User Interface Toolbox

Copyright © 1994 Acorn Computers Limited. All rights reserved.

Updates and changes copyright © 2014 RISC OS Open Ltd. All rights reserved.
Issue 1 published by Acorn Computers Technical Publications Department.
Issues 2 and 3 published by RISC OS Open Ltd.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
the publisher in good faith. However, the publisher cannot accept any liability for
any loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual, please complete the form at the back of
the manual and send it to the address given there.

All trademarks are acknowledged as belonging to their respective owners.

Published by RISC OS Open Ltd.

[ssue 1, December 1994 (Acorn part number 0484,231).
Issue 2, October 2014 (updates by RISC OS Open Ltd).
Issue 3, October 2019 (minor corrections by RISC OS Open Ltd).

Contents

Introduction to the Toolbox 1

Introduction 1

Toolbox Application Model 5

Toolbox objects 7

Event handling 12

Resource files 15

Task initialisation and run-time information 16
Message texts and nationalisation 17

An Example object 18

Toolbox SWis 20

SWI Toolbox_CreateObject (0x44ec0) 20

SWI Toolbox_DeleteObject (0x44ecl) 21

SWI Toolbox_ShowObject (0x44ec3) 22

SWI Toolbox_HideObject (0x44ec4) 23

SWI Toolbox_GetObjectState (0x44ec5) 24
SWI Toolbox_ObjectMiscOp (0x44ec6) 25
SWI Toolbox_SetClientHandle (0x44ec7) 26
SWI Toolbox_GetClientHandle (0x44ec8) 26
SWI Toolbox_GetObjectClass (0x44ec9) 27
SWI Toolbox_GetParent (0x44eca) 28

SWI Toolbox_GetAncestor (0x44ecb) 29

SWI Toolbox_GetTemplateName (0x44ecc) 30
SWI Toolbox_RaiseToolboxEvent (0x44ecd) 31
SWI Toolbox_GetSysInfo (0x44ece) 32

SWI Toolbox_Initialise (0x44ecf) 33

SWI Toolbox_LoadResources (0x44ed0) 35
SWI Toolbox_TemplateLookUp (0x44efb) 36
Toolbox events 37

Building an application 41
Guide To Hyper 41
How !'Hyper was designed 43
How !Hyper was implemented 45
HyperCard Control Language 65

Contents

Colour Dialogue box class 67

User interface 67

Application Program Interface 68
Colour Dialogue methods 71
Colour Dialogue events 78
Colour Dialogue templates 80

Colour Menu class 81

User interface 81

Application Program Interface 82
Colour Menu methods 84

Colour Menu events 88

Colour Menu templates 89

Colour Menu Wimp event handling 90

Discard/Cancel/Save Dialogue box class 91

User interface 91

Application Program Interface 92
DCS methods 94

DCS events 99

DCS templates 102

DCS Wimp event handling 103

File Info Dialogue box class 105

User interface 105

Application Program Interface 106
File Info methods 108

File Info events 117

File Info templates 118

File Info Wimp event handling 119

Font Dialogue box class 121

User interface 121

Application Program Interface 122

Font Dialogue methods 125

Font Dialogue events 133

Font Dialogue Templates 135

Font Dialogue Wimp event handling 137

Contents

Font Menu class 139

User interface 139

Application Program Interface 140
Font Menu methods 142

Font Menu events 144

Font Menu templates 145

Font Menu Wimp event handling 146

Iconbar icon class 147

User interface 147

Application Program Interface 148
Iconbar icon methods 152

Iconbar icon events 164

Iconbar icon templates 165

Iconbar icon Wimp event handling 166

Menu class 167

User interface 167

Application Program Interface 168
Menu methods 175

Menu events 199

Menu Templates 201

Menu Wimp event handling 202

Print Dialogue box class 203

User interface 203

Application Program Interface 204

Print Dialogue Methods 208

Print Dialogue events 215

Print Dialogue templates 220

Print Dialogue Wimp event handling 222

Prog Info Dialogue box class 223

User interface 223

Application Program Interface 224
Prog Info methods 226

Prog Info events 232

Prog Info templates 233

Prog Info Wimp event handling 234

Contents

Vi

Quit Dialogue box class 235
User interface 235

Application Program Interface 236

Quit methods 238

Quit events 243

Quit templates 245

Quit Wimp event handling 246

SaveAs Dialogue box class 247

User interface 247

Application Program Interface 248

Save As methods 256
Save As events 267
Save As templates 270
Save As Wimp event handling 271

Scale Dialogue box class 273
User interface 273

Application Program Interface 274

Scale methods 278

Scale events 284

Scale templates 286

Scale Wimp event handling 287

Contents

Window class 289

User interface 289

Application Program Interface 290
Window methods 297

Other SWIs 315

Window events 318

Window templates 319

Window Wimp event handling 322
Toolbars 324

User interface 324

Application program interface 325
Toolbar methods 326

Gadgets 327

Application Program Interface 327
Generic gadget methods 332
Gadget Wimp event handling 340
Action buttons 341

Adjuster arrows 350

Button gadget 351

Display fields 358

Draggable gadgets 361

Labels 369

Labelled boxes 370

Number ranges 371

Option buttons 379

Pop-up menus 386

Radio buttons 390

Sliders 399

String sets 407

Writable fields 416

Vii

Contents

ResEd 423

Starting ResEd 426

The object prototypes window 427

The resource file display 428

Editing object templates in general 432
Editing the Menu class 435

Example menu 440

Editing a Window object template and gadgets 445
Gadgets 456

Editing other classes 481

Exporting and importing messages 493
Keystroke equivalents 494

Mouse behaviour 495

ResTest 497
The event log window 499

DrawFile 501

SWI DrawFile_Render 502
SWI DrawFile_BBox 503
SWI DrawFile_DeclareFonts 504

Resource File Formats 505
Resource file format 506

Support for RISC OS 3.10 511
Index 513

viii

Introduction

Introduction to the Toolbox

T

his chapter is intended to give the reader an overview of the RISC OS Toolbox,
and to introduce the concepts used throughout the rest of this manual.

The Toolbox was designed with the following goals:

to facilitate writing consistent, high-quality desktop applications under
RISC OS 3.10 and later

to encourage the writing of applications whose user interface complies with
the RISC OS Style Guide

to be easy to learn
to be language-independent

to make it no harder to do operations which can currently be done using the
Wimp.

The Toolbox has the following characteristics:

it is structured as a set of RISC OS relocatable modules

it will only run on RISC OS 3.10 or later

it does not directly call back to code in the client application

it is SWI-driven

it can be used from C, C++, BASIC or Assembler with equal ease
communication back to the client application is via events

the client application does not have direct access to data structures
maintained by the Toolbox

it uses a new resource file format to hold templates for the user interface
objects which the application will use at run-time.

Note: The appendix Support for RISC OS 3.10 on page 511 describes support for
RISC OS 3.10 machines.

Introduction

Installing C/C++

The instructions for installing Acorn C/C++ are in the chapter Installing Acorn C/C++
on page 7 of the Desktop Tools manual.

Terminology

Introduction to the Toolbox

The following terms are used throughout this manual:

Term
Class

Client application
Colours

Dialogue box

Method

Persistent dialogue box

Resource file

String
Textual name (name)

Transient dialogue box
User

User Interface Object
(object)

Word

Meaning

A data type, together with a definition of the
operations which can be performed on that data type

A piece of software which uses the Toolbox

Refers either to desktop colours (in the range 0-15),
or to an RGB colour (represented by one word as
0xbbggrr00)

A window which contains gadgets, and which is
typically used to carry out a ‘dialogue’ with the user,
ending in the user either cancelling the dialogue, or
confirming that they want to apply the options
indicated by the current dialogue state

One of the operations defined for a class (it can be
thought of as a ‘function’)

One which remains on the screen even when the
menu tree is closed down. It must be explicitly
removed by cancelling it, or by pressing Escape.

Described in Resource File Formats on page 505. It is a
file containing a sequence of templates from which
to build objects.

A NUL-terminated sequence of ASCII characters.

Can be formed of any sequence of alphanumeric
characters and underscores (‘_’). It must begin with
an alphabetic character. Special names used by the
Toolbox can begin with the underscore character
().

A name cannot be longer than 12 characters,
including the NUL terminator character.

One which appears on the screen, and is removed
when the current menu tree is closed down

The human user of a client application

A fundamental building block for windowed
applications (e.g. a menu). All objects share a set of
common methods which can be applied to them. An
object consists of a fixed size header followed
immediately in memory by a variable size body.

A 4-byte entity, aligned at a 4-byte address.

Introduction

General notes

Where a buffer holds a string, this string will be NUL-terminated on exit from a
SWI or when delivered in an event block. Strings which are given as input
parameters to a SWI should be terminated by a control character (i.e. in the
range 0-31 inclusive).

Where the size of a buffer is specified, this includes any terminating character.
If the size of buffer supplied for a string is not large enough an error is not
returned; instead the buffer is filled (including a terminating NUL), and the
returned number of bytes ‘written to the buffer’ will be the size of buffer which
would be required. Thus you may wish to check that the number of bytes
written to the buffer is less than or equal to the supplied buffer size.

Note that all SWIs have a flags word in RO. All undefined bits in this flags word
should be 0.

Unless otherwise stated, changes to objects which are visible on the screen are
immediate.

Introduction to the Toolbox

Toolbox Application Model

The Toolbox is intended to provide a layer of abstraction between an application
and the Wimp. In a manner analogous to the use of High Level Programming
Languages, the Toolbox allows the programmer to think more in terms of the
problem to be solved rather than the detailed mechanics of how to achieve a
solution.

Traditional desktop application

In a traditional desktop application, the programmer writes code which interfaces
directly to the Window Manager (Wimp) through Wimp SWIls. Such an application
uses a ‘Templates’ file to define templates from which it can create windows at
run-time, but must create other user-interface objects from within its code (e.g.
menus). The events which are delivered to a Wimp application refer to low-level
Wimp operations like mouse clicks:

Figure 1.1 Wimp application model

Client application 4— Template file

Window
Wimp SWis descriptions

Wimp events

Wimp

Toolbox Application Model

Toolbox application

In a Toolbox desktop application, the programmer writes code which interfaces
mainly to the Toolbox through Toolbox ‘methods’, only occasionally resorting to
making low-level Wimp SWI calls. A Toolbox application uses a ‘Resources’ file to
define templates from which it can create a large number of user-interface objects
including windows, menus and iconbar icons. Events which are delivered to a
Toolbox application are at a higher level of abstraction than Wimp events.

Figure 1.2 Toolbox application model

— Client application 4_‘ Resource file

7~
/s h
/ \ ‘object’
; -ln?eotlrt])c())(;(s \ Wimp descriptions
/ Toolbox ~ |&VENS
/ events
| /
! Toolbox -
|
\\ Wimp SWis
\ Wimp events
Wimp\
SWis
S o Wimp

Wimp events

The application will generally see all Wimp events, with the following exceptions:

ColourDbox will not see redraw events.
Where it has input focus you will not see keypress
events.

Window object will not see Open Window Request or Close Window

Request events if the window is marked as being
auto-open or auto-close respectively.

Introduction to the Toolbox

Toolbox objects

An object is essentially one part of the user interface of a desktop application; for
example, a window or a menu or an icon on the icon bar.

At run-time, each object is identified by an object id which is allocated when the
object is created. An object id is a 32-bit integer, which should not be interpreted
by the client application. An object id of 0 is used to indicate ‘no object’.

Object classes

The type of an object is called its ‘class’, which identifies its attributes and the set
of operations which can be performed on it at run-time.

It is possible to determine the class of an object at run-time, using
SWI Toolbox_GetObjectClass.

The set of classes which are supported in this release of the Toolbox are:

Class name Meaning page
Colour Menu a menu for selecting a desktop colour 81
Colour Dbox a dialogue box for selecting any colour 67
DCS a dialogue box for discard/cancel/save for unsaved 91
data
File Info a dialogue box showing information on a given file 105
Font Dbox a dialogue box for selecting font characteristics 121
Font Menu a menu for selecting a font 139
[conbar Icon an icon on the left or right of the iconbar 147
Menu a Wimp menu 167
Print Dbox a dialogue box for selecting print options 203
Prog Info a dialogue box for showing program information 223
Quit a dialogue box for handling quit with unsaved data 235
SaveAs a dialogue box for saving data by icon drag 247
Scale View a dialogue box for selecting a scale factor 273
Window a Wimp window 289

The Toolbox is designed to be extensible, so this set of classes will be increased in
future releases, and can also be increased by third party developers.

Object components

An object ‘component’ defines one of a set of distinct parts which make up an
object; for example a menu entry is a component of a Menu object, and a gadget
(see later) is a component of a Window object. A component is allocated a

Toolbox objects

component id by which to identify it uniquely within its containing object; this
component id is chosen by the client application when the component is created.
For menus it can have a value in the range 0 to 0xfffffffd, and for windows a value
in the range 0 to Ox7fffff. All higher component ids are reserved for internal Toolbox
use. A component id of Oxffffffff is used to indicate ‘no component’.

Object Methods

At run-time, the client application manipulates its objects by using ‘methods’,
which are in fact implemented via Toolbox SWis. The Toolbox will dispatch these
methods to the appropriate module which implements the class of object to which
the method is being applied.

Creating an object

An object is created using SWI Toolbox_CreateObiject (see page 20). The client
application supplies either the name of a template for the object, or the address of
a block of memory containing such a template. If a name is provided, then the
Toolbox will look for the template in the application’'s Resource file (see later). The
client application will be passed back an object id for the newly-created object if
successful.

When an object which has ‘attached’ objects is created, then the attached objects
are also created. See Attached objects on page 12 for a fuller description of this
process.

Given its object id, it is possible to find out the name of the template used to
create an object using SWI Toolbox_GetTemplateName.

Deleting an object

An object is deleted using SWI Toolbox_DeleteObject (see page 21). If the object is
visible on the screen and it is deleted, then the Toolbox first hides the object.

When an object which has attached objects is deleted, then unless the
‘non-recursive’ bit is set in this SWI's flags word, all its attached objects are also
deleted. See Attached objects on page 12 for a fuller description of this process.

Showing an object
An obiject is shown on the screen using SWI Toolbox_ShowObject (see page 22).

By setting bits in the SWI's flags word, the client may choose to show the object
with either SWI Wimp_CreateMenu semantics or SWI Wimp_CreateSubMenu
semantics. This is generally referred to as showing the object ‘transiently’, and can

Introduction to the Toolbox

be used, for example, to show transient dialogue boxes. By default, an object is
shown ‘persistently’, in other words it must be explicitly dismissed from the
screen. Not all objects support both sets of semantics.

When an object is shown, the client application chooses where the object will
appear on the screen by specifying one of three ‘show types’.

o A ‘default’ show type means that the object will be shown at a place
determined by the module which implements the object's class. For example,
a Menu object will be shown by default at a place 64 OS units to the left of the
mouse pointer's position, to comply with the RISC OS Style Guide.

o A ‘top left’ show type means that the client application supplies the
coordinates of the top lefthand corner of where the object should be shown.

e A ‘full specification’ show type means that the client application supplies a
buffer which contains all the information needed to position the object on the
screen; the contents of this buffer is separately defined for each object class.

Hiding an object

An object is hidden using SWI Toolbox_HideObject (page 23). If the object was not
visible on the screen, then this method has no effect.

Object-specific methods

Each object class provides a number of methods which are specific to that class
(for example, a Window object’s title can be set using the Window_SetTitle
method). These methods are all accessed using SWI Toolbox_ObjectMiscOp (see
page 25), with an appropriate reason code.

Shared objects

It is often useful in an application for many objects to refer to one single instance
of another object. A typical example is a multi-document editor, where a
potentially large number of Windows all refer to a single shared Menu structure.

A shared object is specified as such in its template description. Whenever an
attempt is made to create an object from such a template, the Toolbox first checks
to see if there is already a copy of the object in existence, and in which case the id
of this object is returned.

Reference counts are maintained for Shared objects. When the client tries to create
such an object the reference count is incremented, and it is decremented when the
client attempts to delete the object. The Shared object is only really deleted when
its reference count reaches zero.

Shared objects can also be used effectively in conjunction with attached objects
which are described on page 12.

Toolbox objects

Note: Sharedness is inherited by attached objects.

Client handles

Each object can have associated with it a one-word value called its client handle.
The value of this handle is specified entirely by the client application and is not
interpreted by the Toolbox. This mechanism is intended to allow a state to be
associated with an object by the client application (e.g. in a multi-document editor
a Window object's client handle might be a pointer to the data which must be
displayed in the Window).

An object's Client Handle is set and read using SWIs Toolbox_SetClientHandle
(see page 26) and Toolbox_GetClientHandle (see page 26) respectively.

Parent and ancestor objects

When an object is shown (using SWI Toolbox_ShowObject), there are two other
objects which may be useful for the client application; these are the parent and
ancestor objects.

Parent objects

The parent of an object is defined as the object (and optionally a component of
that object) which caused the object to be shown. This is represented by the parent
object id and parent component id. For example if a Window object has been
displayed as the result of a Menu selection, then that Window object has a parent
with an object id given by the Menu's id, and a parent component id given by the
component id of the entry which was selected.

When SWI Toolbox_ShowObiject is called explicitly by the client, the parent object
and component ids must be specified. When this SWI is called on the client's
behalf (for example, when a Menu is shown automatically for a Window), then the
Toolbox fills this value in for the client.

Ancestor objects

It is always possible to trace the ‘parentage’ of an object by recursively requesting
the Parent of that object, thus moving ‘up’ the invocation hierarchy of objects
which have been displayed. Since this is a common operation, an object can be
designated as a potential so-called ‘Ancestor’. When an object is shown, it
normally inherits the ancestor of its parent object; however, if the parent is marked
as a potential ancestor, then the ancestor of the shown object is set to the id of the
parent object.

Take the case where a multi-document editor has a document Window which has a
Menu, which has a SaveAs dialogue box as a submenu. When an event occurs for
the dialogue box, the client is probably most interested in getting the id of the

10

Introduction to the Toolbox

document Window (to get at its data and save it). By designating the document
Window as an ancestor, the client can ensure that its id is available when events
occur on the SaveAs dialogue box.

= B | ArtWindow B
/

SaveAs dialogue
Painter Save as

mr\ {

i g[\"

Print... >) 7
Scale ™ Untitled

ol |

window designated as ancestor

The processes in the above example are as follows:

1 When the user presses Menu over the window, a Toolbox_ShowObject is raised
on the Menu with the window as parent. As the window has been designated
as ancestor, the Menu’s ancestor will be the window.

2 When the user moves the pointer over the Save submenu arrow, the Menu
module will show the SaveAs dialogue with itself (i.e. the Menu) as the parent
object, and the Save component as the parent component. The SaveAs
dialogue will inherit the Menu’s ancestor (in this case the window).

3 Any event now raised on the SaveAs dialogue box will have the id block filled
in with the Menu as the parent and the window as the ancestor.

The parent and ancestor of an object can be obtained by calling the SWis
Toolbox_GetParent and Toolbox_GetAncestor. Normally this will not be necessary,
since (as shown in The id block on page 14) these values are made available on every
return from Wimp_Poll.

Auto-create and Auto-show objects

In order to save on coding required, it is possible to get the Toolbox to create an
object from its template as soon as the resource file containing the template is
loaded by the application. This is achieved by setting the Auto-create bit in the
object template's flags word (see the chapter ResEd on page 423 to see how to do
this). When such an object is created, the Toolbox raises a
Toolbox_ObjectAutoCreated event, to allow the application to ascertain and store
the object id of the newly-created object; the name of the template used to create
the object is reported in this event.

11

Event handling

It is also possible to specify that as soon as an object is created, it should be
‘shown’ on the screen. This is achieved by setting the Auto-show bit in the object
template’s flags word (see the chapter ResEd on page 423 to see how to do this).
When such an object is created, it is shown using SWI Toolbox_ShowObiject in its
default place, and with no parent given.

It is also possible for an object to be auto-show but not auto-create.

If you specify an object as auto-create and that object is attached to another
object, you will get two instantiations of the object, unless it is marked as Shared.
It is therefore advisable to mark such objects as Shared, to avoid wastage.

Attached objects

Event handling

12

Certain objects allow other objects to be attached to them. When an object is
created, all of its attached objects are also created, and a
Toolbox_ObjectAutoCreated event is raised for each such attached object.

An example of an attached object is the object which will be shown when a user
clicks the Select mouse button on an Iconbar Icon object. This attached object is
created when the Iconbar Icon object is created.

Such side-effects of creating a given object are described in the Application Program
Interface section in the chapter on each object class.

When an object with attached objects is deleted using SWI Toolbox_ObjectDelete,
unless the non-recursive delete bit has been set, all attached objects are also
deleted.

Attached objects can also usefully be combined with Shared objects. For example,
if an application wishes the same Window to be displayed when the use clicks
Select and Adjust on an Iconbar object, this can be achieved by specifying the
same Window template name as the attached object to show for each of these
mouse clicks, and marking the Window object as shared, so that the same object id
is used for both cases.

It is important to note this side-effect of creating an object. For example, a Window
object which has a complex menu tree attached to it, with many submenus and
dialogue boxes, will have considerable side-effects when it is created.

Thus, in many cases, it is only necessary to create explicitly the ‘topmost’ object,
and to allow the Toolbox to create the entire tree of attached objects.

An important part of managing the user interface using the Toolbox is the concept
of a Toolbox event.

Introduction to the Toolbox

A Toolbox event is a Wimp event (not a message) which is delivered to the client
application with an event code of Wimp_ToolboxEvent (0x200). Each Toolbox event
has its own event code, which is a 32-bit integer defined in a similar manner to
Wimp message numbers.

Toolbox events are essentially an abstraction on Wimp events, and are generated
by the Toolbox modules in response to user interaction with Toolbox objects, and
also in response to client application operations. Toolbox events are also used to
warn the client application that a particular action has been taken by the Toolbox.

