=Ox[......])

%% ChkNextOpc
(ADDRESS= nopc_addr, FC2 0
(FC2 0 != FC_PROGRAM)

Compute8bitBrAddr print[l] \
FindNewOpcAddress(O] CheckBrAddress

{ nopc_addr $1 + 2} NEXT ChkNextOpc

I* lookup table*/
FC_PROGRAM, DSCTRL = OblOO) ! /* found ope * / !

! NEXT ChkNextOpc !
/* if we didn't find the next opcode,

function-code 6 is illegal. The disassem­
bler looses synchronisation status *I

%% Compute8bitBrAddr /* data label contains 8-bit signed offset to ADDRESS*/
(DATA=Ob<.>8_0[<.>7], ADDRESS=Ox[......])! /* positive offset */ \

{dest_address = $2 + $1;\
/* compute destination address */ \
dest_address = dest_address + 2 } \
/* adjust ADDRESS value */ \
"+%ct" I* print offset*/ !

(DATA=Ob<.>8_1[<.>7], ADDRESS=Ox[•••...])! /* negative offset*/ \

%% print
(DATA=Ox[...•])

{$1 = $1 - OxBO; /* sign extend $1 */ \
dest address= $2 + $1; \
/* compute destination address *I\
dest_address = dest_address + 2 }\
/* adjust ADDRESS value*/\
"%d" I* print offset*/ !

(dest_address = Ox •. [•••.••]) "\t{%06x}"

%% FindDataRead
(FC2 0 FC_DATA, DSCTRL
(FC2_0 = FC_PROGRAM)

(FC2 0 Ob .•.)

%% FindDatawrite
(FC2 0 FC_DATA, DSCTRL
(FC2_0 = FC_PROGRAM)

Page 4-20

Dbl .. , datatr_opcpipe > 1) ! /*found*/ !

! /* not found yet *I \
{ datatr_opcpipe = datatr_opcpipe + 1 } \
NEXT FindDataRead !
! /* not found yet*/ NEXT FindDataRead !

ObO .. , datatr_opcpipe > 1) ! /*found*/ !
/* not found yet *I \

{ datatr_opcpipe = datatr_opcpipe + 1 } \

PF 8629/30 Custom Disassembler Writing a 68000 Disassembler

(FC2_0 = Ob ...)

%% ComputeReturnAddr
(DATA=Ox[•.•. J)

(DATA=Ox[•... J)

%% FindNewOpcAddress
! FindNextOpc[OJ { state

%% FindAddrSeqBrk
(pipeline> MAXPIPE)
(ADDRESS=Ob[<.>24])

%% ChkAddrSeq
(ADDRESS= nopc_addr, FC2 0
(FC2_0 != FC_PROGRAM)
(FC2_0 = FC_PROGRAM)

%% CheckBrAddress

NEXT FindDataWrite I

! /* not found*/ NEXT FindDataWrite

! { dest_address = $1 << 16 } MR NEXT\
FindDataRead ComputeReturnAddr[l] !
!{ dest address dest address+ $1} MR

TELL} FindAddrSeqBrk

!/* not found, reposition*/ GOTO[state]
! { nope addr = $1; \
pipeline= pipeline+ 1 } \

NEXT ChkAddrSeq !

FC_PROGRAM, DSCTRL = Obl •.) ! FindAddrSeqBrk !
NEXT ChkAddrSeq !

! /* found addr sequence break, ready*/

(ADDRESS= dest address /* dest_address computed before*/) \
/* branch executed *I\

(ADDRESS Ox)

%% SelUnused
(state< new state, FC2 0
(state new_state)
(state Ox)

%% CheckSync
(ADDRESS= dest address)
(ADDRESS != dest_address)

%% sync_lost
(instr status SYNC_OK)

! { new_state = TELL} GOTO[state] \
SelUnused !
! /* branch not executed *I !

FC_PROGRAM)! UNUSED NEXT {state
/*ready*/ !

TELL} SelUnused

NEXT { state= TELL SelUnused !

instr status
instr status

instr status

SYNC_OK}
SYNC LOST

SYNC LOST} sync_lost

Page4-21

Writing a 68000 Disassembler PF 8629/30 Custom Disassembler

Page 4-22

PF 8629/30 Custom Disassembler

Chapter 5

Writing a 68030
Disassembler

Disassembler labels 5-3
Disassembler part label 5-4
Positioning within a disassembler state 5-4
Processing data transfers 5-5
Search following opcode 5-6
Branch instructions 5-6
Unused opcode fetches 5-8
Using data transfer states 5-10

Writing a 68030 Disassembler PF 8629/30 Custom Disassembler

,y, t"'.'lljlj

+l!H!H!il
+@~03
+!~BllrJ!l
+~")0[,
+131304
+1~nI11l17
+1\il%l4

.. -f,{_n~1fIJ8

+Ol~1z,9 110
+En,110 l 1f1
+1!1011 111'1
+1,1011 111,1
+t,.,,113 111'1
+001!;, 101
4h€f13 11,,,
+f111,17 1,n

S +(101E, l HI

Page 5-2

1
1.

1
1
1
1
1
1
1
0
1

n the previous chapter an example was given how to
write a 68000 disassembler. Suppose an extension
this 68000 disassembler to a 68030 disassembler has
to be made.

In this chapter references are made to the previous chap­
ter 'Writing a 68000 disassembler'. It is assumed that the
previous chapter is read before.
The opcodes for the instructions are the same as for the
68000 disassembler. The 68030 disassembler has a 32-bit
databus DATA label. This data label can contain 2 instruc­
tions in one disassembler state. The measurement to
disassemble contains the same instruction loop as the
68000 example in the previous chapter.
The disassembler should produce the next output in the
display menu of your PM 3580/PM 3585 logic analyzer if
program context mode is enabled.

1j6 ··f.rt:a~i881.IJ1i?.f 363i.:fJ8t':(3
1:10 rDt%•f:.8014 3212
10 MD0b82€u,, 00€11,11D~11i11:i
r;u,, rc1r;i,Z1S8G114 6118 J:lSR ·
00 0001!•3ffc Mill\168018
00 00(,Jf.Bm:=:o 3a81 rlOVE. W Dl, {AS)
lfl t'l!.il'.l!:<8100 rc1,Z1fn!ul1f1[10 .m1.,.1

i:~H]3 (~ ~JEJ681z1 :}{::1 4,e 7f., R TS
r;11a .· .~1r,H,£1Jffr OE.u,.168r,118 mr

· 1ZtO 0€H:•6:31I1l8 . 67f4 E<EQ -12
013 0@(,)fa8lil1,::; 267c00tlE. rl(NEA.,L· #(:)@%83tiJ0,A3
c~n!,l ~l(!Ji~iEc802l!1 ff30ft ··
t;J;) ,;n;,,;168020 65HI · B!~E . ~lb ..
Oli• .· tz,rZ,,ZtS8014 3212 110\/E. IJJ
1G 1;:)(ZH~}6BZ~l~J tiH~f9EH::)1;:rrzu-!1 £fir

06 1::J1%)68m14 6118 E<t!i +24
r:ll3 r:H!/W,3ffc 0f.il!il68Cll.18 n11.,.1

r;i,;1 r:iE1%8030 3:.i81 MfJllE.ltJ 01,(A$>

The measurement file is available on disk with the
filename DEM68030.NEW. The disassembler descrip­
tion file is available on disk with the filename
DEM68030.DSC. Use the CD1SA80 compiler to create
a loadable disassembler DEM68030.D1S.

PF 8629/30 Custom Disassembler Writing a 68030 Disassembler

+fiH:1~11 1 lJII
+@111,11 1 rn
+@\11:12 1liil
+0Gl83 Hill
-,,,2i,~,~4 u,2i
+12)1;1(')4 11121
+rEfll~S H:11
+@,)1:15 1Hl
+91,11,,7 101

+1,i,jos 1 rn,
+0EHD!~:f: 11ft
+Eli3H1 tl!il
+1%111 1W
+0011 110
+1,n,rl 2 1 1'71
+l)i?i1 3 111:)
+ l(JE113 11 i!I
+@ill 4 11.,;1

1 .

1
1
1
1
1
1
1
1

Disassembler·labels

If program context is disabled the following output should
be produced in the display menu. The differences can be
seen in the order of disassembler states shown and in the
appearance of unused opcode fetches on disassembler
state +0002, +0006, +0012 and +0014.

r~6 r:11:11:11:<8 rD 14 3212 r10VE. lLl
r;H:1f1E,81Z114 6118 8SH
17H,Jfi1G8818 S34367f4

H) 8•i!c•682~n:i r:1~11,1r,i1_1GJ0c•
~1,Zr 8 €1%8 r:())l 3;,81
80 80i:)68.r.:.13f1 4e75
(:)0 €119l:J!l3ffc 8CH%8r~18
1;10 r;n;l\;168834 4B714e71
1 fir r,11,11,168 l [H;J (:ltl(ll)ll\llclli>O

i'IOVE.W
F;TS

1j€1 ('.) t~H~_i68 018 :->343 SUB(J. W
1:ltj 1%H~8881B 67f4 E,EQ
r;1,11 r;1EH!1681)1¢ 267c1~1;1E16 r10VEA. L
mm r.IJrIHin;so26J 8J(H~t

91,J OE),ZrE,8[121\1 6f.C,f!Zr BNE
8€1 1~1€Hj5tji.~J24 4e71 .:Je 71
Oi:) '" 1,1fr&8 GJ 14 3212 rlCiVE. l!J
l:lfl 1%)1\H;,8814 6118 BSB

#0(iE:i3:< D3
(A2>. CU
+24
u1"1U-Se>..t · ope.
fflt'

D1, l.i'6i

m1.1.1

ur1used ope
rnw

#Ji03
-12
"l:Jt:1E168:386, A3
ope
-15
unused
CA2},D1
+24
unused ope

{!'.IEVD58J!118}

{f!l:1858030}

As already mentioned the instruction opcodes are the
same as for the 68000 example explained in the previous
chapter. The 68030 also has a FC2_0 label containing
information about the function code and a R/WN label with
information about the Read or Write status. The
ADDRESS and DATA label contain the microprocessors
address-bus and data-bus respectively. The SZ label con­
tains the 68030 SIZE1 and SIZEO lines which reports the
data bus size requested by the microprocessor for this
transfer. The microprocessor asks for a 32-bit data bus if a
value of ObOO is available for the SZ label. With a value of
Ob10 for the SZ label the requested size of the data bus is
16 bit.
With this basic 68030 information the extension of the
68000 disassembler to a 68030 disassembler can be
started.