For example, if a client application creates and shows a Print Dialogue Box, when
the user clicks on the Print button, a Toolbox event will be delivered to the
application indicating that a Print operation has been requested, and giving the
number of pages to be printed, the scale factor to use during printing etc.

Note that underlying events will also be received by the client.

Toolbox event Codes

Event codes are allocated by RISC OS Open. Events which are delivered by a
Toolbox module will have codes which start at the SWI chunk base of the module.

The allocations are as follows; event codes are in the range 0 - 0xOffff:

Event codes Use

0x00001 - OxOffff Available for use by the client

0x10000 - Ox3ffff Reserved for inter-application protocols
0x40000 - 0xoffff Reserved for Toolbox module events

Format of a Toolbox event

When a Toolbox event is delivered to an application, the Wimp Poll block has the
following format:

Offset Contents
+0 size of Toolbox event block
(16 - 236 in a multiple of four bytes; i.e. words)
+ 4 unique reference number
+8 Toolbox event code
+12 flags
+ 16... Event-specific data

Unless otherwise stated flags will be zero.

13

Event handling

The id block

14

Whenever the client application calls SWI Wimp_Poll, the Toolbox fills in a 6-word
block of memory known as the id block, to indicate which object an event has
occurred on. However, as Wimp messages do not typically occur on an object the id
block will not be updated for a Wimp message.

This block is laid out as follows:

+0 self id
******************* Ancestor

+4 self component

+8 parent id
******************* Parent

+12 parent component

+16 ancestor id
******************* Self

+20 ancestor component

When a Toolbox event occurs, the object id of the object on which this event
occurred is placed in the ‘self id’ field of the id block, and the ‘self component’ field
is also filled in if the event has occurred for a particular component of that object.
For example, a mouse click on an action button gadget within a Window object will
result in an ActionButton_Selected Toolbox event being raised, with the Window
object’s id in the self id field of the id block, and the component id of the action
button in the self component field.

The ‘parent id" and ‘parent component’ fields are filled in by the Toolbox using the
values which were last passed to SWI Toolbox_ShowObject. The ‘ancestor id’ and
‘ancestor component’ fields are filled in accordingly (being the ancestor of the
parent).

The Toolbox uses a value of 0 as an object id to indicate ‘no object’, and a value of
-1 as a component id to indicate ‘no component’.

When a Wimp event happens on an object, then the setting of the contents of the
id block is object-specific, and is described in the object events section in the
chapter on each object class.

The address of the 6-word block of client memory used as the application's id Block
is passed to the Toolbox when the application registers itself using
SWI Toolbox_Initialise (see page 33).

Introduction to the Toolbox

Note that Toolbox events are delivered to the object to which they are most
appropriate, so for example a SaveAs object will receive
SaveAs_DialogueCompleted events, whereas mouse clicks on a SaveAs object's
underlying Window will be seen as being delivered to the Window object.

This behaviour can best be seen by taking some example Resource Files and
dragging them to !'ResTest, and monitoring the contents of the id Block as shown
in IResTest's log window, as events occur on the objects created from the Resource
File.

Raising a Toolbox event

Resource files

A Toolbox event is raised using SWI Toolbox_RaiseToolboxEvent. Normally a client
application will not need to use this SWI directly; the client simply quotes the
Toolbox event code (or number), and associates it with a particular user action in
its description of an object in the resource file. For example, one of the attributes
of a Menu object, is the Toolbox event which is raised when a particular Menu entry
is selected by the user. The Toolbox will raise this Toolbox event on the
application's behalf, whenever a Menu Selection event is returned for that menu
entry.

A resource file contains templates for the objects which a client application will
create at run-time.

Loading resource files

An application can load a resource file at run-time using SWI
Toolbox_LoadResources. This is done on the application's behalf for a file called
‘res’ when the application calls SWI Toolbox_Initialise as described in Task
initialisation and run-time information on page 16. SWI Toolbox_LoadResources could
then be called after task start-up to load any further Resource Files which it needs
to use.

Resource file format

Resource files replace Wimp template files as the means to define templates for
the user interface objects which an application will create at run-time. Whereas
Wimp template files only allowed window descriptions to be given, a resource file
will contain templates for any kind of Toolbox object.

Aresource file consists of a fixed size header, followed by a contiguous sequence of
object templates, where each template has a fixed size header, followed by an
object body.

15

Task initialisation and run-time information

A resource file format is similar to a Drawfile, and can be represented
diagrammatically as follows:

File Header 3 words

sequence of object templates

\ . eOF

Each template has a textual name which can have no more than 12 characters
(including the terminating NUL). This name is used by the application when using
a template in a call to SWI Toolbox_CreateObiject.

If a resource file is loaded which has named templates whose names clash with
earlier loaded templates, the latest loaded template will be used, and the earlier
template will no longer be accessible.

For a full description of the resource file format see the appendix Resource File
Formats on page 505.

Task initialisation and run-time information

Before it can use the Toolbox, a client application must first call SWI
Toolbox_Initialise to register itself as a Toolbox task. This has several side-effects:

16

If there is a file called res<n>, where n is the currently configured territory
number, in the application's resource directory then it is loaded using SWI
Toolbox_LoadResources: if such a file is not found, then the Toolbox tries a file
called res.

The application directory is searched for a Sprites file, looking for file names in
the following order:

® TVSprs<nn> (only for interlaced modes, indicated by mode flags bit 8).
® <Wimp$IconTheme>Sprites<nn>

® Sprites<nn>

In each case nn is the resolution suffix appropriate for the current screen
mode, as returned by Wimp_ReadSysInfo 2 (11, 22, 23 or 24). If no file with the
correct suffix is present a file with no suffix will be used. This file is then loaded
into a block of memory and will be used as the application's sprite area.

Introduction to the Toolbox

e The application resource directory is searched for a file called Message<n>,
where n is the currently configured territory number, which is then loaded and
registered with MessageTrans. If no such file is found, then a file called
Messages is searched for. The minimum requirement is that the Messages
file should contain a message whose tag is _TaskName, giving the name of
the application.

e SWI Wimp_lnitialise is then called on behalf of the application.

When a Toolbox task has been registered with the Toolbox, the client application
can obtain the following information by calling SWI Toolbox_GetSysInfo:

the task’'s name (as given by the _TaskName message in the Messages file).
the 4-word message file descriptor returned when the task was initialised.
the application's directory name.

the application’'s Wimp task handle.

a pointer to the sprite area used to load the application's Sprites file.

Important: Since the Toolbox uses Wimp messages, a client application should
not call SWI Wimp_AddMessages or SWI Wimp_RemoveMessages.

Message texts and nationalisation

When using the Toolbox, the writer of a client application should be aware of where
textual messages are held, which will need translating if the client is to be
‘nationalised’ for a particular RISC OS territory.

All of the modules contained in the Toolbox have a default set of messages and
object templates which they will use when displaying windows, reporting errors,
displaying menus etc. These are registered with ResourceFS, and are looked up
using MessageTrans. So in order to produce a nationalised Toolbox, these
messages and templates will need replacing.

In a resource file, textual messages are held in Messages Tables, and objects
created at run-time will contain pointers to these messages. These messages are
the ones which have been specified by the client of the Toolbox to be used when
creating objects, and will often consist of alternative text to use instead of the
defaults provided by the Toolbox modules themselves. These messages are not
tagged messages looked up using MessageTrans, but are actual strings.

The client application will also have a file called Messages in its application
directory. This file is automatically loaded by the Toolbox when the client calls SWI
Toolbox_Initialise. The Messages file will contain at least the name of the
application (in a message whose tag is _TaskName), and any other messages which
the application wishes to look up using MessageTrans at run-time. This will

17

An Example object

typically contain error messages, and ones which are not associated with objects.
After calling SWI Toolbox_Initialise, the client will have a MessageTrans file
descriptor to use when looking up these Messages.

This means that in order to nationalise an application, the writer will need to
provide new Messages and new resource file messages (using Export messages in
ResEd).

An Example object

18

Let us look at an example of a Toolbox object, to illustrate some of the features
detailed in earlier sections.

An Iconbar Icon object is used to place an application icon sprite (and optionally
some text) on the RISC OS icon bar. The template for such an object has the
following fields, which can be set using !ResEd (the Resource Editor):

Field Meaning

position a negative integer giving the position of the Icon on the
Iconbar (as specified in SWI Wimp_Createlcon)

priority the priority of this Icon on the Iconbar (as specified in
SWI Wimp_Createlcon)

sprite name the name of the sprite to use for this Iconbar Icon

max sprite name the maximum length of sprite name to be used

text an optional string which will be used for a Text&Sprite

Iconbar Icon (ie the text that will appear underneath the
Icon on the Iconbar)

max text length if the Iconbar Icon has text, then this field gives the
maximum length of a text string which will be used for it

menu the name of the template to use to create a Menu object
for this Iconbar Icon

select event the Toolbox event code to be raised when the user clicks
Select on the Iconbar Icon (if 0 then Iconbar_Clicked is
raised)

adjust event the Toolbox event code to be raised when the user clicks
Adjust on the Iconbar Icon (if 0 then Iconbar_Clicked is
raised)

select show the name of a template to use to show an object when

the user clicks Select on the Iconbar Icon

adjust show the name of a template to use to show an object when
the user clicks Adjust on the Iconbar Icon

Introduction to the Toolbox

Field Meaning

help message the message to respond to a help request with, instead
of the default

max help the maximum length of help message to be used

The client application will create an Iconbar Icon object by calling SWI
Toolbox_CreateObject, supplying a template which gives values for all of the above
fields.

As a side-effect of this creation, the Iconbar Icon's attached objects are also
created (if their templates have been provided) i.e. menu, select show and adjust
show. The object ids of these attached objects are then held within the Toolbox
internal data structure which represents the Iconbar Icon.

When the application calls SWI Toolbox_ShowObject on an Iconbar Icon, it will be
shown in a Style Guide compliant place on the Iconbar. When SWI
Toolbox_HideObiject is called, the Icon will be removed from the Iconbar.

When a HelpRequest message is received, the supplied help message will
automatically be returned to the sender of the message.

When the user clicks the Select or Adjust mouse buttons on the Iconbar Icon, then
if the names of suitable object Templates have been supplied, these objects will be
shown automatically by the Toolbox.

When the user clicks the Menu button on the Iconbar Icon, then if the name of a
suitable Menu object Template has been supplied, it will be shown in a RISC OS
Style Guide compliant place (i.e. 96 OS units above the bottom of the screen).

There are a number of methods which have been defined for an Iconbar Icon to
allow the client application to manipulate it at run-time; for example if it wishes to
change the sprite used on the Iconbar for this Icon, then the Iconbar_SetSprite
method will be used; if it wishes to provide a new Menu object which will be
displayed when the Menu button is clicked on the Iconbar Icon, then the
Iconbar_SetMenu method will be used.

19

Toolbox SWls

Toolbox SWIs

SWI Toolbox_CreateObject (0x44ec0)

On entry

RO = flags (bit 0 set means create from memory)
R1 = pointer to name of template
(R1 = pointer to description block if bit 0 of flags word set)

On exit

RO = id of created object
R1-R9 preserved

Use

This SWI creates an object either from a named template description which has
been loaded from the resources file or from a template description block in
memory. The exact format of the description block depends on the class of the
object.

If the client application wishes to use the description block form of this SWI, then
the block should begin with a standard object header, and the body of the object
should be as specified in the Templates section of the chapter for that object. Any
StringReferences, MsgReferences, and SpriteAreaReferences should hold ‘real’
pointers, and should not require relocation; also the ‘body offset’ field should
contain a real pointer to the object body.

C veneer

extern _kernel_oserror *toolbox_create_object (unsigned int flags,
const void *name_or_template,
ObjectId *id
)

20

Introduction to the Toolbox

SWI Toolbox_DeleteObject (Ox44ecl)

On entry
RO = flags (bit 0 set means do not delete recursively)
R1 = object id

On exit

R1 - R9 preserved

Use
This SWI deletes a given object.
By default, any objects ‘attached’ to this object are also deleted. If bit 0 of the flags
word is set, then this does not happen.
If it is a Shared object, this will result in its reference count being decremented,
and it will only be really deleted when this reaches 0.
The Toolbox raises a Toolbox_ObjectDeleted event when the object's reference
count reaches zero.

C veneer

extern _kernel_oserror *toolbox_delete_object (unsigned int flags,
ObjectId id
)

21

SWI Toolbox_ShowObiject (0Ox44ec3)

SWI Toolbox_ShowObject (0x44ec3)

On entry

RO = flags
bit 0 set means show using the semantics of Wimp_CreateMenu
bit 1 set means show using the semantics of Wimp_CreateSubMenu
bit 2 set means show as a nested window (requires use of show ‘type’ 1 to
specify the Wimp handle of the parent window)
R1 = object id
R2 = show ‘type”:
Type Meaning
0 show in the ‘default’ place. This has a different meaning
depending on the type of object shown

1 R3 points to a buffer giving full details of how to show
the object

2 R3 points to a 2-word buffer giving the screen coordinates
of the top left corner of the object to be displayed

3 show centred

4 show at pointer

R3=0

or pointer to buffer giving object-specific data for showing this object

or pointer to 2-word buffer giving coordinates of top left corner of object
R4 = Parent object id
R5 = Parent component id

On exit
R1-R9 preserved

Use
This SWI shows the given object on the screen.

R2 gives the type of ‘show’ operation which is being performed. Not all types of
show operation will be appropriate to all objects.

The buffer pointed at by R3 may hold data specific to this class of object, including
information as to where the object should appear on the screen. The exact format
of the buffer is specified separately for each object class. For example for a Window
object, the buffer will hold a block of data which can be passed to SWI
Wimp_OpenWindow.

22

Introduction to the Toolbox

Note: some objects support a bit in their flags word specifying that a warning
should be raised before the object is shown. In this case, the SWI
Toolbox_ShowObiject will return, but the object will not yet be visible on the
screen. The object will be visible (at the earliest) after the next call to Wimp_Poll
after the warning is delivered.

C veneer

extern _kernel_oserror *toolbox_show_object (unsigned int flags,
ObjectId id,
int show_type,
const void *type,
ObjectId parent,
ComponentId parent_component

SWI Toolbox_HideObject (Ox44ec4)

On entry

RO = flags

R1 = object id
On exit

R1-R9 preserved

Use

This SWI removes the given object from the screen, if it is currently being shown.

C veneer

extern _kernel_oserror *toolbox_hide_object (unsigned int flags,
ObjectId id
)

23

SWI Toolbox_GetObjectState (0x44ec5)

SWI Toolbox_GetObjectState (0x44ech)

On entry

RO = flags

R1 = object id
On exit

RO = object state

Use
This SWI returns information regarding the current state of an object. The state is
indicated by bits in the value returned in RO. Bits 0-7 refer to all objects and bits
8-31 are used to indicate object-specific state.
The generic state bits are:
Bit Meaning when set
0 object is currently showing
C veneer

extern _kernel_oserror *toolbox_get_object_state (unsigned int flags,
ObjectId id,
unsigned int *state

)i

24

Introduction to the Toolbox

SWI Toolbox_ObjectMiscOp (0x44ec6)

On entry
RO = flags
R1 = object id

R2 = method code
R3-R9 contain method-specific data.

On exit
R1-R9 preserved

Use

The exact operation of this SWI depends on the class of the object being
manipulated, and on the reason code supplied.

Each object class implements a number of methods which are specific to that
object (e.g. a Window class may implement a method for adding/removing
keyboard short-cuts for a Window object).

25

SWI Toolbox_SetClientHandle (0x44ec7)

SWI Toolbox_SetClientHandle (Ox44ec7)

On entry
RO = flags
R1 = object id

R2 = client handle

On exit
R1-R9 preserved

Use
This SWI sets the value of the client handle for this object.

C veneer

extern _kernel_oserror *toolbox_set_client_handle (unsigned int flags,
ObjectId id,
void *client_handle
)i

SWI Toolbox_GetClientHandle (0x44ec8)

On entry

RO = flags

R1 = object id
On exit

RO = client handle for this object

Use

This SWI returns the value of the client handle for this object.

C veneer

extern _kernel_oserror *toolbox _get_client_handle (unsigned int flags,
ObjectId id,
void **client_handle

)i

26

Introduction to the Toolbox

SWI Toolbox_GetObjectClass (0x44ec9)

On entry

RO = flags

R1 = object id
On exit

RO = object class

Use
This SWI returns the class of the specified object. This is a 32-bit integer, which
identifies a given class; allocation of class identifiers is handled by RISC OS Open.
C veneer

extern _kernel_oserror *toolbox_get_object_class (unsigned int flags,
ObjectId id,
ObjectClass *object_class
)i

27

SWI Toolbox_GetParent (0x44eca)

SWI Toolbox_GetParent (0x44eca)

On entry

RO = flags

R1 = object id
On exit

RO = Parent id

R1 = Parent component id

Use

This returns the value of the object id which was passed as the parent in a SWI
Toolbox_ShowObiject call (even if the parent has subsequently been deleted). The
component id is for cases where the parent has a subcomponent like a Menu with
a Menu entry. An object which has not yet been shown will have a parent object id
of 0 and a component id of -1.

C veneer

extern _kernel_oserror *toolbox_get_parent (unsigned int flags,
ObjectId id,
ObjectId *parent,
ComponentId *parent_component

28

Introduction to the Toolbox

SWI Toolbox_GetAncestor (Ox44ech)

On entry

RO = flags

R1 = object id
On exit

RO = Ancestor id
R1 = Ancestor component id

Use

This returns the id of the Ancestor of the given object (and its component id, in the
case of an ancestor which has subcomponents like a Menu with a Menu entry).
Note that the Ancestor may have been deleted, since this object was shown. An
object which has not yet been shown will have an ancestor object id of 0 and a
component id of -1.

C veneer

extern _kernel_oserror *toolbox_get_ancestor (unsigned int flags,
ObjectId id,
ObjectId *ancestor,
ComponentId *ancestor_component

29

SWI Toolbox_GetTemplateName (Ox44ecc)

SWI Toolbox_GetTemplateName (Ox44ecc)

On entry
RO = flags
R1 = object id

R2 = pointer to buffer to hold template name
R3 = length of buffer

On exit

R3 = length of buffer required (if R2 was zero)
else buffer pointed at by R2 holds template name
R3 holds number of bytes written to buffer

Use
This SWI returns the name of the template used to create the object whose id is
passed in R1.

C veneer

extern _kernel_oserror *toolbox_get_template_name (unsigned int flags,
ObjectId id,
char *buffer,
int buff_size,
int *nbytes

30

Introduction to the Toolbox

SWI Toolbox_RaiseToolboxEvent (Ox44ecd)

On entry
RO = flags
R1 = object id

R2 = component id
R3 = pointer to Toolbox event block

On exit
R1-R9 preserved

Use

This SWI raises the given Toolbox event. The block pointed at by R3 should have
the format described in Format of a Toolbox event on page 13. The Toolbox will put the
unique reference number into the block before exit from this SWI. The object id
and (optional) component id will be those filled in on return from Wimp_Poll; they
refer to the object on which the Toolbox event is being raised; the Toolbox does not
check the validity of these values.

C veneer

extern _kernel oserror *toolbox_raise_toolbox_event (unsigned int flags,
ObjectId id,
ComponentId component,
const ToolboxEvent *evnt

31

SWI Toolbox_GetSysInfo (0x44ece)

SWI Toolbox_GetSysinfo (Ox44ece)

On entry

RO = flags

RO ValueMeaning

w N = O

return task name

return 4-word messages file descriptor

return name of directory/path passed to Toolbox_Initialise
return task’s Wimp task handle

return pointer to sprite area used

R1, R2 depends on entry value of RO (see below)

On exit
RO

Use

On entryOn exit

0

R2 holds size of buffer required (if Rl was 0)
else buffer pointed at by R1 holds task name

buffer pointed at by R1 contains a 4-word messages file
descriptor

R2 holds size of buffer required (if R1 was 0)

else buffer pointed at by R1 holds directory name passed to
Toolbox_Initialise

RO contains task handle
RO contains sprite area pointer

This SWI is used to get information for the client application. The nature of the
information required is indicated by RO.

C veneer

extern _kernel_oserror *toolbox_get_sys_info (unsigned int reason_code,

32

_kernel_swi_regs *regs

)i

Introduction to the Toolbox

SWI Toolbox_Initialise (Ox44ecf)

On entry

RO = flags

R1 = last Wimp version number known to task * 100 (must be >310)

R2 = pointer to list of Wimp message numbers which the client wishes to receive,
terminated by a 0 word
If R2 points to just a 0 word, then all messages are delivered
If R2 = 0, then no messages are delivered (apart from the Quit message)

R3 = pointer to list of Toolbox event codes which the client wishes to receive,
terminated by a 0 word
If R3 points to just a 0 word, then all Toolbox events are delivered
If R3 = 0, then no Toolbox events are delivered

R4 = pointer to Directory name in which to find resources (may end with '
character to specify a path from Toolbox version 1.50 onwards)

R5 = pointer to 4-word buffer to receive messages file descriptor

R6 = pointer to buffer to hold object ids on return from Wimp_Poll (the id block)

On exit

Use

RO = current Wimp version number * 100

R1 = Wimp task handle for this client

R2 = Pointer to Sprite area used

Buffer pointed to by R5 is filled in with a MessageTrans file descriptor for the
messages file to be used

This SWI is used by the client application before any other Toolbox SWIs.

First the Toolbox looks in the directory/path given by the string pointed to by R4 for
a file called res<n>, where n is the currently configured territory number (“res7”
for Germany for example), and tries to load it; this is done by calling SWI
Toolbox_LoadResources. If a file for the current territory is not found, then the
Toolbox looks for res.

The application directory is searched for a Sprites file appropriate for the current
mode as described in Task initialisation and run-time information on page 16, and if such
a file exists, a sprite area is allocated, and the file loaded into this area. A pointer
to the area is returned in R2 (or 1 is returned if there was no such file found, and so
the Wimp Sprite pool is used for Sprite references in the client application).

33

SWI Toolbox_Initialise (0x44ecf)

34

The resources directory/path is checked for a file called Message<n>, where n is
the currently configured territory number, and if no such file is found for a file
called Messages. This file is registered with MessageTrans and the 4-word
MessageTrans file descriptor passed back in the buffer pointed to by R5 for use by
the client.

SWI Wimp_Initialise is called on the client’s behalf, using the Wimp version
number passed in R1, and the messages list pointed at by R2. The task name
passed to SWI Wimp_Initialise must be given in the client’s messages file; it should
be an entry with tag *_TaskName'.

The buffer pointed at by R6 will be used on each call to Wimp_Poll to inform the
client which object an event occurred on, and that object’s parent and ancestor
objects. On return from Wimp_Poll this block will be filled in as follows:

R6 + 0 ancestor object id

R6 + 4 ancestor component id
R6 + 8 parent object id

R6 + 12parent component id
R6 + 16'self object id

R6 + 20'self component id

C veneer

extern _kernel_oserror *toolbox initialise (unsigned int flags,
int wimp_version,
const int *wimp_messages,
const int *toolbox_events,
const char *directory,
MessagesFD *mfd,
IdBlock *idb,
int *current_wimp_version,
int *task,
void “*sprite_area

Introduction to the Toolbox

SWI Toolbox_LoadResources (0x44ed0)

On entry

RO = flags
R1 = pointer to resource filename

On exit
R1 - R9 preserved

Use

This SWI loads the given resource file, and creates any objects which have the
auto-create bit set. When such an object is created, the Toolbox raises a
Toolbox_ObjectAutoCreated Toolbox event.

The filename of the resource file should be a full pathname.

After this SWI has been called, any templates from the resource file can be used to
create objects, by quoting the template name.

C veneer

extern _kernel_oserror *toolbox_load_resources (unsigned int flags,
const char *resources

)

35

SWI Toolbox_TemplateLookUp (0x44efb)

SWI Toolbox_TemplateLookUp (Ox44efb)

On entry

RO = flags
R1 = pointer to template name (Ctrl terminated)

On exit
RO = pointer to description block

Use
This SWI returns a pointer to a block suitable to pass to Toolbox_CreateObject or
Window_ExtractGadgetinfo.

C veneer

extern _kernel_oserror *toolbox_template_lookup (unsigned int flags,
const char *name,
ObjectTemplateHeader **hdr
)

36

Toolbox events

Introduction to the Toolbox

Toolbox_Error (0x44ec0)

Block

+8 0x44ecO
+ 16 error number
+20... error text

Use

All Toolbox SWIs may return direct errors, with the V bit set. If any part of the
Toolbox detects an error, whilst it is not processing a SWI, it will raise a
Toolbox_Error event which the client can report when it next calls Wimp_Poll.

For example, if a client uses Toolbox_ShowObject on an object which has the bit
set to warn the client before the object is shown, the Toolbox will wait until the
next call to Wimp_Poll before actually showing the object; if there is an error when
it tries to do the show, then this will be reported through a Toolbox_Error event,
since the SWI Toolbox_ShowObiject will have already returned with no error
indicated.

C data type

typedef struct
{
ToolboxEventHeader hdr;
int errnum;
char errmess [256-20-sizeof (ToolboxEventHeader)
-sizeof (ObjectId)
-sizeof (ComponentId)
-sizeof (int)];
} ToolboxErrorEvent;

37

Toolbox events

Toolbox_ObjectAutoCreated (Ox44ecl)

Block

+8 0x44ecl
+ 16... Name of template from which object was created

Use

This Toolbox event is raised by the Toolbox after it creates objects from templates
which have their auto-create bit set, when the application’s resource file is loaded.
This allows the client application to get the ids of such objects for later use.

This event is also raised when an attached object is created as a side-effect of
creating the object to which it is attached.

The client can establish the object’s id by looking at the ‘self’ field of the id block
which it passed to Toolbox_Initialise (see later).

C data type

typedef struct
{
ToolboxEventHeader hdr;
char template_name
[256-20-sizeof (ToolboxEventHeader) -sizeof (ObjectId)-sizeof (ComponentId)];
} ToolboxObjectAutoCreatedEvent;

Toolbox_ObjectDeleted (0x44ec?2)

38

Block

+8 0x44ec2

+12 flags bit 0 set means class id and client handle fields are valid
+16 class id of deleted object (if flags bit 0 is set)

+20 client handle of deleted object (if flags bit 0 is set)

Use

This Toolbox event is raised by the Toolbox after it deletes an object. It is useful
when a ‘recursive’ delete is done, resulting in other objects being deleted.

The client can establish the object's id by looking at the ‘self field of the id block
which it passed to Toolbox_Initialise.

When this event is received it is not possible to call any further Toolbox methods
for the object.

Introduction to the Toolbox

C data type

typedef struct

{
ToolboxEventHeader hdr;
ObjectClass class_id;
void *client_handle;

} ToolboxObjectDeletedEvent;

39

Toolbox events
|

40

2 Building an application

his chapter describes how an application (!Hyper, which can be found in the

Sources.DDE-Examples.Toolbox directory) was designed with Acorn C/C++. In
particular it demonstrates how using 'ResEd and !ResTest can lead to very short
design times. The first section describes how to use 'Hyper, and the second section
is a description of how it was designed and implemented.

Guide To Hyper

'Hyper is a multi-document viewer for HCL files (see HyperCard Control Language on
page 65 for the syntax). HCL files define stacks of cards allowing multiple Draw
objects to be linked such that a user may click on active areas (called hot spots) of a
viewer to navigate between different cards. Only one card from a stack is visible at
any time in a viewer, although being multi-document, 'Hyper may display several
views onto the same stack, each of which may be displaying a different card.

'Hyper is started by double-clicking on its application icon or by double clicking on
an HCL file (but only after !Hyper has been seen by the Filer).

Application icon menu

Clicking Menu over the application icon will display the following menu:

Hyper

Info [
Show stack &
Delete stack
Quit

Info leads to a standard program information dialogue box.

Show stack allows any closed viewers to be reopened or brings to the top an
already opened one.

Delete stack will remove it from memory.

Note that if no stacks have been loaded then the show stack/delete stack will be
greyed out.

Quit will exit the application.

41

Guide To Hyper

42

Once a stack has been loaded, 'Hyper will open a viewer displaying the ‘Home
Card’ of that stack. For example:

5 = | Top Page

il

About Acorn C/C++

g B

develop
The Toolbox

T
CEEaE

SetPaths docs examples librares tools

Previous' Home ||Ioaded

= |

The user can move from one card to another by clicking on hotspots. Hot Spots will
usually be identifiable in some way, though !Hyper will change the pointer shape
whilst it is over one. It is also possible to jump to the Home Card or back to the
previous card by clicking on the action buttons in the status area at the bottom of
the window.

Pressing menu over a viewer window will display the following menu:

Hyper
File Info AR P
Scale View F11 &
Find Keyword F4
Print ... Print
v Status Line "S

This allows various operations to be performed on the stack being displayed:
File Info displays information about the file.

Scale View leads to a standard scale dialogue box which lets the user zoom in and
out on a card.

Find Keyword allows searching for keywords that are stored in the stack. This
allows an index type search to be applied.

Print... allows the current card to be printed.

Building an application

Status Line controls whether or not the status area is to be displayed at the
bottom of the viewer window.

Keyboard Short-cuts

Clicking in a viewer gives it the keyboard input focus. This then allows various
keyboard short-cuts to work. The standard keys for Find Keyword, Scale View,
File Info and Print... all work (as can be seen from the menu, pictured above) as
well as p and h for previous and home.

How !Hyper was designed

It is worth having 'Hyper at hand whilst reading this section. Loading its resource
file into 'ResEd and !ResTest will make it easier to see the various linkages
between objects and observe the events that are raised when interacting with the
user interface. The chapters later in this manual give full information on each of
the classes involved.

Requirements

Before designing the structure of |Hyper we had to decide what it must be able to
do. We wanted to design a HyperCard-type application with the following features:

multi-document capability

navigation between cards (based around Draw files) using hotspots
home/previous facility

keyboard driven option

suitable for range of screen modes/scalable output

easily extendible

easy to make a demo version

find capability

ability to print a card

maintain history of all loaded cards.

43

How !Hyper was designed

44

Design decisions

From the required features, we made the following design decisions.

Shared objects and client handles

The multi-document support suggested the use of shared objects and the use of
client handles for maintaining what file the viewer was showing. By doing this we
would reduce memory usage (by just having one copy of the shared menus and
dialogues) without complicating the association between events on a menu and
the viewer that it was opened from.

Event driven interface

Given that we wanted to extend and modify the interface easily, we decided to
make it event driven as opposed to object driven. In other words when registering
event handlers, we register for specific event numbers, rather than a generic event
(e.g. ActionButton_Selected) on a specific component of an object. In this way we
are able to modify the interface (e.g. reorder a menu or even move menu entries off
onto a submenu) without having to change the code.

AboutToBeShown events

We also decided to take advantage of a number of features offered by the toolbox
such as the ‘About To Be Shown’ events. These made it possible to set up dialogue
boxes as they were being shown, and not have to update them constantly as other
parts of the application altered data. A less obvious benefit of this mechanism is
that since the toolbox tells us the object id of what is being shown, we do not have
to remember this ourselves, and in fact it is possible to let the toolbox
automatically create such objects.

A good example of this is the Program Information box. This is created by the
toolbox as a side effect of creating the iconbar (which is created on initialisation
due to it having its AutoCreate bit set). We then just need to register for the
Proglinfo_AboutToBeShownEvent and in our handler set the version string from
our message file.

Standard objects

To be Style Guide compliant (and to make less work for ourselves) we can use the
standard PrintDbox, Scale, Proginfo and Filelnfo object templates supplied by the
Toolbox.

Keyboard short-cuts

As we want 'Hyper to be keyboard drivable, we can make use of the Toolbox's
keyboard short-cuts facility.

Building an application

How !Hyper was implemented

The rest of this chapter takes you through the stages involved in implementing
'Hyper. It breaks down into the following sections:

Creating and testing a simple resource file for 'Hyper (below).
File loading on page 50 — coping with Filer_Open messages on HCL files.

o Handling views on page 52 — extending our simple resource file, redraw handlers,
implementing hotspots, linking data structures, showing and hiding views,
adding keyboard short-cuts etc.

® Modifying the interface on page 61 — changing the interface by editing the resource
file.

Client Events on page 65 — a list of client events used in !Hyper.

Summary on page 65 — features of the toolbox demonstrated in this chapter.

Creating and testing a simple resource file for IHyper

The first stage in implementing !Hyper was to create and test a very simple
resource file consisting of an IconBar object template, a Menu object template for
the iconbar icon, and a Proglnfo object template.

45

How !Hyper was implemented

Creating a basic resource file

1 We began by starting the resource file editor (ResEd — described in the chapter
ResEd on page 423), and then opened a new resource file display. Next we
opened an object prototypes window and dragged an IconBar object template,
menu and Proglnfo object template to our empty resource file:

mE[] Object prototypes

1=|=

drag the three
object prototypes

to the empty
resource file display

[E S| Untitledd * Ijj

‘ —]] / -. E
- As Scale Toolbar Window
(7] A

lconbar Menu Proginfo

A 3

E]E

&i:eA®

rename this object template to IbarMenu

2 Next we double-clicked on the Proginfo object template in the resource file
display. This opened its properties box and we entered the information we
wanted to appear in this box. We also switched on Deliver event Before

showing:
[Proginfo: Proginfo
Title
_) Default (@ Other Length| * | /A
Purpose‘ Toolbox demonstration |
Author‘ © Acorn Computers Ltd, 1994 |

Version ‘ |

_|Inc\ude "Licence" Licence typel Public domain

Deliver event
|7 Before showing _|When hidden

_l Use alternative window

Cancel || ok |

3 Then we edited the Menu object template in the resource file display and
renamed it to IbarMenu. Next we double-clicked on IbarMenu and created
two menu entries. The first entry we named Info, and the second entry Quit.

46

Building an application

The Info entry we edited to include a submenu option to display the Proginfo
object template:

l open TIbarMenu and create = | Menu entry properties: component &1 in menu IbarMenu
an Info menu entry Gomponent ID FA
Contents
® tox e[wonon[] /2
[3] Menut IbarMenu I?) Sprite
Hyper] _|T|cked |7 Has submenu _|Faded
IOnLcw’l " |7 ext ‘ | Length A
= S I: Click action
= Deliver event (@ Default) Cther
_IShow object Show as transient
. Submenu action
2 ohpen the propertlez bOX f?]r Deliver event ._) Default (@ None .J) Cther
Airheh i e
f Cancel OK
mE[] SCSI::DHarris.$.Hyper. Hyper1 [
_— S ! 3 drag the Proginfo object to the
@ ¢ —O Show object option
IbarMenu IconBar Proginfo %

The Quit entry was edited to return a particular event:

= | Menu entry properties: component &0 in menu IbarMenu
Component ID PN
Contents
® o o] tenan[] /1
) Sprite
_|Ticked _| Has submenu _| Faded
|7 Help text | | Length TR
Click action
Deliver event) Default @ Other | &82a91
_| Show object Show as transient
Submenu action
Deliver event Default None Cther
Show object
Cancel | I ok |

As we could choose our own events, the choice of 82a91 may seem strange.
However, this is the same event that is generated by the Quit dialogue class,
hence if we added editor features and required a quit confirmation, we could
still use the same handles.

47

How !Hyper was implemented

48

4 Finally we edited the Iconbar object template. We set up the sprite name,
inserted some Help text, and dragged IbarMenu to the Menu button option:

| Iconbar icon: lconBar
Position ﬂ Priority 0
[sprite | IHyper | LengthEI /A
_|Text Lengthlil PN
Select button
Deliver event) Default (@ None._) Other
_| Show object Transient

Deliver event before showing

Adjust button
Deliver event) Default (@ None._) Other

_|Show object Transient

Deliver event before showing

|7 Menu button Show menu

|7 Help|text This is the !Hyper appliaction icon | Length A

Cancel || ok |

drag IbarMenu to the Show object option

Using ResTest to check the resource file

To test out this initial design we dragged the resource file from !ResEd to
IResTest’s iconbar icon (ResTest is described on page 497). As we had set the
AutoCreate and AutoShow options for the iconbar object template, it appeared
immediately on the iconbar. Pressing Menu over the icon opened our menu
(IbarMenu) with the Quit and Info options. Sliding the mouse pointer over the
submenu arrow opened the Proglnfo box:

Hyper
Namel ResTest
Purposel Toolbox demonstration

Authorl © Acorn Computers Ltd, 1994

Version I

1§

Quit

A AL K)

Building an application

Clicking on !ResTest’s iconbar icon opened its Event Log window. We could now
see what events were being raised when we tested the interface:

= B | ResTest eventlog [=

C¥CMLUoac T MINTOUW_II T IOOCIT T T IOy

IdBlock is: (so =BxB1B8CEGA sc =BxFFFFFFFF po BxﬁlBBCDBB pc =BxFFFFFFFF i
EventCode: {client event 8x08888151) (flags = Bx@BGAARAA)
IdBlock is: (5o =BxB1B8CEGA sc =BxFFFFFFFF po =0x@188CDB@ pc =BxFFFFFFFF ||
EventCode: Henu_AboutToBeShown (flags = BxBABABAGA)

IdBlock is: (5o =BxB1B8DE7A sc =BxFFFFFFFF po =0x@188CEA@ pc =AxABAGAGAL
EventCode: ProgInfo_fboutToBeShown (flags = Bx@BOAABAA) g
IdBlock is: (5o =BxB188DE1R sc =BxFFFFFFFF po =0x@BABAGAA pc =AxABAGAGAA
EventCode: Window | HlnduuHasBeenHldden (flags CECEEEEEELD

ol |

Coding

We could now start writing some code. Being event driven, we decided to use
eventlib. Our initial code merely consisted of initialising the Toolbox and eventlib
and then registering our handlers. At this point we just needed some quit handlers
(for the event generated by the Quit menu option and for the Wimp messages) and
a handler to fill in the version string on the Proginfo box.

Note the use of wimplib to provide easy access to the Wimp SWiIs.
(from main.c)

static void app_init (void)

{
/* initialise as a toolbox task */
_kernel_oserror *e;
if ((e=toolbox_initialise (0,310, messages, tbcodes,
“<hyper$dir>",&mbl, &idblk,0,0,0)) != NULL) {
wimp_report_error(e,0,0,0,0,0);
exit(1l);
}
/* initialise event lib */
event_initialise (&idblk) ;
/* not interested in nulls or keypresses- the toolbox
handles all our keyboard shortcuts */
event_set_mask (1+256) ;
/* register events */
event_register_message_handler (Wimp_MQuit,quit_handler, 0) ;
event_register_toolbox_handler (-1,Quit_Quit,
tbquit_handler,NULL) ;
}

49

How !Hyper was implemented

(from handler.c)

int tbquit_handler (int event_code, ToolboxEvent *event,
IdBlock *id_block, wvoid *handle)

IGNORE (event) ;
IGNORE (event_code) ;
IGNORE (handle) ;
IGNORE (id_block) ;

quit =1;
return 1;
}
int quit_handler (WimpMessage *message, void *handle)

{
IGNORE (message) ;
IGNORE (handle) ;

quit =1;
return 1;

}

int proginfo_show(int event_code, ToolboxEvent *event,
IdBlock *id_block, void *handle)

IGNORE (handle) ;
IGNORE (event) ;
IGNORE (event_code) ;

proginfo_set_version(0,id_block->self_id,
lookup_token(“Version”)) ;

return 1;

File loading

Next we turned our attention to file loading. This involved coping with Filer_Open
messages on HCL files and files that are dragged to the iconbar icon. To do this we
registered some more Wimp message handlers.

(from main.c)

event_register_message_handler (Wimp_MDataOpen, file_loader,0) ;
event_register_message_handler (Wimp_MDataLoad, file_loader,0) ;

(from file.c)

50

Building an application

int file_loader (WimpMessage *message, void *handle)
{
/* only interested in HCL files */
WimpMessage msg;
IGNORE (handle) ;

if (message->data.data_open.file_type != Oxfac) return 0;
msg = *message;

msg.hdr.your_ref = msg.hdr.my_ ref;
load_hcl_file(msg.data.data_load_ack.leaf_ name) ;

if (message->hdr.action_code == Wimp_MDataLoad)
msg.hdr.action_code = Wimp_MDataLoadAck;

wimp_send_message (Wimp_EUserMessage, &msg, msg.hdr.sender,0,0) ;

return 1;

51

How !Hyper was implemented

52

Handling views

Now it was time to open a viewer onto a file. This involved going back to our

resource file and adding some more object templates:

e awindow object template to view the files in, which we called HyperViewer
® a menu to be shown on the viewer, which we called ViewerMenu

e attached to this menu a Filelnfo box, a Scale box and a PrintDbox object

template.

The dialogue box for FileInfo we filled in as follows (note that we switched on

Deliver event Before showing):

Deliver event
|7 Before showing

_| Use alternative window

=] | FileInfo: Filelnfo
Title
(@ Default ._) Other Length *
[Filename | HyperStack
Filetype | &FAC (&fac) °H|

| When hidden

Cancel || oK
The dialogue box for Print we filled in as follows:
=] | Print dialogue: PrintDbox
Optional features

|7 Copies

|7 Scale factor Yo

_|Page range All From 1 o 1

|7 Orientation (® Upright) Sideways

[Draft button) 0On @ off

_| Setup button

_| Save button

Deliver event
_| Before showing

_| Use alternative window

Show window

Deliver event before showing

| When hidden

Cancel || oK

Building an application

We changed the default values in the dialogue box for Scale as follows:

=] | Scale: Scale

Title

(@ Default) Gther Length *
Values

Minimum Maximum Step size

Preset values

| 50 |% [75 |% [100 |% [150 |%
_| Include "Scale to fit" button

Deliver event

_|Bef0re showing _|When hidden
_| Use alternative window

Cancel || ok |

We then edited ViewerMenu, dragging the above three object templates to the
Show object options in the appropriate Menu entry properties boxes.

For example, the Scale View Menu entry properties box:

=] | Menu entry properties: component &0 in menu ViewerMenu
Component ID AR
Contents
@ Text | Scale View| | key[F11] Length[- | /&
) Sprite
_|Ticked |7 Has submenu _|Faded
|7 Help text | | Length EI AR
Click action
Deliver event (@ Default) Cther
_|Sh0w object Show as transient
Submenu action
Deliver event _) Default (@ None ._) Other
7 Stow ot
Cancel || ok |

Having filled in all three menu entries, we then edited the HyperViewer window
object template. We dragged ViewerMenu to the Show menu field, and filled in
the other window properties boxes as appropriate.

53

How !Hyper was implemented

54

Note that, to receive redraw events, we switched off the Auto-redraw flag in the
Other properties dialogue in the HyperViewer window. This will affect the
appearance in !ResTest and so, for the purposes of this demonstration, is left on.

Our resource file display now looked like this:

= B | SCSI::DHarris.$.Hyper.Hyper2]
[I] L
I d
Filelnfo HyperViewer IbarMenu lconBar
[] []
-
PrintDbox Proginfo Scale ViewerMenu =l

After connecting them we dragged the resource file to !ResTest. Our icon appeared
on the iconbar as before, but now when we pressed Menu over !ResTest’s icon and
looked at the Create submenu, we saw all the new object templates that we added.

Create
Scale
ViewerMenu
IbarMenu
lconBar
Proginfo
PrintDbox
FileInfo

HyperViewer

We then clicked on HyperViewer to create a viewer. This also unfaded the Show
option and allowed us to go into the Show submenu and see all the object ids that
had been created:

Show
&187CEF0: "HyperViewer"
&1B7FACUQ: "FileInfo"
&1886140: "Scale”
&19070C0: "PrintDbox"
&187D9D0: "ViewerMenu"

The Show submenu has three columns:
o the first indicates (via a tick) whether the object is showing
o the second is the unique identifier for a particular object — called the object id

e the third is the name of the template from which it was created.