Page5-3

Writing a 68030 Disassembler PF 8629/30 Custom Disassembler

As already mentioned one disassembler state can contain
2 instructions for the 68030. The data-label should there­
fore be handled in 2 parts for decoding the instruction. This
can be achieved by using the label definition element
'parts = 2' in the definition of the data label. Because there
are 2 different ways of interpreting the numeric value on a
data bus, known as little endian and big endian, this bus
type also has to be defined in the data label definition. The
definition of the DATA label in the FORMAT section of the
description file for this example then looks like:

label: DATA = { name = "DATA" ,
parts= 2, /* label accessible for the disa in 2 separate parts*/
type= big, /* big endian bus type•/
channels

}

po~ltlQOIOQ within a
di~i:!ssembler state

Page 5-4

= { 63, 62, 61, 60, 59, 58, 57, 56,
55, 54, 53, 52, 51, 50, 49, 48,
47, 46, 45, 44, 43, 42, 41, 40,
39, 38, 37, 36, 35, 34, 33, 32}

The use in the disassembly tables of he label DATA only
represents one part of the entire measurement label. This
means that only 16 bits at a time are used in table line con­
ditions and other label references.
Because one disassembler state can contain 2 instruc­
tions, positioning within a disassembler state should be
possible. This position is similar to the NEXT and PREV
commands, that are used to position between disassem­
bler states.
To change and retrieve the current position within a disas­
sembler state the following commands are available:

• NEXTPART

• PREVPART

• GOTOPART

• TELLPART

These commands are comparable to the commands avail­
able for positioning between disassembler states (NEXT,
PREV, GOTO and TELL}.
To start a 68030 instruction decoding the FC2_0 label
should have value Ob110, the disassembler state should
be a read action: RWN=Ob1. The requested size should be

PF 8629/30 Custom Disassembler Writing a 68030 Disassembler

%% STATUS TAB

32 bits: SZ = ObOO. The slightly changed STATUS_TAB
table in the 68030 description against the 68000 descrip­
tion is shown below.

(FC2_0 ObllO, RWN=Obl, SZ=ObOO)
(FC2 0 OblOl, RWN=Obl)

decode !
MR ! /* memory read*/
MW! /* memory write*/
"reserved function code"

(FC2 0 OblOl, RWN=ObO)
(FC2 0 Ob ..•)

The opcodes for the instructions are the same as for the
68000 disassembler in the previous chapter. The decoding
line for the "MOVE.W (A2),D1" instruction then looks the
same as for the 68000 disassembler:

(DATA= Ob0011_0010_0001_0010) ! "MOVE.W\t(A2) ,Dl" FindDataRead MR !

Processing data
transfers ·

%% FindDataRead
(FC2_0 OblOl, RWN
(FC2 0 = ObllO)

(FC2 0 Ob ...)

Because the DATA label is accessed in 2 parts the DATA
label size for a condition is 16 bits. For the 68000 the Find­
DataRead table counted the opcode fetches found after
the instruction.
The opcode fetches for the 68030 should be handled part
by part so positioning in parts should be done for counting
the opcode fetches. The found opcode fetches are
counted in the variable 'datatr_opcpipe'. This results in the
following FindDataRead table:

Obl, datatr_opcpipe > 2)! I* found*/ !
! /* not found yet*/ \
{ datatr_opcpipe = datatr_opcpipe + 1} \
NEXTPART FindDataRead !

! /* not found yet*/ NEXT FindDataRead

The differences with the 68000 FindDataRead are:

The opcode pipeline is at least 2 opcodes

• The positioning command after finding an opcode is
NEXTPART which means: go to the next part in the
current disassembler state or if already positioned at
the last part of the current disassembler state go to the
next disassembler state.

Page5-5

Writing a 68030 Disassembler PF 8629/30 Custom Disassembler

The 'MOVE.W #0003,03' instruction decoding on line
0000 looks almost the same as the 68000 decoding. The
call to the FindNextOpc table has no parameter anymore.
This FindNextOpc table has changed into a Lookup table.
The reason for this change is that the 'ADDRESS' label is
used to find the next opcode. When positioning within a
disassembler state for the 68030 the ADDRESS label is
not changed. To handle this the part at which we are posi­
tioned within the disassembler state should also be
checked for finding the next opcode. The current part
(achieved with the command TELLPART) together with
the ADDRESS label value is used in the ChkNextOpc table
to determine if the next instruction opcode is found.
The resulting FindNextOpc and ChkNextOpc tables are
shown below.

%% FindNextOpc
(ADDRESS=Ob[<.>32], TELLPART 0) ! { nopc_addr = $1; nopc_part = 1 } \

NEXTPART ChkNextOpc !
(ADDRESS=Ob[<.>32], TELLPART l) ! { nopc_addr = $1 + 4; nopc_part = O} \

NEXTPART ChkNextOpc !

%% ChkNextOpc I* lookup table*/
(ADDRESS= nopc_addr, TELLPART = nopc_part, FC2_0 = ObllO, \
RWN = Obl, SZ = ObOO, DSACK = Obll) ! /* found next opcode*/ !

(FC2_0 != ObllO) ! NEXT ChkNextOpc !

Branch instructions

Page 5-6

/* if we didn't find the next opcode
function-code ObllO is illegal.
The disassembler looses his synchroni­
sation status *I

For the branch instructions the table Compute8bitBrAddr
should also consider the address label value and the cur­
rent disassembler state part for determining the new
address value.
The computed dest_address is used for printing. This
dest_address must be transferred to a value for the
ADDRESS label and the part for the disassembler state
containing this address value which is done in a new
CompNewAddr table.
This gives the following tables:

PF 8629/30 Custom Disassembler Writing a 68030 Disassembler

%% Compute8bitBrAddr /* data label contains 8-bit signed offset to ADDRESS*/
(DATA=Ob<.>8_0[<.>7], ADDRESS=Ox[.•...... J, TELLPART = 0)

! I* compute destination address *I\
/• positive offset*/ \
{dest_address = $2 + $1;\
dest_address = dest_address + 2 }\
/* adjust for ADDRESS value*/ \
CompNewAddr /* adjust for ADDRESS bus */ \
"+%ct" !• print offset•/ !

(DATA=Ob<.>8_0[<.>7], ADDRESS=Ox[........ J, TELLPART = 1)
! /* positive offset*/ \
{dest_address = $2 + $1;\
/* compute destination address *I \
dest_address = dest_address + 4 }\
/• adjust for ADDRESS value•/ \
CompNewAddr /* adjust for ADDRESS bus •/ \
"+%ct" !• print offset•!

(DATA=Ob<.>8_1[<.>7], ADDRESS=Ox[...•...• J, TELLPART = 0)
! /* negative offset•/ \
{$1 = $1 - Ox80; /• sign extend $1 */ \
dest_address = $2 + $1;\
/* compute destination address */ \
dest_address = dest_address + 2 }\
/• adjust for ADDRESS value•/ \
CompNewAddr /* adjust for ADDRESS bus *I \
"Id" /* print offset•! !

(DATA=Ob<.>8_1[<.>7], ADDRESS=Ox[........ J,TELLPART = l)

%% CompNewAddr
(dest address

(dest address

!/* negative offset•/ \
{$1 = $1 - Ox80; /• sign extend $1 •/ \

dest_address = $2 + $1;\
!• compute destination address */ \
dest_address = dest_address + 4 }\
/• adjust for ADDRESS value*/ \
CompNewAddr /• adjust for ADDRESS bus *I \
"%d" I* print offset•/ !

Ob<.>30 10) ! { new_address = dest address - 2;\
new_part = 1 } !

Ob<.>30 00) ! { new_address = dest address ;\
new_part = 0 } !

Page5-7

Writing a 68030 Disassembler

%% FindNewOpcAddress

PF 8629/30 Custom Disassembler

The new value on the ADDRESS label is computed and
the search for this value on the ADDRESS label can be
started. This is done the same way as it is done for the
68000 disassembler.
The tables used to achieve this goal are changed only to
support the multiple parts in the data label for one disas­
sembler state in order to count the opcodes. The resulting
tables to find the new address on the ADDRESS label look
like:

! FindNextOpc { state TELL; part TELLPART} FindAddrSeqBrk

%% FindAddrSeqBrk
(pipeline> MAXPIPE) ! /* not found, reposition*/\

GOTO[state] GOTOPART[part] !
(ADDRESS=Ob[<.>32], TELLPART 0) ! { nopc_addr = $1; nopc_part 1 } \

{pipeline= pipeline+ 1 } \
NEXTPART ChkAddrSeq I

(ADDRESS=Ob[<.>32], TELLPART 1) ! { nopc_addr = $1 + 4; nopc_part O } \
{pipeline= pipeline+ 1 } \
NEXTPART ChkAddrSeq !

%% ChkAddrSeq
(ADDRESS= nope addr, TELLPART

RWN = Obl, SZ = ObOO)
nopc_part, FC2_0 = ObllO, \

FindAddrSeqBrk !
(FC2_0 != ObllO)
(FC2_0 = ObllO)

Page 5-8

NEXT ChkAddrSeq !
I* found addr sequence break, ready*/ !

If a possible new address is found a check is made if it is
the correct address. If so the fetched opcodes between the
last instruction opcode and the new disassembler state are
selected as UNUSED.
These CheckBrAddr and SelUnused tables are also
almost the same as for the 68000 disassembler example
with changes made for the multiple parts in the data label.

PF 8629/30 Custom Disassembler Writing a 68030 Disassembler

%% CheckBrAddr
(ADDRESS= new address /* new_address computed in CornpNewAddr table•/)\

I* branch executed*/ \
l { new_state = tell }\
GOTO[state] GOTOPART[part] SelUnused

(ADDRESS Ox) ! /* branch not executed*/ !