Building an application

When we clicked on the HyperViewer entry in the Show submenu the viewer was
displayed on the screen. As a side effect of the creation the menu tree for the

viewer was created as well. Pressing Menu over the viewer displayed the menu as
one would expect:

= B | HyperView E]
/
Hyper
File Info "F1 >
Scale View F11
Print ... Print

Bl |

Moving the pointer over the submenu arrows displayed the File Info and Scale
View dialogue boxes:

File Info [=| Scale View

Modified? [NO | 75% |
Type | HyCal (fac) O El oo%| 5o%|

| HyperStack

Sizel 1024 Cancel | | Scale |
Date I 10:49:53 17-May-1994

Clicking on Print ... displayed the Print dialogue persistently:

[=| LW Il NTX
Copies Gl
Scale f A%

® Upright _) Sideways

| Draft

Cancel || Print |

55

How !Hyper was implemented

56

The code to support these new features can be found in the C files under the
'Hyper directory of the examples. As with the code fragments above, they take the
form of registering a handler for a specific event in app_init (e.g.
FileInfo_AboutToBeShown) and then handling the event elsewhere. Note that the
print code is an essentially standard print job/render loop, differing only in that it
uses the DrawFile module to do the rendering. See print.c for more information on
this.

For the viewer (see view.c) we create a window object from a template (called
HyperView, as seen in the !ResTest menu) and attach various handlers to cope with
RedrawRequests and CloseWindow requests. Note that there is no need to register
for OpenWindow requests as this is done on our behalf by the toolbox (as we set
the AutoOpen bit of the window’s template). We also register for mouse click
events on the window. The relevant handler (click_viewer) sets input focus to the
window and if applicable jumps to a new card.

Redraw handler

The redraw handler (in draw.c) is a standard Wimp redraw handler that uses the
DrawFile module to render into the window. Note that the DrawFile module is a
generic renderer (i.e. not Wimp specific) and so needs absolute coordinates and a
transformation matrix. We use the latter in the simplest sense — just as a way of
scaling the Draw files.

Scaling

The scaling is set whenever the user clicks scale on the Scale box. If you have the
IResTest Event log window open with the Resource file loaded, you will see that a
‘Scale_ApplyFactor’ event is generated. We use this in a handler (in draw.c) to
adjust the transformation matrix.

[E | ResTest event |
Tock 1s: (so =9xBIBEZ0BP sc =8xB92CABAZ po =8xWﬂWBﬁ pc -0x00090800AA ao -0xA0ABA0ED ac =
EventCode: ActionButton_Selected (flags = BxB0A88E24)
TdBlock is: (so =AxA1BE26BB sc =AxA82CARG6 po =0xABAOE6EA pc =AxABABBEEA ao =AxBEABBARA ac =Bx0H
EventCode: ActionButton_Selected (flags = @xB@A@AABC) }
IdBlock is: (so =@x@18E26B@ sc =BxFFFFFFFF po =8x88080808 pc =0x06A08088 ao -BxBEABABEA ac =
EventCode: HWindow_HWindowHasBeenHidden (flags = @x@8088088)
IdBlock is: (so =@xB1886140 sc =BxB82CH886 po =0x@187D90@ pc =0xB00BEBBA ao =BxB187CEFA ac =BxFRY
EventCode: Scale_ApplyFactor (flags = @x@B088888)
factor = 73 ¥

= |

ancestor object id

The object id for the ancestor of the Scale_ApplyFactor event in this example is
&187CEFO0. This equates to the object id of HyperViewer (as shown in the Show
submenu on page 54). This is because the viewer is the ancestor of this menu. The
usefulness of this becomes apparent when more than one viewer object is shown.

Building an application

Implementing hotspots

To implement the hotspots on a view, we add gadgets (components of a Window
Object) to our viewer window. We use the simplest gadget type, a button gadget,
which is quite close in functionality to a Wimp icon (see button. c). Rather than
hard code the definition of the gadget into the code, Window_ExtractGadgetInfo is
used to get the basic gadget definition from a window template called ‘Properties’.

Linking the data structures

Not surprisingly, we link all the data structures for the loaded files together on a
linked list. However, we do not need to search down this list every time an event
happens: by using client handles (see view.c) we can attach the address of the
relevant structure to an object. In this way, when we get a redraw event, we just find
out the client handle of the viewer on which it happened and can determine what
Draw files are to be rendered.

This also works for the menu tree; even though we are sharing the menu tree
amongst all the open views, the IdBlock that initialised the toolbox is filled in with
the ancestor of the tree. In Hyper, that will be a viewer (we set the Ancestor bit of
the HyperView template). So, for example, when we receive a Scale_ApplyFactor
event (as in Scaling on page 56), the ancestor is the viewer that leads to the scale
object being shown. This also applies to PrintDboxes, even though they are shown
persistently.

Showing and hiding views

As we want a history of all views, we build a ‘Views’ submenu which will be off the
icon bar menu. In common with other applications we want the ability to show a
view and remove one from memory. In both cases the list of views is the same. This
allows us to take advantage of shared objects again. We just need one menu that
we build up entry by entry and make this a submenu of the ‘Remove View’ and
‘Show View’ entries that are added to the iconbar menu. When an event happens
on this menu, we just need to find out the parent component (from the IdBlock) to
determine whether we are removing or showing a view. We can also use another
useful toolbox feature, in that it is the client that chooses the component ids. This
means we can choose the address of the structure that defines a view as its
component id — allowing very easy association between the menu entry and the
view it refers to. Note that by having an about to be shown event enabled for the
iconbar menu, it was possible to fade or unfade the ‘Show view’ and ‘Remove view’
entries as required (simply by checking whether our linked list was NULL).

57

How !Hyper was implemented

58

Adding keyboard short-cuts

With the interface beginning to stabilise, it was possible to start adding some of
the keyboard short-cuts. These were generally decided by the Style Guide (e.g. F11
for scale), though some aspects of the interface required keys specific to Hyper
(e.g. previous and home) to generate events. All this was handled through 'ResEd
(using the keyboard short-cuts option from the window object template menu)
without any additional code requirement.

I Keyboard shortcuts: HyperViewer

ey &I (PRIATY -¥ Show "PrintDbox™ (1) /
ey fave (R) -y Event 4183 E
ey 2068 (h) -3 Event &101

ey &191 (4F1) -} Show "FileInfo" (T)

ey &lch (F11) -} Show "Scale" (T)

ey 184 (F4) - Show "FindDbox" (T}

ey 853 (5) -) Event &981 =

_|De|i\.rer event
_|Sh0w object Transient

Update Delete |

Cancel || oK |

Adding a status bar

A status bar was also provided by creating a Toolbar containing a button gadget:

| IBur.ton ‘

This Toolbar object template was then dragged to the Toolbars dialogue box from
the HyperViewer window:

=] | Toolbars: HyperViewer

Internal

_|T0p left

|7 Bottom left
External

_|T0p left

_| Bottom left

Cancel || ok |

Building an application

By using an internal bottom left toolbar, the parent window could be resized whilst
still allowing the status to be visible. Previous and home action buttons were
added (generating the same event codes as the keyboard short-cuts, so no
additional code was required) as well.

‘ Prevmusl Home ||Bultcm ‘

To control the visibility of the status bar, a menu entry (and appropriate keyboard
short-cut) was added that would tick according to whether the status was showing.
The handler for this is in handler.c. Note that since the status is on a per-viewer
basis, we need to know when the viewer menu is opened (and over what viewer) to
determine whether the option should be ticked or not.

Adding a find capability

Finally, to provide a find capability, a custom dialogue was designed using !ResEd
starting from a basic Window and adding gadgets from the gadgets window:

label labelled box writable field EIX el
Label Labelled box
=] | Find Keyword Action |
Keyword | | IiDi aplay __|Option ~
E‘(:Earch From m) Radio ﬂ I
® Home Card Current Card [—
» < 2 I 4999 /%
' Cancel | Next | IWQS{at ol Draggable Button
./ AN / gadgets window
radio buttons action buttons

The properties dialogues for the two action buttons were:

= Action button | Action button
Component ID &1 of window I Find Dbox Component ID - of window FindDbox
Text| Cancel | Length PN Text‘ Nex{ | Lengthlzl PN
J Show object Show as transient _I Show object Show as transient
Deliver event Deliver event
@ Default) Cther) Default @ Cther &150
Button Button
_I Default _I Cancel _I Local |7 Default _I Cancel _I Local
JHeIp text Lengthm _IHe\p text englhlzl fA
__|Faded __|Faded
Cancel || ok | Cancel || ok |

leaving the Local options switched off results in the Toolbox
automatically closing the dialogue box when clicked on

59

How !Hyper was implemented

The Next action button was made the default and assigned a specific event code.

The Home Card radio button properties dialogue was filled in as follows (this
radio button was specified as the selected radio button):

=] | Radio button

Component ID - of window I FindDbox
in group I

Text | Home Card | LengthI:I /A
Deliver event
_) Default @ None) Other
|7 Selected
_|He|p text LengthI:I AR
__|Faded

Cancel || oK |

The Current Card radio button properties dialogue was edited to be similar to the
Home Card radio button, except that it was not specified as the selected radio

button.

The Keyword writable field properties dialogue was filled in as follows:

=] | Writable field

Component ID - ofwmdowl FindDbox
Te:(t|] | Lengthm /A

Justify
@ Left _) Centre _) Right

_| Specify allowed characters Length I:I AR

Allowed characters
az A-Z 0-9 Cther

_| Password behaviour

Link to gadgets
_| Before _|After
_| Deliver events when value changes
_|He|p text Length|:| AR
__|Faded

Cancel || oK |

After choosing suitable components and event codes, the handler code can be
written in a self contained unit.

60

Modifying the interface

Building an application

One of the original requirements was that it should be easy to modify the interface

to 'Hyper. By taking an event driven approach, it is possible to make significant

changes to the User Interface, without altering the code. Alternatively, when adding
new functionality, this can be done in a modular fashion by adding the required

handlers and registering them when required.

Adding an export DrawFile facility

As an example, consider adding an export DrawFile facility. This would allow saving
away the Draw files that make up the card on show in the viewer. The best way to
implement this would be:

® add a new submenu to the main menu, and call this new submenu File

e® create two menu entries in this submenu; the first entry will replace the
FileInfo menu entry currently on the main menu; the second entry would
provide an export facility (implemented using a simple SaveAs dialogue).

This can be achieved easily by some very simple editing of the resource file:

1 Drag a Menu object template from the Object prototype window to the

resource file, and rename the object template to FileMenu.

2 Edit ViewerMenu and add a new menu entry to it:

H[<] Menu: ViewerMenu [
/
Hyper
File Info AR
Scale View F11p
Find Keyword F4 1
Print ... Print
v Status Line ~S]
=
| =

%] Menu: ViewerMenu [0
/
Hyper
File Info AR
Scale View F11pm
Find Keyword F4 1
Print ... Print
v Status Line S]
=
o | 1

61

How !Hyper was implemented

Now edit the new menu entry and rename it to File. Then drag the new menu
object template FileMenu to the Show object option:

[=] Menu entry properties: component &5 in menu ViewerMenu
Component ID i AL
Contents
@ ten ey tengn] /2
) Sprite
_|Ticked |7 Has submenu _| Faded
_|He|p text Length l:l oA
Click action
Deliver event (@ Default) Cther
_I Show object Show as transient
Submenu action
Deliver event (@ Default ._) None ._) ther
Cancel || ok |

3 Next double-click on the FileMenu object template. Rename the title File,
and then Shift-drag the File Info menu entry from ViewerMenu to it. To make
the copied menu entry Style Guide compliant rename it to Info:

[<] Menu: FileMenu [ID
/
File
E[<]_Menu: ViewerMenu [Menu Entry
2 7
Hyper = ==
File > T[] Menu: FileMenu [T
Scale View F11pm /
Find Keyword F4 P shift-drag the | File]
Print ... Print File Info menu Info *F1p
v Status Line S LJ| entry to the new]
7| submenu and rename 7
| 15| the entry Info | |

Moving the File Info menu entry from ViewerMenu to the new File submenu is
a very simple way of relocating this menu option from one menu to another. As
we rely on the FileInfo_AboutToBeShown event, it doesn't matter where it is in
the interface; it will still work.

62

4

5

Building an application

Now drag a SaveAs object template from the Object prototype window to the
resource file. Edit this object template to specify that the filetype should be

DrawFile:
=] | SaveAs: SaveAs
Title
@ Default) Gther Length
File name| Untitled
Filetype| ~ DrawFile (&aff) |

_| Include "Selection” button
_| Client participates
Deliver event

_|Bef0re showing _|When hidden

_| Use alternative window

Cancel |

Supports RAM transfers

oK |

Finally return to the File menu and create an Export menu entry (by renaming
the default entry title Menu Entry to Export). Edit this entry and drag the

SaveAs object template to the Show object option:

i | Menu entry properties: component &0 in menu FileMenu

Component ID PN

Submenu action
Deliver event ._) Default (@ None ._) Cther

Cancel |

Contents

® Ten ey tengin[] /.1

_J) Sprite

_ITlcked |7 Has submenu _l Faded

_I Help text Length El £
Click action
Deliver event (@ Default _) Other

_| Show object Show as transient

ok |

63

How !Hyper was implemented

The final submenu should now appear as follows:

E[><] Menu: FileMenu D
-
File
Info "F1p
Export]
=
-l | 1= B

The code for the export facility would consist of registering for the various toolbox
events and then handling them in a separate area of the code.

If you now dragged the resource file to ResTest, you would see:

r File File Info

Bl Fi B Modified? | NO
Scale View F11 | Export
Find Keyword F4 Type | HyCalL (fac)

Print ... Print I HyperStack

v Status Line *S Size I 1024
Date I 10:49:53 17-May-1994
r File
i~ Info "F1 & Save As

Scale View F11 »| EREull| =

Find Keyword F4 ’g

Print.. Print Untitled|
v Status Line *S

Other possible modifications

By this time the viewer menu could begin to get cluttered. It would then be very
easy to drag off some of the entries to a separate 'Utilities’ submenu. Again, being
event driven and remembering that the handlers operate on the Ancestor of the
menu tree, they will continue to work without code alteration.

Making a demo version of Hyper could be achieved by removing or fading parts of
the interface with !ResEd.

64

Client Events

Building an application

A number of events were used in Hyper that were ‘Client specified’. These are listed
here to help understand properties and output in !|ResEd and !ResTest.

Event
number

&101
&103
&150
&151
&900
&901

Usage

Go to Home card

Go to previous card

Start find operation

Iconbar menu is about to be shown
Viewer menu is about to be shown
Toggle status bar

Other standard events were enabled for dialogues being shown, Print etc.

Summary

This chapter has demonstrated the following features of the toolbox:

Toolbox feature

see section/file

shared objects and client handles Shared objects and client handles on

page 44
About to be shown events AboutToBeShown events on page 44
adding and removing gadgets button.c
at run-time (see Implementing hotspots on page 57)
creating objects from a template view.c (see page 56)
auto creation AboutToBeShown events on page 44
the Draw file renderer draw.c (see page 56)
event handling with eventlib Coding on page 49

Menu handling

keyboard short-cuts

Creating a basic resource file on page 46
Adding keyboard short-cuts on page 58

client specified events and Showing and hiding views on page 57

component ids

HyperCard Control Language

HyperCard Control Language (HCL) is used by !Hyper to control which draw files
are displayed to the user and when jumps should be made to new cards. It is
beyond the scope of this example to describe an editor, so the following section is
provided to describe the commands that are used.

65

HCL commands
All card definitions are enclosed within start and end directives:
!'I'start name
! 1end
where name is cardXXXXXXXX, XXXXXXXX being an 8 digit hex number.
Other commands are as follows:

Command Action

button bbox name sets up a hotspot at the given position and
sets its behaviour to go to the named card
when clicked on

clear removes all buttons and Draw files from the
viewer window

colour n sets the background colour to the given
decimal value

gosub name allows ‘inclusion’ of common functionality

goto name allows common ending of cards

keyword string sets keyword(s) for this card — allows
searching with the find dialogue box

load file loads a file into the bottom layer — overlay will
do this if it follows a clear

overlay file loads a draw file into the next available layer

stack string sets the name of this stack to the given string.
This will appear in the iconbar menu

status string changes the status line to the given string

title string sets the title bar to the given string

There are also a number of commands that are only used by an editor. These are
not described here as they are not required by !Hyper.

66

3 Colour Dialogue box class

A Colour Dialogue box object allows the user to specify a colour using a variety
of colour models.

User interface

The colour selection window can be described as follows:

Fill colour
colour model —
radio buttons > | @ RGB.) CMYK) HSV

I U Red /A%
JGreen /N %
@ Blue /N %

= = =

— T|N0ne Cancel | m
I NS

colour patch None button action buttons

colour model
specific area

e Atthe top is a row of radio buttons — these select which colour model is being
used.

o In the middle is an area defined by the current colour model — details of this
are described overleaf.

® At the bottom of the window is the colour patch, an optional None button
which controls transparency, and the window’s action buttons.

67

Application Program Interface

Application Program Interface

Attributes

A Colour Dialogue object has the following attributes which are specified in its
object template and can be manipulated at run-time by the client application:

Attributes
flags

title

max title length

colour

Description
Bit Meaning
0 when set, this bit indicates that a

ColourDbox_AboutTobeShown event should be
raised when SWI Toolbox_ShowObiject is called
for this object.

when set, this bit indicates that a
ColourDbox_DialogueCompleted event should
be raised when the Colour Dialogue object has
been removed from the screen.

when set, include a None button in the dialogue
box

when set, select the None button when the
dialogue box is created

this gives an alternative string to use instead of the
string ‘Colour Choice’ in the title bar of the dialogue box
(0 means use default)

this gives the maximum length in bytes of title text
which will be used for this object

an RGB value for the initial colour value

Note that it is possible to set and read whether a Colour Dialogue has a None entry
at run-time using the following methods (described on page 77):

ColourDbox_SetNoneAvailable
ColourDbox_GetNoneAvailable

Manipulating a Colour Dialogue object

Creating and deleting a Colour Dialogue object

A Colour Dialogue object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

68

Colour Dialogue box class

A Colour Dialogue object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Colour
Dialogue objects.

Showing a Colour Dialogue object

When a Colour Dialogue object is displayed on the screen using SWI
Toolbox_ShowObiject it has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or near the mouse pointer, if it has not
already been shown

2 (topleft) R3 +0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate

For most applications it will not be necessary to make these calls explicitly, but
instead to mark the templates with their auto-create bit set, so that a Colour
Dialogue object is created on start-up.

Before the dialogue box is shown

When the client calls Toolbox_ShowObiject, a ColourDbox_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to
take any last minute action. Typically, a client will indicate which of the colours
should be shown as the currently selected one, when it receives this event.

Setting and reading the colour used in a Colour Dialogue box

It is possible for the colour which is currently selected in the dialogue box to be set
by the client application. This is independent of the colour model being used,
since the colour is specified as an RGB colour value. The client passes a ‘colour
block’ to the Colour Dialogue module which has a one-word RGB value as its first
word; the remainder of the block is intended to support any future colour models
other than RGB, CMYK and HSV. It has a size field followed by
colour-model-specific data. For clients not requiring this extensibility, the size field
should be set to 0. The method for setting the colour thus used in a Colour
Dialogue is ColourDbox_SetColour.

The current colour (and colour model data) can be read using the
ColourDbox_GetColour method (described on page 74).

69

Application Program Interface

70

Setting and reading the colour model used in a Colour Dialogue

The colour model used in a Colour Dialogue is normally chosen by the user by
clicking on the appropriate radio button. The client can however set this at
run-time using the ColourDbox_SetColourModel method, passing a colour
number (RGB=0, CMYK=1, HSV=2). If any other colour model is required, then
further colour-model-specific data must also be passed to this method (none are
currently supported).

The current colour model used can be read using the
ColourDbox_GetColourModel method.

Reacting to colour selections

When the user has found the correct colour he wants, he will click the OK button in
the Colour Dialogue box. The Colour Dialogue module delivers a
ColourDbox_ColourSelected Toolbox event to the client at this point giving the
RGB value of the colour chosen.

Completion of a Colour Dialogue

When the Colour Dialogue module has hidden its dialogue box at the end of a
dialogue, it delivers a ColourDbox_DialogueCompleted Toolbox event to the
client, with an indication of whether a colour selection occurred during the
dialogue.

Colour Dialogue box class

Colour Dialogue methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Colour Dialogue id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

ColourDbox_GetWimpHandle 0

On entry

RO = flags
R1 = Colour Dbox object id
R2=0

On exit

RO = Wimp window handle of underlying window

Use

This method returns the Wimp window handle of the window used by the
underlying Colour Picker module to implement the Colour dialogue. The value
returned is only valid when the Colour dialogue box is showing.

C veneer

extern _kernel_oserror *colourdbox_get_wimp_handle (unsigned int flags,
ObjectId colourdbox,
int *wimp_handle

)

71

Colour Dialogue methods

72

ColourDbox_GetDialogueHandle 1

On entry

RO = flags
R1 = Colour Dbox object id
R2=1

On exit

RO = ColourPicker dialogue handle of underlying dialogue box

Usage

This method returns the handle of the dialogue box used by the underlying Colour
Picker module to reference the Colour dialogue. The value returned is only valid
when the Colour dialogue box is showing.

C veneer

extern _kernel_oserror *colourdbox_get_dialogue_handle (unsigned int flags,
ObjectId colourdbox,
int *dialogue_handle

)i

Colour Dialogue box class

ColourDbox_SetColour 2

On entry

RO = flags
bit 0 set = select the None option
bit 1 set = deselect the None option
R1 = Colour Dbox object id
R2=2
R3 = pointer to colour block

On exit

R1-R9 preserved

Use

This method sets the colour currently displayed in the Colour Dialogue (adjusting
the colour slice shown, the sliders, and the writable fields appropriately).