%% SelUnused
(state< new state, FC2_0 = ObllO) ! UNUSED NEXTPART { state= TELL}\

SelUnused !

(state new_state, TELLPART < new_part)! UNUSED NEXTPART SelUnused 1

(state new_state) /*ready•/ !

(state Ox) ! NEXTPART { state= TELL} SelUnused

The RTS instruction results in a branch to a new address.
The branch to the computed address can be handled the
same way as is done for the other branch instructions BSR,
BNE and BEQ. Determining the branch address needs an
explanation. In the decode table the disassembly of the
RTS instruction is almost the same as for the 68000 disas­
sembler:

• Print the instruction text: "RTS\t".

• Save the last instruction opcode disassembler state:
TELL and TELLPART.

• Search the stack read: FindDataRead

• Determine the return address: ComputeReturnAddr.

• Print the return address: print.

• Reposition to the last instruction opcode: GOTO and
GOTOPART.

• Search the return address: FindNewOpcAddress and
CheckBrAddr.

(DATA ObOlOO 1110 0111 0101) ! "RTS\t" \
{ last_opc = TELL; last_opc_part = TELLPART} \
FindDataRead \
CornputeReturnAddr[O] print[l] \
GOTO[last_opc] GOTOPART[last_opc_part] \
FindNewOpcAddress[O] CheckBrAddr !

Page5-9

Writing a 68030 Disassembler

U.$ing.p~µi transfer
states

%% CornputeReturnAddr
(DATA=Ox[...•])

(DATA=Ox[...•])

Page 5-10

PF 8629/30 Custom Disassembler

The table ComputeReturnAddr is different against the
68000 table because of the multiple parts in the DATA
label.

I { dest_address = $1 << 16} NEXTPART \

CornputeReturnAddr[l] !
! { dest_address = dest_address + $1} MR\
CornpNewAddr /* adjust for ADDRESS bus*/ !

The return address of the RTS instruction is contained in
one disassembler state.

In the example on line +0008. The total data label value
(32-bit) has to be read in 2 phases because the DATA
label can only be accessed in parts of 16-bit. First the high
part of the data label, being the first part accessed, is read
in the dest address variable.

It is not allowed to already select this disassembler state
as a memory read data transfer (MR) yet, because then
this disassembler state only has one part anymore and
only the first part of the DATA label can be accessed.
Before selecting this disassembler state as data transfer
the low part of the DATA label should be accessed.

This is done by proceeding to the next part in the disas­
sembler state and adding the low part of the DATA label to
the dest address variable. All the information needed from
the DATA label in this disassembler state is available and
the disassembler state can be specified for the display
menu as a data transfer. The return address from the RTS
instruction is computed and can be used for the search to
the next executed instruction opcode as is done for the
branch instructions BSR, BNE and BEQ.

The complete description for the 68030 disassembler
which is able to disassemble the EXAMPLE3.NEW mea­
surement is given on the following pages.

PF 8629/30 Custom Disassembler

%% DEF
long

long
long
int
int
int
int
int
int
int
int
int

#define

#define
#define

%% EQU

nopc_addr;

dest_address;
new_address;
nopc_part;

new_part;

pipeline;
datatr_opcpipe;
state;
part;
new_state;

last_opc;
last_opc_part;

MAXPIPE

FC DATA
FC PROGRAM

!• lookup tables */
LT: STATUS_TAB, decode, ChkNextOpc

8

OblOl
ObllO

LT: Compute8bitBrAddr, FindDataRead, FindDatawrite
LT: CheckBrAddr, FindNextOpc, CompNewAddr
LT: FindAddrSeqBrk
LT: ChkAddrSeq
LT: SelUnused

!• index tables*/
IT: print, ComputeReturnAddr
IT: FindNewOpcAddress

%% FORMAT

logo: "68030 C-DISA Example"

head: "68030 C-DISA Example" 35

Pods: threshold= {{TTL, TTL},
{TTL, TTL},
{TTL, TTL},
{TTL, TTL},
{TTL, TTL}
}

tab: 10,26 7

Writing a 68030 Disassembler

Page5-11

Writing a 68030 Disassembler PF 8629/30 Custom Disassembler

clock: dsn = { name = "DSN",
edge= rising,
channel= 77,
qualifier= { channels

required= no,

levels= { high
}

clock: asn = name = 11 ASN 11
,

edge= rising,
channel= 76,
qualifier= { channels

label: FC2 0

required= no,

levels= { high
}

{ name = "FC" ,
radix= bin,

78 },

78 },

channels= { 66, 65, 64 }

label: RWN

label: SZ

{ name = "R/WN",

radix= bin,
channels= { 67 }

name = "sz",
radix= bin,
channels= { 69, 68 }

label: ADDRESS={ name "ADDRESS",

label: DATA name "DATA",

Page 5-12

channels

parts = 2,
type = big,
channels = {

31, 30, 29, 28, 27, 26, 25,
24,23, 22, 21, 20, 19, 18,
17, 16,15, 14, 13, 12, 11,
10, 9' 8, 7' 6' 5, 4'
3' 2' 1, O}

63, 62, 61, 60, 59, 58, 57,
56,55, 54, 53, 52, 51, 50,
49, 48, 47, 46, 45, 44, 43,
42, 41, 40, 39, 38, 37, 36,
35, 34, 33, 32}

PF 8629/30 Custom Disassembler

clockseq: SEQl dsn
clockseq: SEQ2 asn

%% START
STATUS TAB

%% STATUS TAB

Writing a 68030 Disassembler

(FC2 0 FC PROGRAM, RWN=Obl, SZ=ObOO) decode
(FC2 0 FC_DATA, RWN=Obl) mr !/* memory read*/
(FC2 0 FC_DATA, RWN=ObO) mw !/* memory write */
(FC2 0 Ob ...) "reserved function code"

% decode I*
(DATA ObOOll 0110 0011 1100)

(DATA Ob0011_0010_0001_0010)
(DATA Ob0011_1010_1000_0001)
(DATA Ob0010_0110_0111_1100)

(DATA ObOllO 0001)

(DATA
(DATA

ObOlOl_[...]1_0100_0011)
Ob0100_1110_0111_0101)

(DATA

(DATA

ObOllO 0111)

ObO 110 0110)

%% FindNextOpc
(ADDRESS=Ob[<.>32], TELLPART

(ADDRESS=Ob[<.>32], TELLPART

0)

1)

in a condition is only used for readability*/

! "MOVE.W\t#" FindNextOpc PROG \
print[O] ",03" !

"MOVE.W\t(A2),Dl" FindDataRead MR !
! "MOVE.W\tDl, (AS)" FindDataWrite MW !
! "MOVEA.L\t#" FindNextopc PROG \
print[O] FindNextOpc PROG \
print[O ",A3"!
! "BSR\t" \
Compute8bitBrAddr print[l] \
{ last_opc = TELL;\
last_opc_part = TELLPART} \
FindNewOpcAddress[O] CheckBrAddr \
GOTO[last_opc] GOTOPART[last_opc_part) \
FindDataWrite MW !

"SUBQ.W\t#%d,D3" !
! "RTS\t" \
{ last_opc = TELL;\
last_opc_part = TELLPART} \
FindDataRead \
ComputeReturnAddr[O] print[l] \
GOTO[last_opc) GOTOPART[last_opc_part] \
FindNewOpcAddress[O] CheckBrAddr !

! "BEQ\t" Compute8bitBrAddr print[l] \
FindNewOpcAddress[O] CheckBrAddr !
! "BNE\t" Compute8bitBrAddr print[l] \
FindNewOpcAddress[O] CheckBrAddr !

! { nopc_addr = $1; nopc_part = 1 } \
NEXTPART ChkNextOpc
! { nopc_addr = $1 + 4; nopc_part = 0} \
NEXTPART ChkNextOpc !

Page5-13

Writing a 68030 Disassembler

%% ChkNextOpc
(ADDRESS= nopc_addr, TELLPART
RWN = Obl, SZ = ObOO)
(FC2_0 != FC_PROGRAM)

%% FindDataRead

PF 8629/30 Custom Disassembler

/* lookup table*/
nopc_part, FC2_0 = FC_PROGRAM, \

! /* found next opcode *I
! NEXT ChkNextOpc !
/* if we didn't find the next opcode func­
tion-code FC PROGRAM is illegal
The disassembler looses his synchronisa­
tion status */

(FC2 0 FC_DATA, RWN
(FC2 0 = FC_PROGRAM)

Obl, datatr_opcpipe > 2)! /* found *I !
! /* not found yet*/ \

(FC2_0 = Ob .••)

{ datatr_opcpipe = datatr_opcpipe + 1} \

NEXTPART FindDataRead !
! /* not found yet*/ NEXT FindDataRead !

%% FindDatawrite
(FC2 0 FC DATA, RWN
(FC2 0 = FC_PROGRAM)

ObO, datatr_opcpipe > 2)1 /* found *I !
! /* not found yet*/ \

(FC2 0 Ob ...)

{ datatr_opcpipe = datatr_opcpipe + 1} \

NEXTPART FindDataWrite !
! /* not found yet *I NEXT FindDataWrite !

%% FindNewOpcAddress
! FindNextOpc { state TELL; part TELLPART} FindAddrSeqBrk

%% FindAddrSeqBrk
(pipeline> MAXPIPE)

(ADDRESS=Ob[<.>32], TELLPART

(ADDRESS=Ob[<.>32], TELLPART

%% ChkAddrSeq
(ADDRESS= nopc_addr, TELLPART
RWN = Obl, SZ = ObOO)
(FC2_0 != FC PROGRAM)
(FC2 0 = FC_PROGRAM)

%% print
(DATA=Ox[....])
(dest_address Ox[.•••••••])

Page 5-14

0)

1)

! /* not found, reposition*/ \
GOTO[state] GOTOPART[part] !
! { nopc_addr = $1; nopc_part
{pipeline= pipeline+ 1 } \
NEXTPART ChkAddrSeq !

1 } \

! { nopc_addr = $1 + 4; nopc_part
{ pipeline= pipeline+ 1 } \
NEXTPART ChkAddrSeq !

nopc_part, FC2_0 = FC_PROGRAM, \
FindAddrSeqBrk !
NEXT ChkAddrSeq !

0 } \

I* found addr sequence break, ready *I

"%04x"
"\t{%08x}"

PF 8629/30 Custom Disassembler Writing a 68030 Disassembler

%% ComputeSbitBrAddr /* data label contains 8-bit signed offset to ADDRESS *I
(DATA=Ob<.>8_0[<.>7], ADDRESS=Ox[........], TELLPART = 0) \

1 /* positive offset*/\
{dest_address = $2 + $1;\
/* compute destination address •/ \
dest address= dest_address + 2 } \
/• adjust for ADDRESS value*/ \
CompNewAddr /* adjust for ADDRESS bus */ \
"+%d" I* print offset*/

(DATA=Ob<.>8 0[<.>7], ADDRESS=Ox[........], TELLPART = 1) \
1 /* positive offset*/\
{dest_address = $2 + $1; \
/* compute destination address */ \
dest_address = dest_address + 4 }\
/* adjust for ADDRESS value*/ \
CornpNewAddr /* adjust for ADDRESS bus */ \
"+%d" /* print offset */

(DATA=Ob<.>8 l[<.>7], ADDRESS=Ox[••••.•.•], TELLPART = 0) \
! /* negative offset *I \
{$1 = $1 - Ox80; \
/* sign extend $1 */ \
dest_address = $2 + $1;\
/* compute destination address */ \
dest_address = dest_address + 2 } \
/* adjust for ADDRESS value*/\
CompNewAddr /• adjust for ADDRESS bus *I \
"%d" /* print offset *I

(DATA=Ob<.>8_1[<.>7], ADDRESS=Ox[•.••.•.•], TELLPART = 1) \

! /* negative offset*/ \
{$1 = $1 - Ox80; \

%% ComputeReturnAddr
(DATA=Ox[.•.. J)

(DATA=Ox[.•..])

%% CompNewAddr
(dest address Ob<.>30_10)
(<lest address= Ob<.>30 00)

/* sign extend $1 */ \
dest address= $2 + $1; \
/* compute destination address *I \
dest_address = dest_address + 4 }\
/* adjust for ADDRESS value *I\
CornpNewAddr /* adjust for ADDRESS bus */ \
"%d" /* print offset*/ !

! { dest_address = $1 << 16 } NEXTPART \
CornputeReturnAddr[l] !

! { dest_address = dest_address + $1 } MR\
CornpNewAddr /* adjust for ADDRESS bus *I !

{ new_address = dest_address - 2; new_part = 1} !

new address dest address ; new_part = 0 } !

Page5-15

Writing a 68030 Disassembler PF 8629/30 Custom Disassembler

%% CheckBrAddr
(ADDRESS= new_address /* new_address computed in CornpNewAddr table*/)\

/* branch executed *I\
! { new_state =TELL} GOTO(state]\
GOTOPART[part] SelUnused

(ADDRESS Ox .•..••••) ! I* branch not executed *I !

%% SelUnused
(state
(state
(state
(state

< new_state,

new_state,
new_state)
Ox ••..)

Page 5-16

FC2_0 = ObllO) ! UNUSED NEXTPART {state= TELL} SelUnused
TELLPART < new_part) ! UNUSED NEXTPART SelUnused

I* ready *I !

NEXTPART { state TELL} SelUnused

PF 8629/30 Custom Disassembler

Chapter 6

Error Messages

Warnings 6-2
Error Messages 6-3

Error Messages

Warnings

Page 6-2

PF 8629/30 CustomDisassembler

E ach error or warning message is preceded by the
description file name and the line number within the
file. Thus, one can easily trace back where the (syntax)
error occurred.

Below the error messages and warnings of the CD1SA80
program are given together with a hint on how to solve the
problem.

Warnings of the CD1SA80 program:

warning 1: duplicate conditions in lines ... and ... of ...
The specified lookup table contains two entries with the
same condition.

warning 2: undefined symbol(s) after command chain ig­
nored
The character after the trailing '!' of the command chain

was not a carriage return.

warning 3: [$...] is not defined in condition
A local variable was used that was not defined in the condi­
tion.

warning 4: lookup table declared but not defined: ...
The specified lookup table was defined in the header but not
described in the tabular section.

warning 5: index table declared but not defined: ...
The specified index table was declared in the header but not

defined in the tabular section.

warning 6: no index tables defined
Index tables were declared in the header section hut none
were defined in the tabular section.

warning 7: missing command chain in value table
An entry in the value table consists of a condition and a com­

mand chain. Here the command chain wasn't specified.

warning 8: '='after'!' assumed
The logical operator 'not equal' is'!='. The'!' was not im­

mediately followed by '= '.

PF 8629/30 Custom Disassembler Error Messages

Error Messages

Error messages of the CD1SA80 program:

fatal error: error count exceeds ... ; program terminated
The number of errors is too big. You will have to solve some
of the problems first and than run CD/SABO again.

error 1: cannot find input file: ...
The ;pecified description file could not be found.
Possibly, the file resides in another directory or you made a
typing error.

error 2: cannot read file: ...
The template input file could not be found in the same direc­
tory as the file CD/SABO.EXE. The template file is needed for
making a disassembler. Re-install the custom disassembler
compiler program.

error 3: cannot create output file: ...
The output file(. ... DJS) can not be created.

error 4: resulting table too large: .. %
The total table .1pace is exhausted. Remove some symbol def­
initions or rearrange some tables.

error 5: START table multiple defined
More than one table with the name 'START' are defined.
Remove or rename all but one of the 'START' tables.

error 6: local variables in START table uot allowed
The usage of local variables in the START table is not al­
lowed.

error 7: START table not first table
The START table must be the first table specified. The
START table is not the first table or is not specified at all.

error 8: missing START table
At least one table named START must be used in the descrip­
tion.

error 9: unexpected input line: ...
An unexpected line was encountered.

error 10: missing FORMAT section
A FORMAT section is required.

error 11: not enough value table lines
An index in the value table occurs that is larger than the
number of lines in the value table. Possibly a value table

Page6-3

Error Messages

Page 6-4

PF 8629/30 CustomDisassembler

command is erroneous or the value table does not have
enough entries.

error 12: syntax error: illegal table line
A :,yntax error is present at the start of a table definition.

error 13: missing definition for label: ...
Label identifier used in alias definition never defined.

error 14: syntax error: missing '}'
At the end of a global variable command a ';' or a '}' is ex­

pected.

error 15: syntax error: missing'!' or'\' for next line
An unexpected end of the command chain is encountered.

Possibly a '!' marking the end of the command chain is for­

gotten, or a '\' marking the continuation on the next line is

missing.

error 16: syntax error: missing'[' in GOTO command
The GOTO command was not followed by an opening brack­
et '[' indicating the relative disassembler state.

error 18: syntax error: missing']' in GOTO command
The command GOTO{.. was not followed by a closing brack­
et']'.

error 19: undeclared table name: ...
All tables should be declared in the %%EQU-section. The
table mentioned in the error message was not declared.

error 20: syntax error: missing'[' after index table name
In the command chain, the index table name was not fol­
lowed by a '[' indicating the index in the table.

error 21: undefined variable or number
The offset of an index table must be a local or global vari­

able, a constant or a number.

error 22: syntax error: missing']' after index table name
The closing bracket '}' in the index table command is miss­

ing.

error 24: syntax error: missing'[' after value table name
The opening bracket '{' in the value table command is miss­

ing.

error 25: syntax error: missing ']' after value table name
The closing bracket '}' in the value table command is miss­

ing.

PF 8629/30 Custom Disassembler Error Messages

error 26: syntax error: undefined symbol after condition:

The first character after a condition must be a '!' denoting
the start of a command chain.

error 27: maximum number of index tables (...) exceeded
You should combine two or more index tables into one.

error 28: illegal operation
An illegal global variable instruction is detected. This is
caused by:

1. The variable name is not followed by a '=' sign, or

2. The operation is not +, -, *, /, %, &, /, > > or < <.

error 29: unexpected operation:' ... '
lfthe right hand side ofan expression has two operands, the
first must he a variable.

error 30: syntax error: missing "'"
A character constant must he enclosed by single quotes. For
this constant, the closing quote is missing.

error 31: maximum number of commands (...) exceeded
Try to make as much use of nested lookup tables as possible
to avoid long command chains or look up tables containing
command chains that look very much alike.

error 32: maximum number of global variables(...) exceeded
Try to use less global variables and more tables to obtain a
correct disassembly or try to combine the function of two
small sized variables (e.g. char) into one larger variable
(e.g. int or long).

error 33: maximum number of print strings (...) exceeded
Try to combine small strings into larger ones.

error 34: maximum number of global variable commands
(...) exceeded
Try to use less global variables and more tables to obtain a
correct disassembly or try to combine the function of two
small sized variables (e.g. char) into one larger variable
(e.g. int or long).

error 35: maximum number of entries in lookup tables (...)
exceeded
The total number of lookup table lines may not exceed the
maximum number of entries in lookup tables minus the num­
ber of lookup tables defined.

error 36: maximum number of value table lines(...) exceeded
Use index tables.