The colour block is defined as follows:

+0 0

+1 blue value (0, ..., &FF)

+2 green value

+3 red value

+4 size of the remainder of this block (which may be 0)
+8 colour model number

+12... other model-dependent data

Currently there are no extra colour models supported, so the size field at byte
offset 4 should be set to 0.

If bit 0 of the flags word is set (select the None option) then R3 may be 0.

C veneer

extern _kernel_oserror *colourdbox_set_colour (unsigned int flags,
ObjectId colourdbox,
const int *colour_block

73

Colour Dialogue methods

74

ColourDbox_GetColour 3

On entry

RO = flags

R1 = Colour Dbox object id
R2=173

R3 = pointer to buffer for colour block
R4 = size of buffer

On exit
if bit 0 of RO is set = None is selected

R4 = size of buffer required (if R3 was 0)
(currently fixed because no extra colour models are supported)
else buffer pointed at by R3 contains colour information
R4 holds number of bytes written to buffer.

Use
This method returns the colour currently displayed in the Colour Dialogue.

The colour block is defined as follows:

+0 0

+1 blue value (0, ..., &FF)

+2 green value

+3 red value

+4 size of the remainder of this block (which may be 0)
+8 colour model number

+12... other model-dependent data

C veneer

extern _kernel_oserror *colourdbox_get_colour (unsigned int flags,
ObjectId colourdbox,
int *buffer,
int buff_size,
int *outflags,
int *nbytes

Colour Dialogue box class

ColourDbox_SetColourModel 4

On entry

RO = flags

R1 = Colour Dbox object id
R2=14

R3 = pointer to colour model block

On exit

R1-R9 preserved

Use

This method sets the colour model currently used in the Colour Dialogue. The
colour which is being displayed will now be shown using the new colour model,
and the layout of the dialogue box will change accordingly.

The colour model block is defined as follows:

+0 size of the remainder of this block (currently only 4)
+4 colour model number
+8... other model-dependent data

The current valid colour model numbers are:

0 RGB
1 CMYK
2 HSV

Currently there are no extra colour models supported, so the size field at byte
offset 0 should be set to 4 (i.e. just a colour model number).

C veneer

extern _kernel_oserror *colourdbox_set_colour_model (unsigned int flags,
ObjectId colourdbox,
const int *model_block

)

75

Colour Dialogue methods

76

ColourDbox_GetColourModel 5

On entry

RO = flags

R1 = Colour Dbox object id
R2=5

R3 = pointer to buffer for colour block
R4 = size of buffer

On exit

R4 = size of buffer required (if R3 was 0)
(currently fixed because no extra colour models are supported)
else buffer pointed at by R3 contains colour information
R4 holds number of bytes written to buffer

Use

This method returns the number of the colour model currently used in the Colour
Dialogue.

The colour model block is defined as follows:

+0 size of the remainder of this block

+4 colour model number (currently: 0 = RGB, 1 = CMYK and 2 = HSV)
+8... other model-dependent data

C veneer

extern _kernel_oserror *colourdbox_get_colour_model (unsigned int flags,
ObjectId colourdbox,
int *buffer,
int buff_size,
int *nbytes

Colour Dialogue box class

ColourDbox_SetNoneAvailable 6

On entry

RO = flags

R1 = Colour Dbox object id
R2=06

R3 = non-zero means None is available

On exit

R1-R9 preserved

Use

This method sets whether a None option appears in the Colour Dialogue.

C veneer

extern _kernel_oserror *colourdbox_set_none_available (unsigned int flags,
ObjectId colourdbox,
int none
)

ColourDbox_GetNoneAvailable 7

On entry

RO = flags

R1 = Colour Dbox object id
R2=17

On exit

if bit 0 of RO is set, then None is available

Use

This method returns whether the None option appears in a Colour Dialogue.

C veneer

extern _kernel_oserror *colourdbox_get_none_available (unsigned int flags,
ObjectId colourdbox,
int *out_flags

)

77

Colour Dialogue events

Colour Dialogue events

78

There are a number of Toolbox events which are generated by the Colour Dialogue

module:

ColourDbox_AboutToBeShown (0x829c0)

Block

+8
+12
+ 16

+20...

Use

0x829c0

flags (as passed in to Toolbox_ShowObject)

value which will be passed in R2 to ToolBox_ShowObject

block which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box.

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Colour Dialogue object. It gives the application the opportunity to set fields in the
dialogue box before it actually appears on the screen.

C data type

typedef struct

{

ToolboxEventHeader hdr;

int show_type;
union
{

TopLeft pos;

WindowShowObjectBlock full;
} info;
} ColourDboxAboutToBeShownEvent;

Colour Dialogue box class

ColourDbox_DialogueCompleted (0x829c1)

Block

+38 0x829cl
+ 12 flags
Use

This Toolbox event is raised after the Colour Dialogue object has been hidden,
either by a Cancel click, or after an OK click, or by the user pressing Escape. It
allows the client to tidy up its own state associated with this dialogue.

C data type

typedef struct
{
ToolboxEventHeader hdr;
} ColourDboxDialogueCompletedEvent;

ColourDbox_ColourSelected (0x829c?2)

Block

+8 0x829¢2
+12 flags bit 0 set means None was chosen
+16 colour block chosen

Use

This Toolbox event is raised when the user clicks OK in the dialogue box. The
colour block has the same format shown in the ColourDbox_SetColour method.

Note that event if the None button is set, a colour value is still returned, reflecting
the current state of the dialogue box.

C data type

typedef struct
{

ToolboxEventHeader hdr;

unsigned int colour_block[(212/4)];
} ColourDboxColourSelectedEvent;

79

Colour Dialogue templates

Colour Dialogue templates

80

The layout of a Colour Dialogue template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max_title 4 word
colour 4 word

User interface

Colour Menu class

AColour Menu object is used to show a menu giving the 16 desktop colours
(and an optional None entry), and to allow the user to select one of these
colours by clicking on its menu entry.

The Colour Menu allows the user to select from the set of available desktop colours
(and an optional None entry which appears at the bottom). The menu is displayed
showing the 16 desktop colours. Optionally any one of the colours can be shown as
selected (with a tick against it).

— [m»jo)m.hum—*o

= 5 S
=3
c
=

-
w

When a hit is received for the Colour Menu, a Toolbox event is returned to the
client. This contains the colour number of the selected colour. The selected colour
is shown as ticked in the Colour Menu, when the menu is next shown (or
immediately if Adjust is held down).

81

Application Program Interface

Application Program Interface

Attributes

A Colour Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attribute Description
flags word Bit Meaning
0 when set, this bit indicates that a
ColourMenu_AboutToBeShown event should be
raised when SWI Toolbox_ShowObiject is called for this
Colour Menu
1 when set, this bit indicates that a
ColourMenu_HasBeenHidden event should be raised
when the Menu has been removed from the screen
2 when set, include a None entry in the menu (will
appear with None as its last entry)

menu title this gives an alternative string to use instead of the string
‘Colour’ in the title bar of the menu

max title this gives the maximum length in bytes of title text which

length will be used for this Colour Menu.

colour this is an indication of which colour is selected when the

Colour Menu is first created. Possible values are:

0-15 for the desktop colours
16 for ‘None’
-1 to indicate that no colour should be selected

Manipulating a Colour Menu object

Creating and deleting a Colour Menu

A Colour Menu object is created using SWI Toolbox_CreateObiject.
When this object is created it has no attached objects (see page 12).
A Colour Menu object is deleted using SWI Toolbox_DeleteObiject.

The setting of the non-recursive delete bit does not have a meaning for Colour
menus.

82

Colour Menu class

Showing a Colour Menu

When a Colour menu is displayed on the screen using SWI Toolbox_ShowObiject it
has the following behaviour:

Show type Position

0 (default) 64 OS units to the left of the mouse pointer

1 (full spec) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

Before the menu is shown

When the client calls Toolbox_ShowObiject, a ColourMenu_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to
take any last minute action. Typically, a client will indicate which of the colours
should be shown as the currently selected one, when it receives this event.

Setting and getting the selected colour

For a Colour Menu, one of the colour entries can be designated the selected colour
(indicated by a tick against it in the menu). Colours within the menu are numbered
like the Wimp colours from 0-15 (with 16 meaning ‘None’, and -1 meaning ‘nothing
selected’).

The currently selected colour entry can be set and read dynamically using the
ColourMenu_SetColour/ColourMenu_GetColour methods.

Note that when the user clicks on a colour entry, that will become the selected
colour automatically without calling ColourMenu_SetColour. As will be seen later,
a user click results in a Toolbox event being delivered to the client, indicating
which colour was selected.

The client can dynamically set whether a None entry is given, by using the
ColourMenu_SetNoneAvailable method (and read whether it is available using the
ColourMenu_GetNoneAvailable method).

Processing a colour selection

Whenever the user clicks on a colour entry a ColourMenu_Selection Toolbox event
is raised to indicate which colour was chosen (one of 0-15, or 16 to indicate
‘None').

83

Colour Menu methods

Colour Menu methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Colour Menu id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data.

ColourMenu_SetColour 0

On entry

RO = flags

R1 = Colour Menu object id
R2=0

R3 = Wimp colour (0-15, or 16 for ‘None’, or -1 for ‘nothing selected’)

On exit

R1-R9 preserved

Use

This method selects a colour as being the currently selected one for this Colour
Menu, and places a tick next to it. Note that this change will only be visible when
the Colour Menu is next shown.

C veneer

extern _kernel_oserror *colourmenu_set_colour (unsigned int flags,
ObjectId colourmenu,
int wimp_colour

)

84

Colour Menu class

ColourMenu_GetColour 1

On entry

RO = flags

R1 = Colour Menu object id
R2=1

Exit

RO = Wimp colour selected (0-15, or 16 for ‘None’, or -1 for ‘nothing selected’)

Use

This method returns the Wimp colour which is currently selected for this Colour
Menu.

C veneer

extern _kernel_oserror *colourmenu_get_colour (unsigned int flags,
ObjectId colourmenu,
int *wimp_colour
)

ColourMenu_SetNoneAvailable 2

On entry

RO = flags

R1 = Colour Menu object id
R2=2

R3 = non-zero means allow a ‘None’ entry

On exit

R1-R9 preserved

Use

This method sets whether there is a ‘None’ entry for this Colour Menu.

C veneer

extern _kernel_oserror *colourmenu_set_none_available (unsigned int flags,
ObjectId colourmenu,
int none

);

85

Colour Menu methods

ColourMenu_GetNoneAvailable 3

On entry

RO = flags

R1 = Colour Menu object id
R2=173

On exit

RO = non-zero means there is a ‘None’ entry

Use

This method returns whether this Colour Menu has a ‘None’ entry.

C veneer

extern _kernel_oserror *colourmenu_get_none_available (unsigned int flags,
ObjectId colourmenu,
int *none
)i

ColourMenu_SetTitle 4

On entry

RO = flags

R1 = Colour Menu object id
R2=14

R3 = pointer to text string to use
Exit
R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Colour
Menu.

C veneer

extern _kernel_oserror *colourmenu_set_title (unsigned int flags,
ObjectId colourmenu,
const char *title

);

86

Colour Menu class

ColourMenu_GetTitle 5

On entry

RO = flags

R1 = Colour Menu object id
R2=5

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

Exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Colour Menu’s title bar.

C veneer

extern _kernel_oserror *colourmenu_get_title (unsigned int flags,
ObjectId colourmenu,
char *buffer,
int buff_size,
int *nbytes

87

Colour Menu events

Colour Menu events

There are a number of Toolbox Events which are generated by the Colour Menu
module:

ColourMenu_AboutToBeShown (0x82980)

Block

+8 0x82980

+12 flags (as passed in to Toolbox_ShowObject)

+ 16 value which will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowObiject for the
underlying Menu object

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Colour Menu object. It gives the application the opportunity to set the selected
colour before the menu actually appears on the screen.

C data type

typedef struct

{
ToolboxEventHeader hdr;
int show_type;
TopLeft pos;

} ColourMenuAboutToBeShownEvent;

ColourMenu_HasBeenHidden (0x82981)

Block
+8 0x82981

Use

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on
a Colour Menu which has the appropriate bit set in its template flags word. It
enables a client application to clear up after a menu has been closed. It is also
raised when clicking outside a menu or hitting Escape.

C data type

typedef struct
{
ToolboxEventHeader hdr;
} ColourMenuHasBeenHiddenEvent ;

88

Colour Menu class

ColourMenu_Selection (0x82982)

Block

+8 0x82982
+ 16 Wimp colour selected (0-15, or 16 for ‘None’)

Use

This Toolbox event is raised when the user has clicked on one of the Colour entries
in the Colour Menu. The colour value returned is in the range 0-15 for the desktop
colours, or 16 for ‘None'.

C data type

typedef struct
{
ToolboxEventHeader hdr;
int colour;
} ColourMenuSelectionEvent;

Colour Menu templates

The layout of a Colour Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max-title 4 word
colour 4 word

89

Colour Menu Wimp event handling

Colour Menu Wimp event handling

The Colour Menu class responds to certain Wimp events and takes the actions as
described below:

Wimp event Action

Menu Selection The colour number corresponding to the menu
selection is sent back to the client via a
ColourMenu_Selection event.
If Adjust is held down, then the currently open
menu is re-opened in the same place.

User Msg Message_HelpRequest
(while the pointer is over a Colour Menu object)
If a help message is attached to this Colour Menu,
then a reply is sent on the application’s behalf.

90

User interface

Discard/Cancel/Save Dialogue
box class

Discard/Cancel/Save (DCS) Dialogue box is used by the client application
when the user attempts to close a window containing modified and unsaved
data.

A DCS dialogue object is used to allow the user to save data which has been
modified, usually before a document window is closed.

The dialogue box which appears on the screen has a number of components:

title bar ——» Edit
message —— > This file has been modified
Discard | Cancel | | Save |
o A AN
/ T)
Discard button Cancel button Save button

e atitle bar (by default containing the name of the application, i.e. the message
whose tag is '_TaskName’)

® a message stating (by default) that there is unsaved data

e three Action Buttons: Discard, Cancel and Save (default action button).
The user sees the following behaviour (note that a click with the adjust button is
treated in the same way as a select click):

e ifthey click on Discard, the box is closed, the parent window is closed, and its
(new) contents discarded

e if they click outside the dialogue box (and it was opened transiently, i.e. with
Menu semantics), or click on Cancel, the box is closed, and the close on the
parent window is cancelled

91

Application Program Interface

o if they click on Save or press Return, the box is closed, and either the data is
saved without further interaction (if a suitable full pathname is available), or a
SaveAs dialogue appears allowing an icon to be dragged to where the data
should be saved. When the save is complete, the parent window is closed.

Application Program Interface
When a DCS object is created, it has a number of optional components:
e an alternative title bar string instead of the client’s name
® an alternative message to use in the dialogue box

o the name of an alternative template to use for the underlying Window object.

Just before the DCS dialogue box is shown on the screen, the client is delivered a
DCS_AboutToBeShown Toolbox event if enabled by the flags word.

Once the dialogue box is displayed on the screen, the DCS module handles events
for it, and raises a number of Toolbox Events to indicate what choice the user has
made. These are DCS_Discard, DCS_Cancel and DCS_Save respectively. If the
dialogue is closed, then the client receives a DCS_DialogueCompleted event if
enabled by the appropriate bit in the flags word (see below).

Attributes

A DCS obiject has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning
0 when set, this bit indicates that a

DCS_AboutTobeShown event should be raised
when SWI Toolbox_ShowObiject is called for this
object.

1 when set, this bit indicates that a
DCS_DialogueCompleted event should be raised
when the DCS object has been removed from the
screen.

DCS title an alternative string for the title bar other than the
client’s name (0 means use application name)

max title length this gives the maximum length in bytes of title text
which will be used for this object

message an alternative message to use in the DCS dialogue box
(other than ‘This file has been modified’)

92

Discard/Cancel/Save Dialogue box class

Attributes Description

max message this gives the maximum length in bytes of the message
length which will be used for this object

window an alternative window template to use instead of the

default one (o0 means use default)

Manipulating a DCS object

Creating and deleting a DCS object

A DCS object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).
A DCS object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for DCS
objects.

Showing a DCS object

When a DCS object is displayed on the screen using SWI Toolbox_ShowObiject it
has the following behaviour:

Show type Position
0 (default) close to the pointer
1 (full spec) R3 +0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

R3 +8 visible area maximum x coordinate

R3 + 12 visible area maximum y coordinate

R3 + 16 scroll x offset relative to work area

R3 + 20 scroll y offset relative to work area

R3 + 24 Wimp window handle of window to open

behind
-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s
backwindow
2 (topleft) R3 +0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

93

DCS methods

DCS methods

Changing the DCS dialogue’s message

When a DCS dialogue object is created it has a default message warning the user
that he has unsaved data which will be lost if he closes the window.

This can be set and read dynamically using the DCS_SetMessage and
DCS_GetMessage methods (described on page 95).

Getting the id of the underlying window for a DCS object

The window object id of the Window object used to implement the DCS Dialogue
can be obtained by using the DCS_GetWindowID method.

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word (which is zero unless otherwise stated)
R1 being a DCS Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

DCS_GetWindowID 0

94

On entry

RO = flags
R1 = DCS object id
R2=0

On exit

RO = Window object id for this DCS object

Use

This method returns the id of the underlying Window object used to implement
this DCS object.

C veneer

extern _kernel_oserror *dcs_get_window_id (unsigned int flags,
ObjectId dcs,
ObjectId *window
)

Discard/Cancel/Save Dialogue box class

DCS_SetMessage 1

On entry

RO = flags

R1 = DCS object id
R2=1

R3 = pointer to buffer holding new message (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the message used in the DCS dialogue’s window.

C veneer

extern _kernel_oserror *dcs_set_message (unsigned int flags,
ObjectId dcs,
const char *message
)

95

DCS methods

DCS_GetMessage 2

96

On entry

RO = flags

R1 = DCS object id
R2=2

R3 = pointer to buffer to hold message
R4 = size of buffer to hold message

On exit

R4 = size of buffer required to hold message (if R3 was 0)
else buffer pointed at by R3 holds message
R4 holds number of bytes written to buffer

Use

This method returns the current message used in a DCS object.

C veneer

extern _kernel_oserror *dcs_get_message (unsigned int flags,
ObjectId dcs,
char *buffer,
int buff_size,
int *nbytes

Discard/Cancel/Save Dialogue box class

DCS_SetTitle 3

On entry

RO = flags

R1 = DCS object id
R2=13

R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given DCS
dialogue.

C veneer

extern _kernel_oserror *dcs_set_title (unsigned int flags,
ObjectId dcs,
const char *title
)i

97

DCS methods

DCS_GetTitle 4

98

On entry

RO = flags

R1 = DCS object id
R2=14

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a DCS dialogue’s title bar.

C veneer

extern _kernel_oserror *dcs_get_title (unsigned int flags,
ObjectId dcs,
char *buffer,
int buff_size,
int *nbytes

Discard/Cancel/Save Dialogue box class

DCS events

The DCS module generates the following Toolbox events:

DCS_AboutToBeShown (0x82a80)

Block

+8 0x82a80

+12 value which will be passed in RO to Toolbox_ShowObject
(i.e. show flags, such as 'Show as menu’)

+ 16 value which will be passed in R2 to ToolBox_ShowObiject

+ 20... Dblock which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box.

Use

This Toolbox event is raised just before the DCS module is going to show its
underlying Window object.

C data type

typedef struct
{
ToolboxEventHeader hdr;
int show_type;
union
{
TopLeft pos;
WindowShowObjectBlock full;
} info;

} DCSAboutToBeShownEvent;

99

DCS events

DCS_Discard (0x82a81)

Block
+8 0x82a81

Use
This Toolbox event is raised when the user clicks on the Discard button.

C data type

typedef struct
{
ToolboxEventHeader hdr;

} DCSDiscardEvent;

DCS_Save (0x82a82)

Block
+8 0x82a82

Use

This Toolbox event is raised when the user clicks on the Save Button or presses
Return. It is then the client’s responsibility to either save the data directly to file, or
to display a SaveAs Dialogue object.

C data type

typedef struct
{
ToolboxEventHeader hdr;

} DCSSaveEvent;

100

Discard/Cancel/Save Dialogue box class

DCS_DialogueCompleted (0x82a83)

Block
+38 0x82a83

Use

This Toolbox event is raised after the DCS object has been hidden, either by a
Cancel click, a Save click or a Discard click, or by the user clicking outside the
dialogue box (if opened transiently) or pressing Escape. It allows the client to tidy
up its own state associated with this dialogue.

C data type

typedef struct
{
ToolboxEventHeader hdr;

} DCSDialogueCompletedEvent;

DCS_Cancel (0x82a84)

Block
+8 0x82a84

Use

This Toolbox event is raised when the user clicks on the Cancel button or presses
the Escape key.

C data type

typedef struct
{
ToolboxEventHeader hdr;

} DCSCancelEvent;

101

DCS templates

DCS templates

102

The layout of a DCS template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference
max_title 4 word

message 4 MsgReference
max_message 4 word

window 4 StringReference

Underlying window template

The window object used to implement a DCS dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82a800

Component id Details

0 button gadget

1 action button (Discard)
2 action button (Cancel)

must be marked as a ‘Cancel” action button

3 action button (Save)
must be marked as a ‘Default’ action button

DCS Wimp event handling

Wimp event
Mouse Click

Key Pressed

* if enabled

Discard/Cancel/Save Dialogue box class

Action

on Discard button raise DCS_Discard Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

on Cancel button raise DCS_Cancel Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

on Save button raise DCS_Save Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

on Return raise DCS_Save Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

on Escape then act as if Cancel had been clicked.

Note that if opened transiently, DCS_DialogueCompleted may be raised without
any of DCS_Cancel, DCS_Discard or DCS_Save being raised. This could arise from
the user clicking on the backdrop or opening a menu.

103

104

User interface

File Info Dialogue box class

File Info dialogue object is used to display information about a file (or a
directory or application) in a dialogue box.

A File Info dialogue has the following information held in its dialogue box:

About this file
.y, Modiied? [NO
button gadget - e
=17 Type Text (fff)
file size I SCSI::DHarris.$.Story
™| size | 1024

file date ——»

Datel 10:49:53 17-May-1994

/

modified

-« type of file

A

filename

e an indication of whether the file is modified (a textual display field with the

text 'YES' or ‘NO’)

® a sprite representing the file type (i.e. a sprite named file_xxx where xxx is the
hex representation of the file type). If the filetype is 0x1000 a directory sprite is
used, and if 0x2000 an application sprite is used.

e the type of the file (a textual display field with the textual filetype followed by
its hex value in brackets)

e the full pathname of the file or ‘<untitled>" (a display field)

the size of the file in bytes (a display field giving the size of the file)

the date the file was last written to (a textual display field showing the date in

“*time’ format).

105

Application Program Interface

Application Program Interface

Attributes

A File Info object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes
flags

File Info title
max title length
modified

filetype
filename

filesize
date
window

106

Description

Bit Meaning

0 when set, this bit indicates that a
FileInfo_AboutToBeShown event should be
raised when SWI Toolbox_ShowObiject is called
for this object.

1 when set, this bit indicates that a
FileInfo_DialogueCompleted event should be
raised when the File Info object has been
removed from the screen.

alternative title to use instead of ‘About this file’

(0 means use default title)

this gives the maximum length in bytes of title text

which will be used for this object

an indication as to whether the file is to be marked as

modified from creation

a word giving the RISC OS filetype

the initial filename to use in the dialogue box (if this

field is 0, then the string ‘<untitled>" is used

size of the file in bytes

a 5-byte UTC time

the name of an alternative window template to use

instead of the default one (0 means use default)

File Info Dialogue box class

Manipulating a File Info object

Creating and deleting a File Info object

A File Info object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).
A File Info object is deleted using SWI Toolbox_DeleteObiject.

The setting of the non-recursive delete bit does not have a meaning for File Info
objects.

Showing a File Info object

When a File Info object is displayed on the screen using SWI Toolbox_ShowObject
it has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 +0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate
R3 +8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open

behind
-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s
backwindow
2 (topleft) R3 +0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

Before the File Info dialogue box is shown

When SWI Toolbox_ShowObiject is called, a FileInfo_AboutToBeShown Toolbox
event is raised, if the appropriate bit is set in the File Info dialogue object’s flags
word. This enables the client to set any of the dialogue box’s fields before it is
displayed.

107

File Info methods

Setting and reading the fields of the File Info dialogue

All of the display fields in a File Info dialogue can be set and read dynamically at
run-time. The sprite displayed in the dialogue box depends on the value of the
filetype field.

The methods used to do this are:

FileInfo_SetModifiedFilelnfo_GetModified
FileInfo_SetFileTypeFileInfo_GetFileType
FileInfo_SetFileNameFilelnfo_GetFileName
FileInfo_SetFileSizeFilelnfo_GetFileSize
FileInfo_SetDateFilelnfo_GetDate

File Info methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a File Info Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Fileinfo_GetWindowlID 0

108

On entry

RO = flags
R1 = File Info object id
R2=0

On exit

RO = window object id for this File Info object

Use

This method returns the id of the underlying window object used to implement this
File Info object.

C veneer

extern _kernel_oserror *fileinfo_get_window_id (unsigned int flags,
ObjectId fileinfo,
ObjectId *window
)

File Info Dialogue box class

FileInfo_SetModified 1

On entry

RO = flags

R1 = File Info object id
R2=1

R3 = value

On exit

R1-R9 preserved

Use

This method sets whether the file is to be indicated as modified or not. If the value
passed in R3 is 0, this indicates that the file is not modified; any other value in R3
means the file is modified.

C veneer

extern _kernel_oserror *fileinfo_set_modified (unsigned int flags,
ObjectId fileinfo,
int modified
)

FileInfo_GetModified 2

On entry

RO = flags

R1 = File Info object id
R2=2

On exit

RO = modified state (0 = unmodified, non-0 = modified)

Use

This method returns whether the file is indicated as modified or not.

C veneer

extern _kernel_oserror *fileinfo_get_modified (unsigned int flags,
ObjectId fileinfo,
int *modified

);

109

File Info methods

FileInfo_SetFileType 3

On entry

RO = flags

R1 = File Info object id
R2=173

R3 = file type

On exit

R1-R9 preserved

Use

This method sets the file type to be indicated in the dialogue box.

C veneer

extern _kernel_oserror *fileinfo_set_file_type (unsigned int flags,
ObjectId fileinfo,
int file_type
)i

FileInfo_GetFileType 4

On entry

RO = flags

R1 = File Info object id
R2=14

On exit

RO = file type

Use

This method returns the file type shown in the dialogue box.

C veneer

extern _kernel_oserror *fileinfo_get_file_type (unsigned int flags,
ObjectId fileinfo,
int *file_type
)

110

File Info Dialogue box class

FileInfo_SetFileName 5

On entry

RO = flags

R1 = File Info object id
R2=5

R3 = pointer to buffer holding filename

On exit

R1-R9 preserved

Use

This method sets the filename used in the File Info dialogue’s Window. There is a
limit of 256 characters on the filename length.

C veneer

extern _kernel_oserror *fileinfo_set_file_name (unsigned int flags,
ObjectId fileinfo,
const char *file_name
)

111

File Info methods

FileInfo_GetFileName 6

112

On entry

RO = flags

R1 = File Info object id
R2=6

R3 = pointer to buffer to hold filename
R4 = size of buffer to hold filename

On exit

R4 = size of buffer required to hold filename (if R3 was 0)
else buffer pointed at by R3 holds filename
R4 holds number of bytes written to buffer

Use

This method returns the current filename used in a File Info object.

C veneer

extern _kernel_oserror *fileinfo_get_file_name (unsigned int flags,
ObjectId fileinfo,
char *buffer,
int buff_size,
int *nbytes

File Info Dialogue box class

FileInfo_SetFileSize 7

On entry

RO = flags

R1 = File Info object id
R2=17

R3 = file size

On exit

R1-R9 preserved

Use

This method sets the file size to be indicated in the dialogue box.

C veneer

extern _kernel_oserror *fileinfo_set_file_size (unsigned int flags,
ObjectId fileinfo,
int file_size

)i

FileInfo_GetFileSize 8

On entry

RO = flags

R1 = File Info object id
R2=28

On exit

RO = file size

Use

This method returns the file size shown in the dialogue box.

C veneer

extern _kernel_oserror *fileinfo_get_file_size (unsigned int flags,
ObjectId fileinfo,
int *file_size

)

113

File Info methods

FileInfo_SetDate 9

On entry

RO = flags

R1 = File Info object id
R2=9

R3 = pointer to 5-byte UTC time

On exit

R1-R9 preserved

Use

This method sets the date string used in the File Info dialogue’s window. The
Territory Manager is used to convert the UTC time into a time string.

C veneer

extern _kernel_oserror *fileinfo_set_date (unsigned int flags,
ObjectId fileinfo,
const int *UTC
)

Fileinfo_GetDate 10

On entry

RO = flags

R1 = File Info object id
R2=10

R3 = pointer to buffer to hold 5-byte UTC time

On exit

R1-R9 preserved

Use

This method returns the current UTC time used in a File Info object.

C veneer

extern _kernel_oserror *fileinfo_get_date (unsigned int flags,
ObjectId fileinfo,
const int *UTC
);

114

File Info Dialogue box class

FileInfo_SetTitle 11

On entry

RO = flags

R1 = File Info object id
R2=11

R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given File Info
dialogue.

C veneer

extern _kernel_oserror *fileinfo_set_title (unsigned int flags,
ObjectId fileinfo,
char *title
)

115

File Info methods

FileInfo_GetTitle 12

On entry

RO = flags

R1 = File Info object id
R2=12

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a File Info dialogue’s title bar.

C veneer

extern _kernel_oserror *fileinfo_get_title (unsigned int flags,
ObjectId fileinfo,
char *buffer,
int buff_size,
int *nbytes

116

File Info Dialogue box class

File Info events

The File Info module generates the following Toolbox events:

FileInfo_AboutToBeShown (0x82ac0)

Block

+8 0x82ac0

+12 flags (as passed in to Toolbox_ShowObject

+ 16 value which will be passed in R2 to ToolBox_ShowObiject

+20... block which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box

Use

This Toolbox event is raised just before the File Info module is going to show its
underlying Window object.

C data type

typedef struct

{
ToolboxEventHeader hdr;

int show_type;
union
{
TopLeft pos;
WindowShowObjectBlock full;
} info;

} FileInfoAboutToBeShownEvent;

117

File Info templates

FileInfo_DialogueCompleted (0x82ac1)

Block

+38 0x82acl
+12 flags
(none yet defined)

Use

This Toolbox event is raised after the File Info object has been hidden, either by the
user clicking outside the dialogue box or pressing Escape. It allows the client to
tidy up its own state associated with this dialogue.

C data type

typedef struct
{
ToolboxEventHeader hdr;
} FileInfoDialogueCompletedEvent;

File Info templates

The layout of a File Info template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference
modified 4 word

filetype 4 word

filename 4 MsgReference
filesize 4 word

date 8 2 words
window 4 StringReference

118

File Info Dialogue box class

Underlying window template

The window object used to implement a File Info dialogue has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82ac00.

Component id

0
1
2
3
4
5

O 0 N O

File Info Wimp event handling
Wimp event
Open Window
Key Click
User Message

Details

Display Field (date)

Display Field (size in bytes)
Display Field (filename)
Display Field (filetype)
Display Field (modified field)
Button gadget (indirected sprite used to display icon
for file type)

Label (date)

Label (size)

Label (modified)

Label (type)

Action

Request show the dialogue box
if Escape, then cancel this dialogue.

Window_HasBeenHidden
hide the dialogue box

119

120

User interface

Font Dialogue box class

Font Dialogue box shows font, weight and style of the currently selected font,
together with a chosen height and aspect ratio. The dialogue box also has a

writable field in which a test string in the chosen font is displayed.

The Font Dialogue box can be broken down into the following components:

string sets
labels | Type Style
.| Font Size
N - 8] 10| 12] 14] 19
Font I Trinity | action buttons
24| 28] 36| 48] 72|
Weight Medium *H
' D e 2] 1 o |
: number ranges
Style | (Plain) | - /\ vl g
Try | The quick brown fox jumps over the lazy dog. g writable field
/ Cancel | | Apply |
4

\\

Try button Cancel button Apply button

A boxed area for setting the font, which contains three labels giving the font’s
name, weight and style; with three accompanying string sets (each string set
contains a display field and a pop-up menu, which gives viable values for these
fields, based on the list of currently available fonts). The pop-up menus are
built and processed by the Toolbox, and do not require (or allow) any client
intervention. The Toolbox deals with ensuring that only valid font id’s are
available to be chosen.

Another boxed area, in which the user can set the height and aspect ratio used
to plot the selected font. There are a number of standard sizes which can be
chosen by clicking action buttons, and a number range into which a
non-standard size can be entered. The aspect ratio used is specified by the
contents of another number range.

121

Application Program Interface

® At the bottom of the dialogue box, there is a writable field which by default
contains the string, ‘The quick brown fox jumps over the lazy dog’. When the

user clicks on the Try button, this string is rendered in the selected font (and

height and aspect ratio). The try string is limited to 64 characters long.

e The user can cancel the dialogue by clicking on the Cancel action button, or
can apply the font selection by clicking on Apply.

Note that the strings which appear in the font, weight and style display fields may

be localised for the current territory, but the strings used to communicate font
selections between the client and the Toolbox are always the ‘real’ font id of the
font (e.g. Corpus.Bold.Oblique).

Application Program Interface

122

Attributes

A Font Dialogue object has the following attributes which are specified in its object

template and can be manipulated at run-time by the client application:

Attributes
flags word

title

max title length

initial font

initial height
initial aspect

Description
Bit Meaning
0 when set, this bit indicates that a

FontDbox_AboutToBeShown event should be
raised when SWI Toolbox_ShowObiject is called
for this object.

when set, this bit indicates that a
FontDbox_DialogueCompleted event should be
raised when the Font Dialogue object has been
removed from the screen.

when set, include a System font entry in the list
of fonts.

an alternative title for the dialogue box instead of ‘Type
style’ (0 means use default title)

the maximum length in bytes of title text which will be
used for this object

the font id to be displayed in the dialogue box as the
selected font, on creation. If 0, the default is to display
the first font in the list of currently available fonts.

the initial height value when the dialogue box is created

the initial aspect ratio value when the dialogue box is

created

Font Dialogue box class

Attributes Description

try string an alternative string to use in the Try writable field,
instead of ‘The quick brown fox jumps over the lazy dog’

window an alternative window template to use instead of the
default one.

Manipulating a Font Dialogue object

Creating and deleting a Font Dialogue object

A Font Dialogue object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).
A Font Dialogue object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Font
Dialogue objects.

Showing a Font Dialogue object

When a Font Dialogue object is displayed on the screen using SWI
Toolbox_ShowObiject it has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 +0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate
R3 +8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open

behind
-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s
backwindow
2 (topleft) R3 +0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

123

Application Program Interface

124

Before the Font Dialogue box is shown

When the client calls Toolbox_ShowObiject, a FontDbox_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to
take any last minute action. Typically, a client will indicate which of the fonts
should be shown as the currently selected one, when it receives this event.

Setting and getting the current selection

The currently selected font id can be set and read at run-time using the
FontDbox_SetFont and FontDbox_GetFont methods. These use a font id which
assumes a <name> <weight>.<style> structure (i.e. the first component appears in
the Font field, the second in the Weight field, and the third in the Style field).

The size (both height and aspect ratio components) are set and read using the
FontDbox_SetSize/FontDbox_GetSize methods respectively.

The Try string can be set and read using the FontDbox_SetTryString and
FontDbox_GetTryString methods.

Receiving a font selection

When the user clicks the Apply button (or presses the Return key when the Font
Dialogue box has the input focus), the client application is sent a
FontDbox_ApplyFont Toolbox event. This event gives the font id of the currently
selected font.

Completing a Font Dialogue

When the dialogue box is closed, either because Apply or Cancel has been clicked,
or Escape has been pressed, a FontDbox_DialogueCompleted Toolbox event is
raised for the client, with an indication of whether a font was selected during the
dialogue.

Font Dialogue box class

Font Dialogue methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Font Dialogue Box id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FontDbox_GetWindowlID 0

On entry

RO = flags

R1 = FontDbox object id
R2=0

On exit

RO = Window object id for this FontDbox object

Use

This method returns the id of the underlying Window object used to implement
this FontDbox object.

C veneer

extern _kernel_oserror *fontdbox_get_window_id(unsigned int flags,
ObjectId fontdbox,
ObjectId *window
);

125

Font Dialogue methods

126

FontDbox_SetFont 1

On entry

RO = flags

R1 = Font Dbox object id
R2=1

R3 = pointer to font id of font to select (0 means none)

On exit

R1-R9 preserved

Use

This method selects a font as being the currently selected one for this Font
Dialogue box, and displays its name appropriately in the Font/Weight/Style
display fields.

The special font id ‘SystemFont’ is used to indicate that the System entry should
be selected.

C veneer

extern _kernel_oserror *fontdbox_set_font (unsigned int flags,
ObjectId fontdbox,
const char *font_id
)

Font Dialogue box class

FontDbox_GetFont 2

On entry

RO = flags

R1 = Font Dbox object id
R2=2

R3 = pointer to buffer to hold font id
R4 = buffer size for font id

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds font id
R4 holds number of bytes written to buffer

Use

This method returns the font id for the font which was last specified in a
FontDbox_SetFont call, or was last chosen by a user choice from a pop-up menu.

The special font id ‘SystemFont’ is used to indicate that the System entry is
selected.

C veneer

extern _kernel_oserror *fontdbox_get_font (unsigned int flags,
ObjectId fontdbox,
char *buffer,
int buff_size,
int *nbytes

127

Font Dialogue methods

FontDbox_SetSize 3

On entry

RO = flags
bit 0 set means change the height value
bit 1 set means change the aspect ratio
R1 = Font Dbox object id
R2=73
R3 = height value
R4 = aspect ratio value

On exit

R1-R9 preserved

Use

This method sets the height value and/or the aspect ratio displayed in the Font
Dialogue box.

C veneer

extern _kernel_oserror *fontdbox_set_size (unsigned int flags,
ObjectId fontdbox,
int height,
int aspect_ratio

128

Font Dialogue box class

FontDbox_GetSize 4

On entry

RO = flags
R1 = Font Dbox object id
R2=14

On exit

RO = height value

R1 = aspect ratio

Use

This method returns the height value and/or aspect ratio currently displayed in the

Font Dialogue box.

C veneer

extern _kernel_oserror *fontdbox_get_size (unsigned int flags,
ObjectId fontdbox,
int *height,
int *aspect_ratio

FontDbox_SetTryString 5

On entry

RO = flags

R1 = Font Dbox object id
R2=5

R3 = pointer to ‘try’ string to use

On exit

R1-R9 preserved

Use

This method sets the string used in the Try writable field of a Font Dialogue box. If
the string is longer than 64 characters, an error is returned.

C veneer

extern _kernel_oserror *fontdbox_set_try_string (unsigned int flags,
ObjectId fontdbox,
const char *try_string
)

129

Font Dialogue methods

130

FontDbox_GetTryString 6

On entry

RO = flags

R1 = Font Dbox object id
R2=06

R3 = pointer to buffer to hold try string
R4 = buffer size for try string

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds try string
R4 holds number of bytes written to buffer

Use

This method returns the string currently displayed in the Try writable field of the
Font Dialogue box.

C veneer

extern _kernel_oserror *fontdbox_get_try_string (unsigned int flags,
ObjectId fontdbox,
char *buffer,
int buff_size,
int *nbytes

Font Dialogue box class

FontDbox_SetTitle 7

On entry

RO = flags

R1 = Font Dbox object id
R2=17

R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Font
dialogue box.

C veneer

extern _kernel_oserror *fontdbox_set_title (unsigned int flags,
ObjectId fontdbox,
const char *title
)

131

Font Dialogue methods

132

FontDbox_GetTitle 8

On entry

RO = flags

R1 = Font Dbox object id
R2=28

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Font dialogue’s title bar.

C veneer

extern _kernel_oserror *fontdbox_get_title (unsigned int flags,
ObjectId fontdbox,
char *buffer,
int buff_size,
int *nbytes

Font Dialogue events

Font Dialogue box class

There are a number of Toolbox events which are generated by the Font Dialogue
box module.

FontDbox_AboutToBeShown (0x82a00)

Block

+8
+12
+ 16

+20...

Use

0x82a00

flags (as passed in to Toolbox_ShowObject)

value which will be passed in R2 to ToolBox_ShowObiject

block which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box

This Toolbox Event is raised when SWI Toolbox_ShowObiject has been called for a
Font Dialogue Box object. It gives the application the opportunity to set the
selected font before the dialogue box actually appears on the screen.

C data type

typedef struct

{

ToolboxEventHeader hdr;

int show_type;
union
{

TopLeft pos;

WindowShowObjectBlock full;
} info;
} FontDboxAboutToBeShownEvent ;

133

Font Dialogue events

FontDbox_DialogueCompleted (0x82a01)

Block

+8 0x82a01
+12 flags
Use

This Toolbox Event is raised after the Font Dialogue object has been hidden, either
by a Cancel click, or by a click on Apply. It allows the client to tidy up its own state
associated with this dialogue.

Note that if the dialogue was cancelled, a font selection may still have been made,
for example if the user clicked Adjust on Apply, and then cancelled the dialogue.

C data type

typedef struct
{
ToolboxEventHeader hdr;
} FontDboxDialogueCompletedEvent;

FontDbox_ApplyFont (0x82a02)

Block

+8 0x82a02

+ 16 font height
+20 aspect ratio
+24... fontid

Use

This Toolbox Event informs the client that a Font Dialogue box selection has been
made.

The special font id SystemFont is used to indicate that the System entry is
selected.

C data type

typedef struct
{
ToolboxEventHeader hdr;

unsigned int height;
unsigned int aspect;
char font[208];

} FontDboxApplyFontEvent;

134

Font Dialogue box class

Font Dialogue Templates

The layout of a Font Dialogue box template is shown below. Fields which have
types MsgReference and StringReference are those which will require relocation
when they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference
max_title 4 word
initial_font 4 StringReference
initial_height 4 word
initial_aspect 4 word

try_string 4 MsgReference
window 4 StringReference

Underlying Window template

The Window object used to implement a Font Dialogue has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82a000

Component id Details

0 action button (Apply) must be marked as the
‘default’ action button
1 action button must be marked as the ‘cancel’
(Cancel) action button
2 action button (Try) must be marked as a ‘local’
action button
3 writable field buffer must be 64 bytes
(Try string)
4 number range
(Aspect ratio)

135

Font Dialogue Templates

136

Component id

19
20
21
22
23
24
25
26

Details
number range
(Height)

action buttons
(Standard sizes)

string set (Style)
string set (Weight)
string set (Font)

box (Font)
box (Style)
Height)
Aspect)
%)

Font)
Weight)
Style)

labe
labe
labe
labe
labe
labe
labe
labe

(
(
(%
(
(
(

these should all be local action
buttons containing the text 8,
1012, 14, 18, 24, 28, 36, 48 72
respectively.

non-writable, with pop-up
menu

non-writable, with pop-up
menu

non-writable, with pop-up
menu

Font Dialogue box class

Font Dialogue Wimp event handling

The Font Dialogue box class responds to certain Wimp events and takes the
actions as described below:

Wimp event
Mouse Click

Key Pressed

Action

on Apply, deliver a FontDbox_ApplyFont event

on Cancel, deliver a FontDbox_DialogueCompleted event
on one of the pop-up menu buttons, a menu is displayed

on one of the ‘standard sizes’, this size is entered into the
Height writable field

on one of the arrow keys, increment/decrement the value
of its associated writable field (either height or aspect
ratio)

if Return then act as if Apply button had been clicked
if Escape, then act as if Cancel button had been clicked

137

Font Dialogue Wimp event handling
. __|]

138

User interface

Font Menu class

A typical Font Menu might look as follows:

Edit

Msc " font menu

Save F3 &

Select | /

Edit L Displa: Font List
Font size Corpus [
Font height Darwin [Homerton
Line spacing ™ I‘~ Bold
Margin P Trinity | Bold.Oblique
Invert WIMPSymbol
Window wrap Medium.Oblique
Foreground \
Background
Work area submenu

Font Menu is a menu which shows the currently selected font, and allows the
user to set this from a list of font names, and submenus which give styles and

When a hit is received for the Font Menu, it is decoded by the Font Menu module,
and a Toolbox event is returned to the client. This contains the font id of the
selected font (see SWI Font_DecodeMenu). The chosen font is shown as ticked in
the font menu when the menu is next shown (or immediately if Adjust is held

Application Program Interface

Application Program Interface

The RISC OS Font manager provides a facility of building a font menu from the
current fontlist.