Page6-5

Error Messages

Page 6-6

PF 8629/30 CustomDisassembler

error 37: maximum number of entries in index tables(...) ex­
ceeded
The total number of index table lines may not exceed the
maximum number of entries in index tables minus the num­
ber of index tables defined. Try to make use of lookup table:,~
and global variables.

error 38: maximum number of relational conditions (...) ex­
ceeded
Try to use more pattern conditions.

error 40: maximum number of local variable usage (...) ex­
ceeded
Try to use more tables so that local variables are not so in­
tensely used.

error 41: maximum number of constants (...) exceeded
Use more global variable mathematics to decrease the num­
ber of constants.

error 42: maximum number of text symbols in description
file (...) exceeded
Use shorter names or shorter abbreviations.

error 43: maximum number of relational condition bytes (...)
exceeded
Use less or smaller relational conditions.

error 44: maximum number of local variable definitions(...)
exceeded
Use shorter or less local variable definitions.

error 45: syntax error: missing condition
In a lookup table, lines consist of a condition-commands
pair. The condition is mandatory. Possibly you forgot to con­

tinue the previous line so CD/SABO thinks that this line starts
a new condition-commands pair.

error 47: syntax error: undefined or missing operand
A constant or variable is expected. Possibly an undefined
:,ymbol is used in the global variable command.

error 48: illegal TAB definition
The definition of the tab-settings is incorrect.

error 49: syntax error: illegal FORMAT defmition: ...
String not recognized as valid keyword in the F(}RMAT sec­
tion.

error 50: illegal variable type: ...
In the %%DEF-section, only a limited number of variable

types may be used. The syntax used for the definition of the

variables is the same as in the programming language C.

PF 8629/30 Custom Disassembler Error Messages

error 51: missing clock(s) in FORMAT section
At least one clock must be specified in the FORMAT section.

error 52: missing Iabel(s) in FORMAT section
At least one label must be specified in the FORMAT section.

error 53: missing clock sequence(s) in FORMAT section
At least one clock sequence must be specified in the FOR­
MAT section.

error 54: required clock not used in any clock sequence: ...
Each required clock must appear in at least one clock se­
quence.

error 55: illegal unsigned variable type: ...
In the %%DEF-section, only a limited number of variable
types may be used. The ,yntax used for the definition of the

variables is the same as in the programming language C.

error 56: global variable ' .. .' multiple declared
Each global variable may only be defined once. Use unique

names for global variables and constants.

error 57: syntax error: missing';'
One of the global variables was not correctly defined.
The line should end with a semi-colon ('; ') if global vari­
ables are defined.

error 58: value table ' .. .' multiple declared
Only one value table can be used in the description file. Use
index tables.

error 59: syntax error: illegal table type
In the EQU-section, tables are defined using LT or IT only.

error 60: syntax error: missing':'
In the declaration of tables in the %%EQU-section, the ':'

after LT, IT or VT was omitted.

error 61: table ' .. .' mnltiple declared
Each table may only be declared once. Use unique names for

tables.

error 62: reserved table name: ' .. .'
The ,pecified name may not be used as a table name.

It is a reserved keyword.

error 63: maximum number of table names(...) exceeded
You should combine two or more tables into one.

error 64: maximum number of lookup tables (...) exceeded
You should combine two or more lookup tables into one.

Page6-7

Error Messages

Page 6-8

PF 8629/30 CustomDisassembler

error 65: maximum number of labels (...) exceeded
Remove or combine labels.

error 66: syntax error: missing':'
In the declaration of labels in the %%EQU-section, the ':'

after the label name was omitted.

error 67: label' ... ' multiple declared
The specified name already exists as the name of a different

item.

error 68: syntax error: missing 'defme'
In the declaration of constants in the %%DEF-section, the

keyword 'define' was omitted or not correctly spelled.

error 69: constant' ... ' multiple declared
The specified name already exists as the name of a different

item.

error 70: number too big
In the declaration of constants in the %%DEF-section, the

resulting number was too big. It should have a value between

-32768 and 32767.

error 71: syntax error: missing number
A ~yntactically incorrect number was detected.

error 72: illegal polarity
specified value not recognized as polarity

error 73: syntax error: missing':'
In the%% FORMAT-section an expected':' is missing.

error 74: not required label may not be used in tables:' .. .'
Label defined as NOT required may not he used in the con­
dition part of a table command line

error 77: maximum number oflocal variables (...) exceeded
Combine local variables and use global variables or the in­
dex table to decrease the number of defined local variables
in the condition.

error 78: syntax error: missing'['
In a condition, a ']' (indicating the end of a local variable

definition) was encountered without a matching '['.

error 79: syntax error: missing '>'
In a condition, a '>' was expected. Possibly more than one

character was enclosed in the < >-pair.

error 80: syntax error: missing bit pattern
In a condition or symbol definition, a ', ' or ')' (end of condi­
tion) was encountered before a hitpattern was specified.

PF 8629/30 Custom Disassembler Error Messages

error 81: syntax error: illegal end of bitpattern
In a condition, a syntactically incorrect bitpattern was spec

ified.

error 82: syntax error: not enough positions in bitpattern
In a pattern condition, the number of positions in a bitpat­
tern must exactly match the number of positions in the label
or variable. When for example a label consists of 5 channels,
every bitpattern in a pattern condition must contain 5 bits
(which means you can only use binary bitpatterns).

error 83: illegal binary digit: ...
A binary number is expected. Correct digits are 'O', 'I' or'.'.

error 84: illegal octal digit: ...
An octal number is expected. Correct digits are 'O' .. '7'

error 85: illegal hexadecimal digit: ...
A hexadecimal number is expected. Correct digits are
'O' .. '9', 'A' .. 'F' or 1

•
1
•

error 86: maximum number of channels (...) exceeded
In a label condition more channels are specified than al­
lowed.

error 87: syntax error: too many digits in bitpattern
In a pattern condition, the number of digits in a bitpattern
must exactly match the number of digits in the label or vari­
able. When for example a label consists of 5 channel;,\ every
bitpattern in a pattern condition must contain 5 bits (which
means you can only use binary bitpatterns).

error 88: syntax error: undefined or missing operand
In a condition, no or an undefined variable was specified on

the left hand side of a relational condition.

error 89: illegal condition
An incorrect operator was specified in a relational condi­
tion. Allowed are=,!=,<,>,<=, and>=.

error 90: syntax error: undefined or missing operand
In a relational condition, after the operator, no or an unde­
fined identifier was .1pecified.

error 91: illegal condition in table line
An illegal condition in a table was encountered. Possibly an
undefined label or undefined global variable name is used in
the condition.

error 92: syntax error: missing end of condition
The trailing ')' in the condition was not encountered.

Page6-9

Error Messages

Page 6-10

PF 8629/30 CustomDisassembler

error 93: syntax error: illegal space in bitpattern
There is no white space allowed within a pattern value of a
condition.

error 94: syntax error: missing '"'
A string was started but no terminating "" was found.

error 95: illegal string symbol: ' .. .'
Symbol not allowed for this string.

error 96: string too large (maximum ... characters)
Only a limited number of characters is allowed for this
string.

error 97: string too small (minimum ... characters)
A certain number of characters is required for this string.

error 98: syntax error: number expected: ' .. .'
The syntax for a number was not correctly used.

error 99: missing identifier
An identifier name is expected, but not specified.

error 100: input line too long
The line contains more than 255 characters. Use continua­
tion lines (lines ending with '\')to shorten the length of long
lines.

error 101: syntax error: illegal section header
A line started with one percent-sign not immediately fol­
lowed by another.

error 102: missing command chain in: ' .. .'
The lookup table mentioned in the error message did not
contain a command chain.

error 103: syntax error: unexpected EOF

error 104: syntax error: last '{', '!', '"' or '/*' was here
An end of file was encountered while handling a comment, a

string, a command chain or a set of global variable com­
mands. Possibly a trailing end-of-comment(*!), trailing end
of command chain (!), end-of-global-variables-commands
(}) or trailing string-quote (") was omitted.

Error message 104 gives the line number of the correspond­
ing 'opening mark.'

error 105: syntax error: missing '\'
The end of a line encountered while still some items expected
on the line.

error 106: syntax error: missing'{'
Missing'{' in channel delay definition.

PF 8629/30 Custom Disassembler Error Messages

error 107: syntax error: missing','
Missing ',' in channel delay definition.

error 108: illegal delay value (value between -2 and 2)
The specified delay value is not valid. A delay value should
be in the range from -2 to 2.

error 109: syntax error: illegal channel number order
Channel numbers for a qualifier or a label must always be
specified in decreasing order.

error 110: illegal channel number (0 .. 95)
A channel number should be in the range from O to 95. The
specified number is not in that range.

error 111: syntax error: missing'{'
Missing '{' in qualifier level definitions or in label clocks
definition.

error 112: 'none' not last item in list: ...
In the label clocks definition 'none' or a list of clock identi­
fiers are allowed. It is not allowed to have both in one label
clocks definition.

error 113: 'none' not first item in list: ...
In the label clocks definition 'none' or a list of clock identi­
fiers are allowed. It is not allowed to have both in one label
clocks definition.

error 114: illegal identifier: ...
The given identifier is not defined or is not allowed.

error 115: syntax error: missing '='
Missing '=' after pods threshold.

error 116: syntax error: missing'{'
Missing '{' in the pods threshold definition.

error 117: syntax error: missing ','
Missing ',' between the threshold definitions for two pods.

error 118: syntax error: missing '}'
Missing '}' at the end of pods threshold definition.

error 119: syntax error: missing'{'
Missing '{' in the threshold definition for a pod.

error 120: syntax error: missing','
Missing ',' between the threshold definitions for one pod.

error 121: syntax error: missing '}'
Missing '}' at the end of the threshold definition for a pod.

error 122: syntax error: illegal threshold type: ...
The specified type is not a legal threshold type. Only TTL,
ECL or a variable threshold are allowed.

Page6-11

Error Messages

Page 6-12

PF 8629/30 CustomDisassembler

error 123: syntax error: illegal threshold value
Variable threshold values between -3.0 and 12.0 are al­
lowed.

error 124: maximum number of clocks (4) exceeded
The total number of clocks you may use is 4.

error 125: identifier name already in use for label: ...
The identifier name for this clock is already in use for a la­
bel.

error 126: identifier name already in use for clock sequence:

The identifier name for this clock is already in use for a clock
sequence.

error 127: identifier name not allowed for clock: ...
The identifier name for this clock is a reserved word and may
not he used as a clock identifier name.

error 128: clock identifier already in use: ...
The identifier name for this clock is already in use for anoth­
er clock.

error 129: syntax error: missing '='
Expected'=' after clock identifier name is missing.

error 130: syntax error: missing'{'
Expected '{' before clock parameter list is missing.

error 131: syntax error: missing','
Expected ', ' after clock parameter is missing.

error 132: illegal clock specifier: ...
The specifier is not recognized as a valid keyword for a clock
definition.

error 133: syntax error: missing '='
Expected '=' after a clock definition keyword is missing.

error 134: clock name for' ... ' multiple declared
The name for a clock may only be declared once.

error 135: clock polarity for' ... ' multiple declared
The polarity for a clock may only be declared once.

error 136: clock timing definition for' ... ' multiple declared
The timing definition for a clock may only he declared once.

error 137: clock-required definition for ' ... ' multiple de­
clared
The required definition for a clock may only he declared
once.

error 138: clock display definition for' ... ' multiple declared
The display definition for a clock may only he declared once.