A Font Menu object is an abstraction on this facility. A Font Menu is built for the
client using the Font manager.

Attributes

A Font Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description
flags word Bit Meaning
0 when set, this bit indicates that a

FontMenu_AboutToBeShown event should be
raised when SWI Toolbox_ShowObiject is called
for this object

1 when set, this bit indicates that a
FontMenu_HasBeenHidden event should be
raised when the Font Menu object has been
removed from the screen

2 when set, include a System font entry at head of
menu

ticked_font font id of the font to tick in the Font Menu when it is first
created

The special font id ‘SystemFont’ is used to indicate that
the System entry should be ticked.

Manipulating a Font Menu object

Creating and deleting a Font Menu object

A Font Menu object is created using SWI Toolbox_CreateObject.
When this object is created it has no attached objects (see page 12).
A Font Menu object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Font Menu
objects.

140

Font Menu class

Showing a Font Menu object

When a Font Menu object is displayed on the screen using
SWI Toolbox_ShowObiject it has the following behaviour:

Show type Position

0 (default) 64 OS units to the left of the mouse pointer

1 (full spec) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

Before the Font Menu is shown

When the client calls Toolbox_ShowObiject, a FontMenu_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to
take any last minute action. Typically, a client will indicate which of the fonts
should be shown as the currently selected one, when it receives this event.

Selecting a font

The currently selected font is shown ticked in the Font Menu. The selected font can
be set using FontMenu_SetFont, and can be read using FontMenu_GetFont. Note
that the string passed to these methods is the font id, not the translated string.

Receiving a font selection

When the user makes a Font selection from the Font Menu, a
FontMenu_FontSelection Toolbox event is raised. This gives the font id of the font
which has been chosen from the Font Menu.

141

Font Menu methods

Font Menu methods
The following methods are all invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Font Menu id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FontMenu_SetFont O

On entry

RO = flags

R1 = Font Menu object id
R2=0

R3 = pointer to font id of font to select (0 means none)

On exit

R1-R9 preserved

Use

This method selects a font as being the currently selected one for this Font Menu,
and places a tick next to it. The special font id ‘SystemFont’ is used to indicate that
the System entry should be ticked.

C veneer

extern _kernel_oserror *fontmenu_set_font (unsigned int flags,
ObjectId fontmenu,
const char *font_id

);

142

Font Menu class

FontMenu_GetFont 1

On entry

RO = flags

R1 = Font Menu object id
R2=1

R3 = pointer to buffer to hold font id
R4 = buffer size for font id

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds font id
R4 holds number of bytes written to buffer

Use

This method returns the font id for the font which was last specified in a
FontMenu_SetFont call, or was last chosen by a user mouse click (i.e. the one
which is ticked). The special font id ‘SystemFont’ is used to indicate that the
System entry was last chosen.

C veneer

extern _kernel_oserror *fontmenu_get_font (unsigned int flags,
ObjectId fontmenu,
char *buffer,
int buff_size,
int *nbytes

143

Font Menu events

Font Menu events

There are a number of Toolbox events which are generated by the Font Menu
module:

FontMenu_AboutToBeShown (0x82a40)

Block

+38 0x82a40

+12 flags (as passed in to Toolbox_ShowObject)

+ 16 value which will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowObiject for the
underlying Menu Object

Use

This Toolbox event is raised when SWI Toolbox_ShowObiject has been called for a
Font Menu object. It gives the application the opportunity to set the selected font
before the Menu actually appears on the screen.

C data type

typedef struct

{
ToolboxEventHeader hdr;
int show_type;
TopLeft pos;

} FontMenuAboutToBeShownEvent;

FontMenu_HasBeenHidden (0x82a41)

Block
+8 0x82a41

Use

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on
a Font Menu which has the appropriate bit set in its template flags word. It enables
a client application to clear up after a menu has been closed. It is also raised when
clicking outside a menu or hitting Escape.

C data type

typedef struct
{
ToolboxEventHeader hdr;
} FontMenuHasBeenHiddenEvent;

144

Font Menu class

FontMenu_FontSelection (0x82a42)

Block

+8 0x82a42
+16... fontid
Use

This Toolbox Event informs the client that a Font Menu selection has been made.

The special font id ‘SystemFont’ is used to indicate that the System entry was last
chosen.

C data type

typedef struct
{

ToolboxEventHeader hdr;

char font_id[216];
} FontMenuSelectionEvent;

Font Menu templates

The layout of a Font Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type
flags 4 word
ticked_font 4 StringReference

145

Font Menu Wimp event handling

Font Menu Wimp event handling

The Font Menu class responds to certain Wimp events and takes the actions as
described below:

Wimp event Action

Menu Selection The font id corresponding to the menu selection is
sent back to the client via a FontMenu_FontSelection
event.

If Adjust is held down, then the currently open Menu is
re-opened in the same place.

User Msg Message_HelpRequest (while the pointer is over a
Font Menu object) A reply is sent on the application’s
behalf.

146

User interface

lconbar icon class

bjects of the Iconbar icon class are used to display an application icon on the
Iconbar.

An Iconbar object is normally used to show that an application is running, by
placing an icon on the RISC OS Iconbar.

Iconbar icon’s menu SrcEdit
T Info =
Save all files
Save options
Options [
Create [
| Quit —

Iconbar icon ——» / a{;"‘ d}% L/

An Iconbar object can either be a sprite icon or a text&sprite icon. It does not
appear on the Iconbar until the application has called Toolbox_ShowObiject or if
the auto-show bit has been set in its flags word. When the Toolbox places the icon
on the Iconbar, it positions the icon in a Style Guide compliant manner, including
placement of the text in a text&sprite icon. The bounding box used for the icon is
taken from the sprite used for that icon, also taking into consideration the text
used, if the iconbar object is text&sprite. If the application supports many icons on
the Iconbar this can be achieved by creating many Iconbar objects.

The Toolbox supports handling of a Menu click over the icon, Select and Adjust
clicks.

147

Application Program Interface

Application Program Interface

Attributes

An Iconbar icon object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description
flags Bit Meaning
0 when set, generate an

Iconbar_SelectAboutToBeShown event before
the object which has been associated with a
Select click is shown

1 when set, generate an
Iconbar_AdjustAboutToBeShown event before
the object which has been associated with an
Adjust click is shown

2 when set, show the select_show object as a
transient
(i.e. with the semantics of Wimp_CreateMenu)
3 when set, show the adjust_show object as a
transient
(i.e. with the semantics of Wimp_CreateMenu)
4 reserved
5 when set, generate an Iconbar_Clicked (or

client-specified) event when Select is clicked

6 when set, generate an Iconbar_Clicked (or
client-specified) event when Adjust is clicked

position a negative integer giving the position of the icon on
the Iconbar (as specified in SWI Wimp_Createlcon)

priority gives priority of this icon on the Iconbar (as specified
in SWI Wimp_Createlcon)

sprite name the name of the sprite to use for this Iconbar icon

max sprite name the maximum length of sprite name to be used

text an optional string which will be used for a Text&Sprite
Iconbar icon (i.e. the text that will appear underneath
the icon on the Iconbar)

max text length if the Iconbar icon has text, then this is a Text&Sprite
Iconbar icon, and this field gives the maximum length
of a text string which will be used for it

148

Iconbar icon class

Attributes Description

menu the name of the template to use to create a Menu
object for this Iconbar icon

select event the Toolbox Event code to be raised when the user
clicks Select on the Iconbar icon
(if 0 then Iconbar_Clicked is raised)

adjust event the Toolbox event code to be raised when the user
clicks Adjust on the Iconbar icon
(if 0 then Iconbar_Clicked is raised)

select show the name of a template to use to show an object when
the user clicks Select on the Iconbar icon

adjust show the name of a template to use to show an object when
the user clicks Adjust on the Iconbar icon

help message the message to respond to a help request with,
instead of the default

max help the maximum length of help message to be used

Manipulating an Iconbar icon object

Creating and deleting an Iconbar icon object
An Iconbar icon object is created using SWI Toolbox_CreateObject.

When an Iconbar Icon Object is created, the following attached objects (see
page 12) will be created (if specified):

® menu
e select show

e adjust show.
See the attributes table above for an explanation of what these objects are.

An Iconbar object is deleted using SWI Toolbox_DeleteObject. If it has any
attached objects (see above), these are also deleted, unless the non-recursive bit
is set for this SWI.

149

Application Program Interface

150

Showing an Iconbar icon object

When a Iconbar icon object is displayed on the screen using SWI
Toolbox_ShowObiject it has the following behaviour:

Show type Position
0 (default) display on the Iconbar in a place specified by the
object’s template’s position and priority fields.
1 (full spec) R3+0 icon handle of icon to show icon to the left
(-3) or right (-4) of its position.

If the Iconbar icon’s position is any other value than -3 or -4, then R3 should just
be 0.

An Iconbar icon is hidden by using SWI Toolbox_HideObject.

The Iconbar icon’s position and priority

An Iconbar icon is created with a position and a priority. These are integer values
as specified in SWI Wimp_Createlcon. Note that these values are fixed at
create-time, but are only used when the Iconbar icon is ‘shown’, either by explicitly
calling Toolbox_ShowObiject, or by setting the auto-show bit in the object
template’s flags.

The semantics of position and priority are as documented in Wimp_Createlcon.
Applications will mostly just use a position of -1 for the right of the iconbar.

Note that positions of -3 and -4 cannot be used in conjunction with the
auto-show bit. Such an Iconbar icon must be explicitly shown using
Toolbox_ShowObiject to allow the client to pass the Wimp handle of the icon to
whose left/right this icon should be placed.

An Iconbar icon’s position and priority cannot be changed at run-time.

The Iconbar icon’s menu

Each Iconbar object can optionally have attached to it a Menu object. The Iconbar
object holds the object id of this Menu object.

Whenever the user of the application presses the Menu mouse button over an
[conbar icon, the Iconbar class module opens its attached Menu object, by making
a SWI Toolbox_ShowObiject passing the attached Menu'’s id.

If the application wishes to perform some operations on the Menu before it is
opened (ticking some entries for example), then by setting the appropriate bit in
the Menu's flags word, the application can request that a special Toolbox event
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown. The

Iconbar icon class

precise details of this Toolbox event are described on page 199. On receipt of such
a Toolbox event, the client application is expected to make any changes it wants to
the Menu object, and then return to its SWI Wimp_Poll loop.

When an Iconbar icon is created, if the client has specified the name of a Menu
template for that Iconbar icon, then a Menu object is created from that template,
and the id of that Menu is held in the Iconbar object. This id will be used to show
the Menu when the user presses the Menu button over the Iconbar icon.

In most cases a Menu is attached to the Iconbar icon at resource editing time by
entering the name of the template to use for this Iconbar icon’s Menu. If the
application wishes to dynamically attach and detach the Menu for a given Iconbar
icon, then this can be done using the Iconbar_SetMenu method described on
page 153.

The id of the Menu attached to an Iconbar icon can be read by using the
Iconbar_GetMenu method.

Select and Adjust click events

The client application can specify a Toolbox event to be raised when the user clicks
Select and/or one to be raised when the user clicks Adjust on the Iconbar icon.

This event will only be raised if the appropriate flags bits have been set for Select
and Adjust clicks.

Normally this is specified in the application’s resource file, but it can be set and
read using the Iconbar_SetEvent/Iconbar_GetEvent methods.

Help messages

Each Iconbar object can optionally have attached to it a Help Message.

Whenever the Wimp delivers a HelpRequest message to the client application for
this Iconbar icon, the attached Help Message is sent back automatically by the
Toolbox.

In most cases a help message is attached to the Iconbar object at resource editing
time. An Iconbar icon’s Help Message can be set dynamically using the
Iconbar_SetHelpMessage method described on page 158.

The text of the Help Message can be read using the Iconbar_GetHelpMessage
method.

151

Iconbar icon methods

Iconbar icon methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being an Iconbar object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Iconbar_GetlconHandle O

152

On entry

RO = flags
R1 = Iconbar object id
R2=0

On exit

RO = Wimp icon handle for this Iconbar object

Use

This method returns the handle of the underlying Wimp icon used to implement
this Iconbar object.

C veneer

extern _kernel_oserror *iconbar_get_icon_handle (unsigned int flags,
ObjectId iconbar,
int *icon_handle

);

Iconbar icon class

Iconbar_SetMenu 1

On entry

RO = flags

R1 = Iconbar object id
R2=1

R3 = menu id

On exit

R1-R9 preserved

Use

This method is used to set the menu which will be displayed when the Menu
button is pressed over this Iconbar object. The Toolbox handles opening the menu
for you.

If R3 is 0, then the menu for this Iconbar object is detached.

C veneer

extern _kernel_oserror *iconbar_set_menu (unsigned int flags,
ObjectId iconbar,
ObjectId menu_id
)

Iconbar_GetMenu 2

On entry

RO = flags

R1 = Iconbar object id
R2=12

On exit

RO = Menu id

Use

This method is used to get the id of the menu which will be displayed when the
Menu button is pressed over this Iconbar object.

C veneer

extern _kernel_oserror *iconbar_get_menu (unsigned int flags,
ObjectId iconbar,
ObjectId *menu_id
)

153

Iconbar icon methods

Iconbar_SetEvent 3

154

On entry

RO = flags
bit 0 set means raise the event code specified in R3 when Select is clicked
bit 1 set means raise the event code specified in R4 when Adjust is clicked
R1 = Iconbar object id
R2=173
R3 = Toolbox Event code to raise for Select
R4 = Toolbox Event code to raise for Adjust

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user clicks Select
and/or Adjust on the Iconbar icon.

If R3 or R4 is 0, then an IconBar_Clicked Toolbox event will be raised instead.

C veneer

extern _kernel_oserror *iconbar_set_event (unsigned int flags,
ObjectId iconbar,
int select_event,
int adjust_event

Iconbar icon class

Iconbar_GetEvent 4

On entry

RO = flags
bit 0 set means return the event code which will be raised
when Select is clicked
bit 1 set means return the event code which will be raised
when Adjust is clicked
R1 = Iconbar object id
R2=14

On exit

RO = Toolbox event code raised when Select is clicked on the Iconbar icon

R1 = Toolbox event code raised when Adjust is clicked on the Iconbar icon

Use

This method reads the Toolbox Event to be raised when the user clicks Select or

Adjust on the Iconbar icon.

C veneer

extern _kernel_oserror *iconbar_get_event (unsigned int flags,
ObjectId iconbar,
int *select_event,
int *adjust_event

155

Iconbar icon methods

Iconbar_SetShow 5

On entry

RO = flags
bit 0 set means show the object whose id is given in R3
when Select is clicked
bit 1 set means show the object whose id is given in R4
when Adjust is clicked
R1 = Iconbar object id
R2=5
R3 = id of object to show for Select
R4 = id of object to show for Adjust

On exit

R1-R9 preserved

Use

This method specifies an object to be shown when the user clicks Select and/or
Adjust on the Iconbar icon.

If R3 or R4 is 0, then no object will be shown.

C veneer

extern _kernel_oserror *iconbar_set_show (unsigned int flags,
ObjectId iconbar,
ObjectId select,
ObjectId adjust

156

Iconbar icon class

Iconbar_GetShow 6

On entry

RO = flags
bit 0 set means return the id of the object which will be
shown when Select is clicked
bit 1 set means return the id of the object which will be
shown when Adjust is clicked
R1 = Iconbar object id
R2=06

On exit

RO = id of object which will be shown when Select is clicked on the Iconbar icon.
R1 = id of object which will be shown when Adjust is clicked on the Iconbar icon

Use
This method reads the ids of the objects to be shown when the user clicks Select or

Adjust on the Iconbar icon.

C veneer

extern _kernel_oserror *iconbar_get_show (unsigned int flags,
ObjectId iconbar,
ObjectId *select,
ObjectId *adjust

157

Iconbar icon methods

Iconbar_SetHelpMessage 7

On entry

RO = flags

R1 = Iconbar object id
R2=17

R3 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help
Request message is received for this Iconbar object. The Toolbox handles the reply
message for you.

If R3 is 0, then the Help Message for this Iconbar object is detached.

C veneer

extern _kernel_oserror *iconbar_set_help_message (unsigned int flags,
ObjectId iconbar,
const char *message_text

)i

158

Iconbar icon class

Iconbar_GetHelpMessage 8

On entry

RO = flags

R1 = Iconbar object id
R2=28

R3 = pointer to buffer (or 0)
R4 = size of buffer to hold message text

On exit

R4 = holds size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Iconbar object.

C veneer

extern _kernel_oserror *iconbar_get_help_message (unsigned int flags,
ObjectId iconbar,
char *buffer,
int buff_size,
int *nbytes

159

Iconbar icon methods

Iconbar_SetText 9

On entry

RO = flags

R1 = Iconbar object id
R2=9

R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in a text&sprite Iconbar object. If the
text is longer than the maximum size specified when the Iconbar icon was created,
then an error is returned.

C veneer

extern _kernel_oserror *iconbar_set_text (unsigned int flags,
ObjectId iconbar,
const char *text

160

Iconbar icon class

Iconbar_GetText 10

On entry

RO = flags

R1 = Iconbar object id
R2 =10

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains icon’s text
R4 holds number of bytes written to buffer

Use

This method is used for a text&sprite Iconbar object. It returns the text string
displayed for that object.

C veneer

extern _kernel_oserror *iconbar_get_text (unsigned int flags,
ObjectId iconbar,
char *buffer,
int buff_size,
int *nbytes

161

Iconbar icon methods

Iconbar_SetSprite 11

On entry

RO = flags

R1 = Iconbar object id
R2=11

R3 = pointer to name of sprite to use

On exit

R1-R9 preserved

Use

This method sets the sprite which is to be used in the Iconbar object.

C veneer

extern _kernel_oserror *iconbar_set_sprite (unsigned int flags,
ObjectId iconbar,
const char *sprite_name

)

162

Iconbar icon class

Iconbar_GetSprite 12

On entry

RO = flags

R1 = Iconbar object id
R2=12

R3 = pointer to buffer to return the sprite name in (or 0)
R4 = size of buffer

On exit

R4 = holds size of buffer required for sprite name (if R3 was 0)
else Buffer pointed at by R3 holds sprite name
R4 holds number of bytes written to buffer

Use

This method returns the name of the sprite used for the Iconbar object.

C veneer

extern _kernel_oserror *iconbar_get_sprite (unsigned int flags,
ObjectId iconbar,
char *buffer,
int buff_len,
int *nbytes

163

Iconbar icon events

Iconbar icon events

Iconbar_Clicked (0x82900)

Block
+8 0x82900
+12 flags
bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was clicked
bit 1 reserved
bit 2 set means Select was clicked
Use

This Toolbox event is raised when the user clicks Select or Adjust on an Iconbar
object, and the client application has not associated any other Toolbox event with
this event.

C data type

typedef struct
{

ToolboxEventHeader hdr;
} IconbarClickedEvent;

Iconbar_SelectAboutToBeShown (0x82901)

164

Block

+38 0x82901
+ 16 object id of the object which will be shown
(note that the ‘self field in the id block will be for the Iconbar object).

Use

This Toolbox event is raised just before Toolbox_ShowObiject is called for the
object to be shown on a Select click. Note that on receipt of this event, the client
could call Iconbar_SetShow to give the object id of a different object to be shown.

C data type

typedef struct

{
ToolboxEventHeader hdr;
ObjectId id;

} IconbarAboutToBeShownEvent;

Iconbar icon class

Iconbar_AdjustAboutToBeShown (0x82902)

Block

+8 0x82902
+ 16 object id of the object which will be shown
(note that the ‘self field in the id block will be for the Iconbar object).

Use

This Toolbox event is raised just before Toolbox_ShowObiject is called for the
object to be shown on a Adjust click. Note that on receipt of this event, the client
could call Iconbar_SetShow to give the object id of a different object to be shown.

Note: This event and the Iconbar_SelectAboutToBeShown event both share the
same typedef.

C data type

typedef struct

{
ToolboxEventHeader hdr;
ObjectId id;

} IconbarAboutToBeShownEvent;

Iconbar icon templates

The layout of an Iconbar icon template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

position 4 word

priority 4 word
sprite_name 4 StringReference
max_sprite_name 4 word

text 4 MsgReference
max_text_len 4 word

menu 4 StringReference
select_event 4 word

165

Iconbar icon Wimp event handling

Field Size in bytes Type
adjust_event 4 word
select_show 4 StringReference
adjust_show 4 StringReference
help_message 4 MsgReference
max_help 4 word

Iconbar icon Wimp event handling

Certain Wimp events for an Iconbar icon are fielded by the Iconbar class, and either
acted upon for the client, or result in a Toolbox event being raised. Such events are

listed below:

Wimp event Action

Mouse Click If the Menu button has been pressed, and there is a
Menu object attached to this Iconbar icon, then the
Menu is shown using Toolbox_ShowObject.
If the Select or Adjust buttons have been pressed and
this Iconbar icon has a Toolbox event associated with
this, then that Toolbox event is raised, and any attached
object is also shown using Toolbox_ShowObject.