PF 8629/30 Custom Disassembler Error Messages

error 139: clock edge for' ... ' multiple declared
The edge for a clock may only be declared once.

error 140: clock channel for' ... ' multiple declared
The channel number for a clock may only be declared once.

error 141: syntax error: missing ','
Missing',' in qualifier levels definition or in label clocks def­
inition

error 142: qualifier channel already in use for clock: ...
The specified channel number is already in use as clock
channel.

error 143: clock merge-clock for' ... ' multiple declared
The merge-clock definition for a clock may only be declared

once.

error 144: missing clock name for: ...
The name for this clock is missing. The name for a clock is
required.

error 145: missing clock channel number for: ...
The channel for this clock is missing. The channel for a

clock is required.

error 146: missing clock edge for: ...
The clock edge for this clock is missing. The edge for a clock
is required.

error 147: syntax error: missing '}'
Expected '} ' is missing at the end of a clock definition.

error 148: required clock not allowed after not required
clock
The clocks which are required for the disassembler should
all be declared bej(Jre the clocks which aren't required.

error 149: clock name already in use: ...
The name for the clock is already in use for another clock or
for a label.

error 150: syntax error: illegal clock name
An illegal name is given for this clock.

error 151: illegal clock timing definition: ...
Keyword is not recognized as a valid specifier for clock tim­
ing attribute.

error 152: illegal clock-required definition: ...
Keyword is not recognized as valid specifier for clock re­
quired attribute.

Page6-13

Error Messages

Page 6-14

PF 8629/30 CustomDisassembler

error 153: illegal clock display definition: ...
Keyword is not recognized as valid specifier for clock dis­
play attribute.

error 154: clock channel already in use: ...
The channel number is already in use for another clock or
for a qualifier.

error 155: illegal clock edge: ...
Keyword is not recognized as a valid specifier for a clock
edge.

error 156: syntax error: missing '{'
Expected '{' is missing in a clock qualifier declaration.

error 157: maximum number of clock qualifiers (4) exceeded
The total number of clock qualifiers is 4. Each clock uses at
least one qualifier.

error 158: syntax error: missing '}'
Expected '}' is missing in a clock qualifier declaration.

error 159: illegal clock identifier: ...
An unrecognized or illegal clock identifier is given as
merge-clock. Only already declared clock identifiers or
'none' are allowed.

error 160: syntax error: missing ','
Expected ',' is missing between the attributes for a qualifier.

error 161: illegal qualifier identifier: ...
Keyword is not recognized as valid specifier for a qualifier
definition.

error 162: syntax error: missing '='
Expected '=' after a qualifier definition keyword is missing.

error 163: qualifier channels multiple declared
The channels for a qualifier may only be declared once.

error 164: conflicting number of channels
The number of channels given for this attribute doesn't
match an already specified or implied number of channels
for this qualifier.

error 165: qualifier channel delay values multiple declared
The channel delay values for a qualifier may only be de­
clared once.

error 166: qualifier levels multiple declared
The levels for the qualifier channels may only be declared
once.

error 167: qualifier-required definition multiple declared
The required definition for a qualifier may only be declared
once.

PF 8629/30 Custom Disassembler Error Messages

error 168: missing qualifier levels
The Levels for the qualifier channels are missing. The Levels
for the qualifier channels are required.

error 169: missing qualifier channels
The channels for the qualifier are missing. The qualifier
channels are required

error 170: head width too small (minimum ... characters)
Specify Larger width for header.

error 171: head width too big (maximum ... characters)
Specify smaller width for header.

error 172: required qualifier for clock not allowed after not
required qualifier
The qualifiers for a clock which are required should all he
declared before the qualifiers which aren't required.

error 173: illegal qualifier-required definition
Keyword is not recognized as valid specifier for qualifier re­
quired attribute.

error 174: maximum number of elements in list(...) exceeded
In the list too many elements were specified.

error 175: maximum number of clock sequences (...) exceed­
ed
Too many clock sequences are defined.

error 176: clock sequence defined before clock
No clocks are declared yet. The clock declarations should
precede the clock sequence declarations.

error 177: identifier name already in use for label: ...
The identifier name for this clock sequence is already in use
for a Label.

error 178: identifier name already in use for clock: ...
The identifier name for this clock sequence is already in use
for a clock.

error 179: identifier name not allowed for clock sequence: ...
The identifier name is a reserved word and may not he used
as a clock sequence identifier name.

error 180: identifier name already in use: ...
The identifier name for this clock sequence is already in use
jr1r a clock sequence, global variable or constant

error 181: syntax error: missing '='
Expected '=' after clock sequence identifier name is missing.

Page6-15

Error Messages

Page 6-16

PF 8629/30 CustomOisassembler

error 182: missing clock identifier names in clock sequence:

Clock identifier names are expected in a clock sequence dec­
laration.

error 183: maximum number of defined labels(...) exceeded.
Remove one or combine two defined labels

error 184: label defined before clock
Clocks must be defined before labels.

error 185: identifier name already in use for clock: ...
Identifiers must have unique names.

error 186: identifier already in use for clock sequence: ...
The ;pecified identifier is already in use for a clock sequence

error 187: identifier name not allowed for label: ...
The identifier name is a reserved word and may not be used
as a label identifier name.

error 188: label identifier already in use: ...
The specified identifier is already in use for a label, a global
variable or constant.

error 189: syntax error: missing '='
Missing '=' after label identifier.

error 190: syntax error: missing'{'
Missing'{' in label definition.

error 191: syntax error: missing','
Missing ',' between two label parameters.

error 192: syntax error: illegal label specifier: ...
Wrong keyword used in label parameter ;pecifier.

error 193: syntax error: missing '='
Missing'=' in label parameter specifier.

error 194: label name for' ... ' multiple declared
The name for a label may only be declared once.

error 195: label polarity for' .. .' multiple declared.
The polarity for a label may only be declared once.

error 196: label timing definition for ' .. .' multiple declared.
The timing definition for a label may only be declared once.

error 197: label-required for' .. .' multiple declared.
The label-required for a label may only be declared once.

error 198: label display definition for ' .. .' multiple declared.
The label display definition for a label may only be declared
once.

error 199: label channels for ' .. .' multiple declared.
The channels for a label may only be declared once.

PF 8629/30 Custom Disassembler Error Messages

error 200: syntax error: conflicting number of channels
The number of channels given for this attribute doesn't
match an already ;pecified or implied number of channels
for this label.

error 201: label delay values for' .. .' multiple declared
The delay values for a label may only be declared once.

error 202: syntax error: conflicting number of channels
The number of channels given for this attribute doesn't
match an already specified or implied number of channels
for this label.

error 203: label clocks for' .. .' multiple declared
The clocks for a label may only be declared once.

error 204: label radix for ' .. .' multiple declared
The radix for a label may only be declared once.

error 205: missing label name for: ...
Name for label must be ;pecified.

error 206: missing label channel numbers for: ...
label channel numbers for a label must be ;pecified.

error 207: syntax error: missing '}'
Missing '}' in label definition.

error 208: required label not allowed after not-required la­
bel
A non-required-label definition may not appear before any
required-label definition.

error 209: label name already in use
Name is already in use for a clock or a different label defini­
tion.

error 210: syntax error: illegal label name
The ;pecified label name is not allowed.

error 211: illegal label timing definition
The specified label timing definition is not allowed.

error 212: illegal label required definition
The ;pecified label required definition is not allowed.

error 213: illegal label display definition
The specified label display definition is not allowed.

error 214: label channels missing
No channels are .IJJecified for this label.

error 215: label channel already in use for clock:' ... '
Specified channel number already in use by a defined clock.

error 216: label delay values missing
No delay values are .1pecified for this label.

Page6-17

Error Messages

Page 6-18

PF 8629/30 CustomDisassembler

error 217: clock identifiers missing
No clock identifiers are specified for this label.

error 218: illegal label radix definition
The specified label radix is not allowed.

error 219: maximum number of channels in label (...) ex­
ceeded
More channels are specified then allowed for a label.

error 220: illegal channel number
The ~pecified number is not in the permitted channel number
range.

error 221: maximum number of pattern condition expres­
sion bytes (...) exceeded.
The total space reserved for label conditions is exhausted.

error 222: maximum number of pattern conditions (...) ex­
ceeded.
The total number of allowed different condition expressions
is expired.

error 223: maximum number of local variable expression
bytes (...) exceeded.
The total space reserved for local variables is exhausted.

error 224: maximum number of local variables (...) exceed­
ed.
The total number of allowed different local variable expres­
sions is expired.

error 225: maximum number of required labels (...) exceed­
ed.
Redefine any label, not being used in the tables as not re­
quired, otherwise reduce the number of (required) labels or
combine some (required) labels into one label..

error 226: syntax error: missing','
Missing ',' after channel number.

error 227: syntax error: missing '{'
Missing '.' between two elements in a list.

error 228: different edges for clock channel: ...
Clocks with the same clock channel must have equal edges.

error 229: different polarities for clock channel: ...
Clocks with the same clock channel must have equal polari­
ties. If a polarity definition is omitted, a positive polarity is
assumed.

error 230: different delay values for channel: ...
Delay values specified for one channel must have the same
value. If the delay value definition is omitted a delay value 'O'
is assumed.

PF 8629/30 Custom Disassembler Error Messages

error 231: number too big
The specified number is not allowed.

error 232: syntax error: signal number not allowed
Un unsigned number is expected.

error 233: syntax error: illegal local variable: $...
Only local variables $1 to $9 are allowed.

error 234: syntax error: missing 1
] 1 for local variable

Expected ']' for definition of a local variable in a condition
is missing

error 235: tab settings multiple declared
The tab settings definition in the FORMAT section may only
he declared once

error 236: label type for' ... ' multiple declared
The label type definition for a label may only be declared
once

error 237: syntax error: illegal label type definition: ...
The specified type is not a legal label type definition.

Only 'little_endian' or 'hig_endian' or their short hand nota­
tions 'little' or 'big' are allowed.

error 238: label parts already in use for other label
The label parts definition for a label may only he used for
one label. More than one label with parts are not allowed.

error 239: illegal number of parts defined for label: ...
The specified number of parts defined for a label is not al­
lowed. Only 1,2 or 4 are allowed.

error 240: conflicting number of channels and parts for la­
bel: ...
The number of channels for a label divided by the number of
parts for the label must result in an integer value.

error 241: label parts for' ... ' multiple declared
The label parts definition Jbr a label may only be declared
once

error 243: static char multiple declared
Only one static char variable is allowed.

error 244: syntax error: illegal tab position number order
Absolute tab positions defined with the 'tab' command must

always he ,pecified in increasing order.

error 247: blocksize multiple declared
The hlock1·ize definition may only he declared once

Page6-19

Error Messages

Page 6-20

PF 8629/30 CustomDisassembler

error 248: illegal synchronization block size
The specified blocksize definition is not allowed. Allowed
are 16, 32, 64, 128, 256, total, minimum (min) and maximum
(max).

error 249: relational condition not allowed in index table
In an index table only pattern conditions are allowed to ex­
tract local variables. Relational conditions are not allowed
in index tables.

error 250: illegal symbol print format: ...
The ,pecified ,ymbol print format in the print string com­
mand is illegal.

error 251: illegal print format: ...
The specified print format in the print string command

is illegal.

error 252: symbolics definition multiple declared
The symbolics definition may only be declared once

error 253: syntax error: illegal symbolics definition: ...
The .1pecified ,ymbolics definition is illegal. Only 'yes'
or 'no' are allowed.

error 254: label symbolic definition for ' ... ' multiple declared
The label ,ymbolic definition may only be declared once

error 255: syntax error: illegal label symbolic definition: ...
The specified label symbolic definition is illegal.

Only 'yes' or 'no' are allowed.

error 256: reserved variable name: ...
The specified name may not be used as a global variable
name or constant name It is a reserved keyword.

error 257: illegal variable symbol viewsize (1..32)
A variable label symbol viewsize should he in the range from
1 to 32. The specified number is not in that range.

error 258: label symbol viewsize for ' ... ' multiple declared
The label ,ymhol viewsize definition may only he declared
once

error 260: syntax error: missing '{'
Missing '{' in a ,ymhol definition for a label.

error 261: syntax error: missing ','
Missing ',' in a .1ymhol definition for a label.

error 262: syntax error: illegal symbol name
An illegal name is given for a label symbol.

PF 8629/30 Custom Disassembler Error Messages

error 263: head multiple declared
The custom disassembler head definition may only be de­
clared once

error 264: pod thresholds multiple declared
The pod thresholds definition may only be declared once

error 265: logo multiple declared
The disassembler logo definition may only be declared once

error 266: illegal symbol viewsize: ...
The specified symbol viewsize definition is illegal. Only
'unique' (uniq), 'maximum' (max) or a number in the range
from 1 to 32 are allowed.

error 267: symbol first value too big: ...
The specified first value for the symbol is too big for this

label.

error 268: symbol second value too big: ...
The specified second value for the symbol is too big for this
label.

error 269: maximum number of symbols (...) exceeded
Delete some symbol definitions.

error 270: maximum number of symbol name bytes (...) ex­
ceeded
Try to use smaller ~ymbol names.

error 271: multiple command chains in START table
The START table may only have one command chain.

error 272: illegal digit in index table pattern expression
Pattern expressions in index tables may only contain don't
care digits('.'). The pattern expression is only used to assign
values to local variables.

error 273: name already in use: ...
The specified name is already used for a label identifier or
clock sequence identifier.

Page6-21

Error Messages PF 8629/30 CustomDisassemb/er

Page 6-22

PF 8629/30 Custom Disassembler

Index

Page 1

Index

Page2

I 3-35, 3-41, 3-56, 3-57
- 3-56
It 3-57
In 3-57
! sign 2-5, 3-44
!= 3-41
"" 3-57
$1, $2, $3, etc. 2-8, 3-40
% 3-56
%% 3-6

name 3-33
table name 2-18
DEF 2-16, 3-8
EQU 2-16, 3-9
FORMAT 3-11
START 3-32

& 3-56
() 2-5, 3-37, 3-43
; 3-56
* 3-56
*** 2-6, 2-9, 3-61
*/ 2-16, 3-35
+ 3-56
. operator 3-38
I 3-56
/* 2-16, 3-35
= 3-41
== 3-41
< 3-41
> 3-41
>= 3-41
>> 3-56
I 2-s
J 2-8
l J 3-39

3-38
{) 3-56
I 3-56
' 3-39
Ob 2-6, 3-38
(kl 3-38
Ox 2-6, 3-38
68CXJO

bus status 4-4
data transfer 4-4
disassembler 4-2
label DSCTRL 4-3
label FC2 0 4-4
opcode fetch 4-4
R/WN 4-4

68030

A

label FC2 0 5-3
label R/WN 5-3
label SZ 5-3

acq_update 3-50
activating disassembler 1-7
adapter 1-2
add 3-56
address sequence break 4-11
AND-ing of conditions 3-42
arithmetic operators 3-56
ASCII-character 3-58

PF 8629/30 Custom Disassembler

PF 8629/30 Custom Disassembler

assignment structures 2-17
automatic synchronization 1-6

B
backslash 3-35, 3-57
backspace 3-60
Backus-Nauer-Format 3-3
base 3-24
big endian 3-26, 5-4
binary 3-58

digit 3-3
bindigit 3-3, 3-39
binpattcm 3-39
bitpattern 2-8, 3-38

don't care 3-38
repetition factor 3-38
syntax 3-38
underscore character 3-38

bitwise AND, OR 3-56
BLOCKSIZE 3-14
BNF 3-3
boundaries

access table 3-61
braces 3-56
brackets 2-5, 3-37, 3-39

nesting of 3-40
branch instruction 4-13, 5-6
bus

C

status 4-4
type 5-4

calls to tables 3-61
channel

list 3-20
number 3-18, 3-20, 3-24
qualifier 3-20

character 3-8
lower case 3-36
upper case 3-36
unsigned 3-8

clock 3-16, 3-30
channel, definition, specifier 3-18
definition 2-17, 3-16
display on same line as 3-18
display, definition, specifier 3-19
edge 3-18
edge dcl"inition 3-18
id 3-16
id list 3-25, 3-30
merge 3-18
merge definition, specifier 3-18
name 3-17
name definition 3-17, 3-26
parameter list 3-16
jXJlarity, definition, specifier 3-18
sequence 3-41
specifier 3-16
timing, definition, SJXCifier 3-19

clock definition 3-16
example 3-17

clock qualifier 3-19
channels definition, spcciricr 3-20
definition 3-19

Index

Page3

Index

Page4

PF 8629/30 Custom Disassembler

delays definition, specifier 3-21
levels definition, specifier 3-20
parameter list 3-20
required definition, specifier 3-21
specifier 3-20

clock sequence 3-29, 3-30
condition 3-37, 3-41
definition 3-29, 3-30
id 3-30
specifier 3-30

column width 3-12
combination of conditions 3-42
command 2-5, 3-37, 3-43

chain 3-44
display selection 3-44
positioning 3-49
in relational conditions 3-51, 3-53
special 3-59

commands 2-13, 3-43
comment 2-16, 3-35
compensate microprocessor pipelines 3-47
compiler 1-4

program 1-3
compute

return address 4-9
return address on 32-bit bus 5-10

computed address 4-8
computing branch offsets 4-7
condition 3-37, 4-17

combinations 3-42
constant

definition 3-9, 4-16
size of bits 3-9

constants 3-9
in conditions 4-17

continuation character 3-35
creating a custom disassembler 1-4
currcnl parl 3-53

at entering START-lable 3-52
ClL~lom disassembler 1-2

creating of 1-4
deactivating of 1-7
loading of 1-5

D
data

label val uc 5-10
samples 2-13

data transfer 4-4
display selection commands 3-47
not related 2-15, 3-47
unrelated 3-47

data transfers 2-14
and label parts 3-47
as part of the instruction 2-14, 4-13

deactivating disassembler 1-7
debugging 3-60
dccdigit 3-3, 3-4
decimal 3-58
declaration of

constants 3-9
digits 3-3
numbers 3-3
tables 2-16

PF 8629/30 Custom Disassembler

variables 2-16
declarative

part 3-6
section 3-6

dccnumbcr 3-3
decrease

hold time 3-21, 3-24
set-up time 3-24

DEF section 2-16
default

tab, space position 3-31
value 3-13

define constant 3-9
delay 3-21

definition, specifier 3-24
qualifier 3-20

DEM680CXJ
.DIS 4-2
.DSC 4-2
.NEW 4-2

DEM68030
.DIS 5-2
.NEW 5-2

description
file 1-4
language 3-1

detection or illegal opcodes 2-11
development process 1-4
digit repetition abhriviation 3-38
direct access tables 3-33
disassembler

activating of 1-7
compiler DIS, DSC 1-4
compiler program 1-3
deactivating of 1-7
description rile 2-17, 3-3
description language 3-1, 4-1, 5-1
example microprocessor file 2-17
output column 2-5, 3-12
package 1-2
parameter 1-5
part label 3-26, 5-4
process 2-4
state 3-29, 3-49
state with 2 instructions 5-4

display
additional opcodes 3-45, 4-7
data transfers 3-47
disassembler state 3-44
menu 3-44
options 1-6, 2-13

display selection 2-13
commands 3-44
default 3-45
reset 3-55

displayed with all display options 3-45
divide 3-56
don't cares in bitpattern 3-38
DSC, DIS file t-4

E
edge 3-18
effective clocks 3-30
clements 3-35

Index

Page5

Index

Page 6

PF 8629/30 Custom Disassembler

empty 3-4
end command chain START 3-43
EQU section 2-16, 3-9
equal to 3-41
equate

definition 3-9
section 3-9

erase last character 3-60
ERROR 3-60
error messages 6-3
EXAMPLE

.DIS 2-4

.DSC 2-4

.ERR 2-7

.NEW 2-3
example microprocessor

description file 2-2
instruction set 2-2

expression 3-56
extname 3-4

F
file

DEM68000.DSC 4-2
DEM68000.NEW 4-2
DEM68030.DSC 5-2
DEM68030.NEW 5-2
EXAMPLE.DIS 2-4
EXAMPLE.DSC 2-4
EXAMPLE.ERR 2-7
EXAMPLE.NEW 2-3
structure 3-5

first
disassembler state 3-49
disassembler state is data transfer 3-47
instruction state 3-32
phase disassembly process 3-32
state for next START table 3-50

folding output line 3-58
format

command 2-10, 3-58
specifier 2-10, 3-58

FORMAT
menu of the logic analyzer 3-1 l
section 3-11

formatting of print statements 3-57

G
general clements 3-35
global variable 2-12, 3-8
GOTO 3-49
GOTOPART 3-52, 5-4
greater than 3-41

or equal 3-41

H
head 3-12
header 3-12

definition, specifier 3-12
line 3-6

header lines, sequence or 3-6
hexadecimal 3-58
hcxdigit 3-3, 3-39
hcxpallcrn 3-38

PF 8629/30 Custom Disassembler

highest disassembler state number 3-55
hold lime for

I

label increase, decrease 3-24
qualifier increase, decrease 3-21

1/0 read 3-48, 4-10
1/0 write 3-48, 4- IO
identifier 3-16
illegal opcodes

detection of 2-11
immediate data 4-5
increase

set-up time 3-21, 3-24
index 3-61

table 2-8, 3-10, 3-33
table ddinition 3-10

index table 3-33
definition 3-9
line 3-34

installation 1-3
instr command 3-56
instruction

blk 3-56
length 3-49
separation 3-56
set of example microprocessor 2-2

instructions 3-56
int 3-8
integer unsigned 3-8
invocation disassembler compiler 1-4
!OR 3-48, 4-10
IOW 3-48, 4-10
IT 3-33

K
keyword 3-51, 3-60

L
label 3-24

alias 3-10
channels, definition, specifier 3-24
clocks, definition, specifier 3-25
definition 2-17, 3-22
delays 3-24
display, definition, specifier 3-26
example 3-23
holdtime 3-24
id 3-22
name, definition, specifier 3-23
non-required 3-25
or variable 3-38
parametcr,list 3-22
pan 3-26
parts and data transfers 3-47
rx1larity, definition, specifier 3-24
required, derinilion, specifier 3-25
specifier 3-22
symbol 3-28
symbol viewsizc 3-27
symbolic 3-27
timing, definition, specifier 3-26, 3-27, 3-28
type 3-26

leading

Index

Pagel

Index

Page8

blanks 3-58
zeroes 3-58

less than 3-41
or equal 3-41

letter 3-4
level 3-20

!isl 3-20
qualifier 3-20

line 3-35
continuation 3-35
maximum length 3-35, 3-58
reshurt1ing 3-47

lilllc cndian 3-27, 5-4

PF 8629/30 Custom Disassembler

loading a custom disassembler 1-5
local variable 2-8, 3-40

assignment 3-39
from global variables 3-39
in command chain 3-58
in index tables 2-10
transfer of value of 3-40

logo 3-11
logo definition,spccificr 3-11
long 3-8
look ahead 3-50
lookup 3-61
lookup !able 2-5, 2-20, 3-9, 3-33

definition 3-9
loose synchronization 4-15
lower case character 3-36
LT 3-33
lvdigil 3-61

M
manual synchronization 1-6
maximum

line lenglh 3-35, 3-58
table nesting 3-61

measurement positioning 3-49
memory

read 2-14, 3-47, 4-10
wrile 2-14, 3-48, 4-10

microprocessor
adapler 1-2
pipeline 4-9

mod 3-56
MR 2-14, 3-47, 4-IO
MR (unrcl) 3-47
multi-line comments 3-36
multiple

conditions 3-42
instructions 3-56

multiplexed busscs 3-30
mulliply 3-56
MW 2-14, 3-48, 4-10

N
name 3-4

clock 3-18
index 3-61
label 3-23
!isl 3-10
specifier 3-17

nesting or
brackets 3-40

PF 8629/30 Custom Disassembler

tables 3-61
new disa output line 3-58
NEXT 3-51
next

sample 2-5
state 3-51

NEXTPART 3-53, 5-4, 5-5
non-required label 3-25
not

equal lo 3-41
executed opcodes 4-10
related data transfer 2-15, 3-47

notation Backus-Nauer 3-3
number of

0

global variables 3-8
index tables 3-34
lookup tables 3-34

octal 3-58
octdigit 3-3, 3-39
oclpallcrn 3-39
offset in an index table 3-60
ope 3-45
opcode

detection 2-11
retch 4-4
illegal 2-11
part or the following instruction 4-13
pipeline 4-6

operator 3-41, 3-56
opt patlcrn condition list 3-32
optional pattern expression 3-33
nptsign 3-4
or condition 3-42, 3-56
OR-ing of conditions 3-42
other format type 3-58
output

column 2-5, 3-12
column tillc 3-11, 3-12
column width 3-12

output line
exceeds column width 3-57
line maximum 3-58

p
part

label and data transfers 5-10
number 3-52

pallcrn 3-34, 3-38, 3-43
condition 3-38
condition list 3-32
expression 3-34, 3-42
expression list 3-34, 3-43

performance 2-20
period operator 3-38
pipeline 4-9
pipelined micro-processor 4-5
pod threshold definition 3-13
polarity clock,lahel 3-18
positioning

in the measurement 3-49
outside the measurement 3-50
within a disassembler state 3-49, 5-4

Index

Page9

Index

Page 10

predefined header line 3-6
PREY 3-52
previous state 3-52
PREVPART 3-54, 5-4
print

command 2-10, 3-57
computed address 4-8
sample value 2-5, 2-10
statements 3-57
string 2-5, 3-58
symbols 3-59
value 2-10, 3-57

processing
data transfers 4-13, 5-5
speed 2-15, 2-16, 2-20

PROG 2-13, 3-45, 4-7
program

Q

context mode field l-6
samples 2-13

qualifier

R

channels 3-20
delays 3-20
holdtime 3-21
levels 3-20
required 3-21

radix 3-25
RC connector 1-2
read next sample 2-5
rearrange lookup tables 2-20
relational

condition 3-37, 3-40
operator 3-41

relative
branch offset 4-7
JXlSition 3-49

remainder 3-56

PF 8629/30 Custom Disassembler

repetition factor in bitpaltern 3-38
report status to next instruction 4-15
required

labels 3-25
qualifier 3-21

reset display selection 3-55
restart 1-6
return

address 5-10
current pan 3-53

running disassembler compiler 1-4

s
sample pointer 2-4
search following opcode 5-6
searching

additional opcode 4-5
data transfers 4-9

semi-colon 3-56
separation of

instruction 3-56
lookup tables 2-20

sequence
break 4-11

PF 8629/30 Custom Disassembler

of header lines 3-6
set-up time

for label increase, decrease 3-24
for qualifier increase, decrease 3-21

shift left/right 3-56
show data transfers l-6, 2- l 4
sign extension 4-8
SKIP 3-46, 4-7, 4-13
skip local variables 3-59
spaces 3-31, 3-36
splilling up lookup tables 2-20
standard disassembler package 1-2
start

definition 3-32
section 2-17, 3-32

state 3-51
I for next instruction 3-50
for next START 3-46

statements for print 3-57
static char 3-8

and synchronization blocksizc 3-15
variable 3-8, 4-15

step delay 3-2 I
string 3-12, 3-57
structure for assignment 2-17
sub values in the instruction 4-9
subtract 3-56
suppress

data transfers 4-10
state from display 3A6
unused opcodes 4-10

symbol
formal 3-59
vicwsizc 3-59

symbolic
printout 3-14
value 3-57

symbolic output
control 3-14
definition 3-14
formal 3-57

synchronization
automalic l-6
block.size 3-14
blocksize and slatic char 3-15
disassembly process 3-32
slatus 2-9
status lost 4-15
status lost at next instruction 4-15

syntax 3-3
bitpattern 3-38

T
tab

command 3-31
position, settings, space 3-31
sellings 3-31

table 3-61
access outside boundaries 3-61
boundaries 3-61
description 2-18
index (IT) 3-33
lookup (LT) 3-33
nesting 3-61

Index

Pagett

Index

Page 12

recursion 3-61
transfer control 3-61

PF 8629/30 Custom Disassembler

tables scanned from top to bottom 3-33
tabular

part 3-7
section 3-33

TELL 3-51
TELLPART 3-53, 5-4, 5-6
threshold

definition 3-13
group 3-13
pod specifier 3-13
pod specifier list 3-13
specifier 3-13
value 3-13

time window 3-21, 3-24
total output line 3-58
transfer

control to other tables 3-60
value of local variable 3-40

translation options 1-6
two additional opcodes 4-7
type 2-1 CJ, 3-8

and width 3-58
type!

u

string 3-18
stringsymbol 3-12
string symbol list 3-18

unconditional branch 4-15
underscore 3-38
UNGET 3-55
UNPUT 3-60
unrelated data transfer 3-47
unsigned

character 3-8
integer 3-8

UNUSED 3-46, 4-7, 4-11
unused ope 3-46
upper case character 3-36
use of tables 2-20
using data transfer states 5-10

V
valid clock sequence 3-41
value 3-9, 3-41

delay 3-21
symbolic 3-57

var 3-13
declaration 3-8

variable

w

names 3-8
types 3-8

warnings 6-2
width 2-1 CJ, 3-58

and type 2-10, 3-58

z
zero width 3-59