User Msg Message_HelpRequest (for this Iconbar icon)

If a help message is attached to this Iconbar icon, then a
reply is sent on the application’s behalf.

166

10

User interface

Menu class

menu allows the user to select an item from a list of choices using the mouse
pointer.

A menu should appear on the screen either when the user clicks the Menu mouse
button, or clicks on a Pop-up menu button. The menu will disappear again when
the user clicks outside the menu or presses Escape (or the client application hides
it or the user opens another menu).

When the user clicks on a menu entry the client application will typically perform
some task. The menu will then disappear, unless the selection was made using the
Adjust button in which case it will persist on the screen.

® A menu has a title bar with black (Wimp colour 7) text on a grey (Wimp colour
2) background.

® Menu entries which contain text are black (7) on a white (0) background; a
menu entry may alternatively contain a sprite.

® Menu entries may optionally be separated by a dotted line, to group related
items.

e A menu entry may lead to further menus, or a dialogue box, in which case a

submenu arrow is displayed at the righthand edge of the entry. When a menu
entry is unavailable it is displayed as ‘shaded’ (i.e. its text is displayed in light

grey).

Artist
Styles... Brush
Brush EETEONS
Zoom Colour &
v Visible Type ™
Special effects

167

Application Program Interface

Application Program Interface

When a Menu object is created, the Toolbox deals with ensuring that the colours
used for the Menu are Style Guide compliant. Each menu entry is set with a height
of 44 OS units (or 68 if it has a dotted line separator), and the width of the menu is
calculated from details of its entries on the application's behalf.

The Menu module deals with keeping the menu tree displayed when a selection is
made with Adjust.

Attributes

Menu attributes

A Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attribute Description
flags word Bit Meaning
0 when set, this bit indicates that an event

should be raised when SWI
Toolbox_ShowObiject is called for this Menu.

1 when set, this bit indicates that an event
should be raised when the Menu has been
removed from the screen.

menu title gives a text string which will appear in the menu's title
bar
(0 means no title, an empty string means no titlebar)
makx title length gives the maximum length in bytes of title text which

will be used for this Menu.

help message when a HelpRequest message is received on this
menu, then this text message is sent in a HelpReply
message. Note that this help message is only sent if
the menu entry for which the request was received has
not got a help message of its own.

max help length gives the maximum length in bytes of help text which
will be used for this Menu.

show event this is a Toolbox event code which will be raised when
SWI Toolbox_ShowObiject is called for this menu.
If its value is -1, then the default
Menu_AboutToBeShown event is raised. An event is
only raised if the appropriate bit is set in the menu's
flags word.

168

Attribute
hide event

Menu entry attributes

Menu class

Description

this is a Toolbox event code which will be raised when
this menu has been removed from the screen (either
as a result of an explicit call to SWI
Toolbox_HideObject or because the Wimp has
removed the menu).

If its value is -1, then the default
Menu_HasBeenHidden event is raised. An event is
only raised if the appropriate bit is set in the menu's
flags word.

A Menu also has a list of ‘entries’. Each entry has its own component id which
uniquely identifies it within this menu. An entry has the following attributes:

Attribute
flags

component id

Description

Bit Meaning

0 when set, this entry is ticked.

1 when set, this entry has a dotted line
immediately after it.

2-7 must be 0.
when set, this entry is faded.

9 when set, this entry is a sprite (default is a text
menu entry).

10 when set, this entry has a submenu (ie a
submenu arrow appears next to the entry).

11 when set, an event (either Menu_SubMenu or
client-specified) is raised when the user
traverses this entry's submenu arrow with the
mouse pointer (if bit 10 is set).

12 when set, if there is an object to be shown when
this entry is selected, then it will be shown with
Wimp_CreateMenu semantics. The default is to
show persistently.

identifies this entry uniquely within this menu.

-1 and -2 are invalid component ids

169

Application Program Interface

Attribute
text

max length

click show

submenu show

submenu event

click event

help message

max help length

170

Description

depending on whether this is a text or sprite entry (as

indicated by bit 9 of the flags word), this is either:

® a text string which will appear in the menu entry

o the name of the sprite which will appear in the
Menu entry

gives the maximum length in bytes of entry text or

sprite name

the name of the template for an object to show, when

the user clicks on this entry.

0 means there is no object to be shown

the name of the template for an object to show, when

the user moves the pointer over the submenu arrow (if

the entry has a submenu).

0 means there is no object to be shown

a Toolbox event code which will be raised when the

user moves the pointer over the submenu arrow (if the

entry has a submenu and bit 11 of the flags word is

set)

if its value is 0 then the default Menu_Submenu event

is raised

a Toolbox event code which will be raised when the

user clicks on this entry

if its value is 0 then the default Menu_Selection event

is raised

when a HelpRequest message is received on this entry

of this menu then this text string is sent in a

HelpReply message

0 means that the help message for the menu will be

sent (if such exists)

gives the maximum length in bytes of the entry’s help

message

Menu class

Manipulating a Menu object

Since there can only be one Menu visible on the screen at any one time, it is usual
for the client application to mark Menu templates as ‘shared’ so that only one copy
will exist in memory. The application receives a Menu_AboutToBeShown Toolbox
event just before the Menu is shown, to allow it to set any attributes like ticks and
fades, which may differ depending on where the Menu is being shown; for example,
in a multi-document editor a single menu can be maintained for all document
Windows; when the Toolbox receives a Menu button click event from the Wimp, it
will show the Menu associated with the Window over which the mouse click
occurred; when the application receives the Menu_AboutToBeShown Toolbox
event, it can tick and fade entries in the Menu depending on the state of the
document Window.

Another alternative for supporting multi-document editors is to create a Menu
object for each Window object. In this case it will not be necessary to use the
Menu_AboutToBeShown Toolbox event to make last minute changes to the menu,
since these can be made on a per-window basis as the changes occur. Whether this
method is used, or the above ‘shared’ scheme is really one of personal taste, and
memory usage.

It is possible to associate a client handle with a Menu using the
Toolbox_SetClientHandle method, but normally an application will simply wish to
use the client handle of the object to which a Menu is attached (via the parent_id
or the ancestor_id in the id block).

Creating and deleting a menu

A Menu object is created using SWI Toolbox_CreateObject.

When a Menu object is created, the following attached objects (see page 12) are
also created for each menu entry for which they are defined:

® submenu show

e click show.
The Menu entry attributes table on page 169 describes these objects.

Attached objects are also created when a menu entry is added to the Menu, if they
are referenced by the menu entry (and deleted when the menu entry is removed).

A Menu object is deleted using SWI Toolbox_DeleteObject. If it has any attached
objects these are also deleted, unless the non-recursive bit is set for this SWI.

Note: Menus must not be mutually recursive (i.e. in a menu hierarchy, a menu
entry may not have, as a submenu, a menu further up the hierarchy). The menu
module does not check for such a case, so it is the client application’s
responsibility to check for correctness.

171

Application Program Interface

172

Showing a menu

When a menu is displayed on the screen using SWI Toolbox_ShowObiject it has the
following behaviour:

Show type Position

0 (default) 64 OS units to the left of the mouse pointer

1 (full spec) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

The client application should not need to make this call, since it is made
automatically by the Window and Iconbar modules for objects which have a Menu
attached to them.The Window module will display the menu in its default place
when the Menu button is clicked, or in the case of a pop-up menu directly to the
right of the pop-up icon; the Iconbar module displays the menu with its base 96 OS
units from the bottom of the screen, and 64 OS units to the right of the mouse
pointer.

Adding and removing menu entries

Normally the set of entries in a Menu will be specified in the application’s resource
file. If, however, the application wishes to add and remove Menu entries
dynamically at run-time, this is done using the Menu_AddEntry and
Menu_RemoveEntry methods.

Changing a Menu entry

A given Menu entry can either contain text or a sprite. Normally these will be fixed
when the menu is created, but they can be set and read dynamically using the
Menu_SetEntryText, Menu_GetEntryText, Menu_SetEntrySprite, and
Menu_GetEntrySprite methods.

Ticking or fading a Menu entry

Each Menu entry can be optionally ‘ticked’ (i.e. have a tick displayed to the left of
it), and/or ‘faded’ (i.e. displayed in light grey, and unselectable).

A given Menu entry can be ticked/unticked, faded/unfaded using the
Menu_SetTick/Menu_SetFade methods.

Menu class

The client can determine the state of a particular entry using the
Menu_GetTick/Menu_GetFade methods.

Attaching a submenu dynamically

Normally an application’s Menu structure is fully specified statically in its resource
file, but occasionally an application may wish to build a submenu at run-time, and
attach it at a particular point in the Menu tree.

This is achieved by creating the submenu object, and using the
Menu_SetSubMenuShow method already mentioned (and detailed on page 183).

Dealing with Menu hits

Each Menu entry can have a specified Toolbox event which will be raised when a
menu selection is made on that entry (i.e. the Wimp has returned a Menu Selection
event to the application).

Normally this Toolbox event is specified in the client application’s resource file,
but it can be read and set dynamically using the Menu_SetClickEvent and
Menu_GetClickEvent methods.

The client can also specify the name of a template of an object which should be
shown when the menu hit happens. The main use for this is to supply the name of
the template of a persistent dialogue box, on a Menu entry with an ellipsis (...). The
object is only shown after the ‘Menu hit event’ has been delivered to the client. The
show type value passed in R2 to Toolbox_ShowObject will be 0 (default place).

It is possible to specify at run-time the object id of an object which should be
shown when a Menu hit happens, using the Menu_SetClickShow method (and the
object id can be read using the Menu_GetClickShow method).

If neither of the above is specified, then the Toolbox raises the Menu_Selection
Toolbox event, as described on page 200. This Toolbox event reports which entry
was selected.

Dealing with Adjust clicks on a Menu

When the user of the client application clicks Adjust on a Menu entry or on a
Gadget in a dialogue box which has been opened from a Menu, it is conventional
for the Menu tree to remain on the screen.

The Toolbox handles this automatically on behalf of the application, so the client
does not have to look for Adjust clicks; the client’s code just responds to the
Toolbox events raised by the user’s interaction with the Menu.

173

Application Program Interface

174

Note that the Toolbox ‘re-shows’ the Menu when the application next calls SWI
Wimp_Poll, after the Menu selection, so any ticking/fading etc of Menu entries,
must be done in response to the Toolbox event which was raised when a menu
selection was made.

Dealing with traversal of a submenu arrow

Each Menu entry can have a specified Toolbox event which will be raised when the
user moves the mouse pointer over the submenu arrow, which is displayed on all
Menu entries which have a submenu.

Normally this Toolbox event is specified in the client application’s resource file,
but it can be read and set dynamically using the Menu_SetSubMenuEvent and
Menu_GetSubMenuEvent methods.

The client can also specify the name of a template of an object which should be
shown when the user moves the mouse pointer over the submenu arrow. The main
use for this is to supply the name of the template of a transient dialogue box or a
submenu. The object is only shown after the Menu_SubMenu event has been
delivered to the client.

It is possible to specify at run-time the object id of an object which should be
shown when the user moves the pointer over the submenu arrow, using the
Menu_SetSubMenuShow method (and the object id can be read using the
Menu_GetSubMenuShow method).

If neither of the above is specified, then the Toolbox raises the Menu_SubMenu
Toolbox event. This Toolbox event reports the entry over which the mouse pointer
has moved.

Interactive help on Menus

Each Menu has an optional Help Message associated with it. When the client
application receives a HelpRequest for the Menu, the Toolbox replies
automatically with this Help Message.

Normally the Menu’s Help Message will be specified in the application’s resource
file, however the client can set and read the message dynamically using the
Menu_SetHelpMessage/Menu_GetHelpMessage methods.

Each Menu entry can also have a Help Message. If no such message is specified,
then the Toolbox will return the Menu’s Help Message instead. Normally, again, an
entry’s Help Message will have been specified in the resource file, but it can be
read and set using the Menu_SetEntryHelpMessage and
Menu_GetEntryHelpMessage methods (described on page 193).

Menu class

Writable menu entries

Writable menu entries as seen in older applications are not supported by the
Toolbox as these are not Style Guide compliant. Instead you should use small
dialogues. For example:

Rename to

Cancel | | Re namel

Menu methods

The following methods are all invoked by calling SWI Toolbox_MiscOp with:

RO holding a flags word

R1 being a Menu id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Menu_SetTick O

On entry

RO = flags

R1 = Menu object id
R2=0

R3 = component id of entry

175

Menu methods

R4 = value
0 means ‘untick’
non-zero means ‘tick’

On exit

R1-R9 preserved

Use

This method affects the tick state of a Menu entry.

C veneer

extern _kernel_oserror *menu_set_tick (unsigned int flags,
ObjectId menu,
ComponentId entry,
int tick

Menu_GetTick 1

176

On entry

RO = flags

R1 = Menu object id
R2=0

R3 = component id of entry

On exit

RO = tick state
non-zero means ticked
0 means unticked

Use

This method returns the tick state of a Menu entry.

C veneer

extern _kernel_oserror *menu_get_tick (unsigned int flags,
ObjectId menu,
ComponentId entry,
int *ticked

Menu class

Menu_SetFade 2

On entry

RO = flags

R1 = Menu object id

R2=2

R3 = component id of entry
R4 = value

0 means unfade
non-zero means fade

On exit

R1-R9 preserved

Use

This method affects the fade state of a Menu entry.

C veneer

extern _kernel_oserror *menu_set_fade (unsigned int flags,
ObjectId menu,
ComponentId entry,
int fade

177

Menu methods

Menu_GetFade 3

178

On entry

RO = flags

R1 = Menu object id
R2=13

R3 = component id of entry

On exit

RO = fade state
0 means unfaded
non-zero means faded

Use

This method returns the fade state of a Menu entry.

C veneer

extern _kernel_oserror *menu_get_fade (unsigned int flags,
ObjectId menu,
ComponentId entry,
int *faded

Menu class

Menu_SetEntryText 4

On entry

RO = flags

R1 = Menu object id
R2=4

R3 = component id of entry
R4 = pointer to text string to use

On exit

R1-R9 preserved

Use
This method sets the text which is to be used in the named text Menu entry.

An error is returned if the entry's text buffer is not large enough to hold the
supplied text.

An error is returned if this SWI is called on an entry which is a sprite.

C veneer

extern _kernel_oserror *menu_set_entry_text (unsigned int flags,
ObjectId menu,
ComponentId entry,
const char *text

179

Menu methods

Menu_GetEntryText 5

On entry

RO = flags

R1 = Menu object id
R2=5

R3 = component id of entry
R4 = pointer to buffer to return the text in (or 0)
R5 = size of buffer

On exit

R5 = the size of buffer required to hold the text (if R4 was 0)
else Buffer pointed to by R4 contains entry text
R5 holds number of bytes written to buffer

Use

This method is used for a text Menu entry. It returns the text string displayed for
that entry.

C veneer

extern _kernel_oserror *menu_get_entry text (unsigned int flags,
ObjectId menu,
ComponentId entry,
char *buffer,
int buff_size,
int *nbytes

180

Menu class

Menu_SetEntrySprite 6

On entry

RO = flags

R1 = Menu object id
R2=26

R3 = component id of entry
R4 = pointer to name of sprite to use

On exit

R1-R9 preserved

Use
This method sets the sprite which is to be used in the named sprite Menu entry.

An error is returned if the entry's sprite name buffer is not large enough to hold the
supplied sprite name.

An error is returned if this SWI is called on a text entry.

C veneer

extern _kernel_oserror *menu_set_entry_sprite (unsigned int flags,
ObjectId menu,
ComponentId entry,
const char *sprite_name

181

Menu methods

Menu_GetEntrySprite 7

On entry

RO = flags

R1 = Menu object id
R2=17

R3 = component id of entry
R4 = pointer to buffer to return the sprite name in (or 0)
R5 = size of buffer

On exit

R5 = the size of buffer required to hold the sprite name (if R4 was 0)
else Buffer pointed to by R4 contains sprite name
R5 holds number of bytes written to buffer

Use

This method is used for a sprite Menu entry. It returns the name of the sprite
displayed for that entry.

C veneer

extern _kernel_oserror *menu_get_entry_sprite (unsigned int flags,
ObjectId menu,
ComponentId entry,
char *buffer,
int buff_size,
int *nbytes

182

Menu class

Menu_SetSubMenuShow 8

On entry

RO = flags

R1 = Menu object id
R2=28

R3 = component id of entry where submenu should be attached
R4 = object id of the submenu (or 0)

On exit

R1-R9 preserved

Use

This method allows the client to specify the object id of an object to show when the
user moves the pointer over the submenu arrow.

If R4 is 0, then no object should be shown.

Calling this SWI also causes the submenu arrow to be shown or hidden as
appropriate.

C veneer

extern _kernel_oserror *menu_set_sub_menu_show (unsigned int flags,
ObjectId menu,
ComponentId entry,
ObjectId sub_menu

183

Menu methods

Menu_GetSubMenuShow 9

On entry

RO = flags

R1 = Menu object id
R2=9

R3 = component id

On exit

RO = id of object to be shown

Use

This method returns the object id of the object which will be shown when the user
moves the pointer over the submenu arrow.

C veneer

extern _kernel_oserror *menu_get_sub_menu_show (unsigned int flags,
ObjectId menu,
ComponentId entry,
ObjectId *sub_menu

184

Menu class

Menu_SetSubMenuEvent 10

On entry

RO = flags

R1 = Menu object id
R2 =10

R3 = component id of entry
R4 = Toolbox event code to raise

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user moves the
mouse over this entry’'s submenu arrow.

If R4 is 0, then a Menu_SubMenu Toolbox event will be raised instead.
Calling this SWI also causes the submenu arrow to be shown or hidden as

appropriate.

C veneer

extern _kernel_oserror *menu_set_sub_menu_event (unsigned int flags,
ObjectId menu,
ComponentId entry,
int toolbox_event

185

Menu methods

Menu_GetSubMenuEvent 11

On entry

RO = flags

R1 = Menu object id
R2=11

R3 = component id of entry

On exit

R4 = Toolbox event code

Use

This method reads the Toolbox event to be raised when the user moves the mouse
over this entry’'s submenu arrow.

If no event has been specified, then 0 is returned.

C veneer

extern _kernel_oserror *menu_get_sub_menu_event (unsigned int flags,
ObjectId menu,
ComponentId entry,
int *toolbox_event

186

Menu class

Menu_SetClickShow 12

On entry

RO = flags

R1 = Menu object id
R2 =12

R3 = component id of entry
R4 = object id to show
R5 = show flags: bit 0
if clear show persistently
if set show transiently

On exit

R1-R9 preserved

Use

This method allows the client to specify the object id of an object to show when the
user selects this Menu entry. By setting bit 0 of R5 it is possible to control whether
the show is persistent or not.

If R4 is 0, then no object should be shown.

C veneer

extern _kernel_oserror *menu_set_click_show (unsigned int flags,
ObjectId menu,
ComponentId entry,
ObjectId object,
int show_flags

187

Menu methods

Menu_GetClickShow 13

On entry

RO = flags

R1 = Menu object id
R2=13

R3 = component id

On exit

RO = id of object to be shown
R1 = show flags

Use

This method returns the object id of the object which will be shown when the user
selects this Menu entry. If bit 0 of R1 is set on exit, it means that the object will be
shown transiently.

If no object has been specified, then 0 is returned in RO.

C veneer

extern _kernel_oserror *menu_get_click_show (unsigned int flags,
ObjectId menu,
ComponentId entry,
ObjectId *object,
int *show_flags

188

Menu class

Menu_SetClickEvent 14

On entry

RO = flags

R1 = Menu object id
R2=14

R3 = component id of entry
R4 = Toolbox event code to raise

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user selects the given
Menu entry.

If R4 is 0, then a Menu_Selection Toolbox event will be raised instead.

C veneer

extern _kernel_oserror *menu_set_click_event (unsigned int flags,
ObjectId menu,
ComponentId entry,
int toolbox_event

189

Menu methods

Menu_GetClickEvent 15

On entry

RO = flags

R1 = Menu object id
R2 =15

R3 = component id of entry

On exit

R4 = Toolbox event code

Use

This method reads the Toolbox event to be raised when the user selects the given
Menu entry.

If no event has been specified, then 0 is returned.

C veneer

extern _kernel_oserror *menu_get_click_event (unsigned int flags,
ObjectId menu,
ComponentId entry,
int *toolbox_event

190

Menu class

Menu_SetHelpMessage 16

On entry

RO = flags

R1 = Menu object id
R2 =16

R3 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help
Request message is received for this Menu object. The Toolbox handles the reply
message for you.

If R3 is 0, then the Help Message for this Menu is detached.

C veneer

extern _kernel_oserror *menu_set_help_message (unsigned int flags,
ObjectId menu,
const char *help_message

)

191

Menu methods

Menu_GetHelpMessage 17

On entry
R1 = Menu object id
R2 =17

R3 = pointer to buffer
R4 = size of buffer to hold message text

On exit

R4 = size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Menu object.

C veneer

extern _kernel_oserror *menu_get_help_message (unsigned int flags,
ObjectId menu,
char *buffer,
int buff_size,
int *nbytes

192

Menu class

Menu_SetEntryHelpMessage 18

On entry

RO = flags

R1 = Menu object id
R2 =18

R3 = component id of entry
R4 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help
Request message is received for this Menu entry. The Toolbox handles the reply
message for you.

If R4 is 0, then the Help Message for this Menu entry is detached.

C veneer

extern _kernel_oserror *menu_set_entry_help_message (unsigned int flags,
ObjectId menu,
ComponentId entry,
const char *help_message

193

Menu methods

Menu_GetEntryHelpMessage 19

On entry

RO = flags

R1 = Menu object id
R2=19

R3 = component id of entry
R4 = pointer to buffer
R5 = size of buffer to hold message text

On exit

R5 = size of buffer required for message text (if R4 was 0)
else Buffer pointed at by R4 holds message text
R5 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Menu object.

C veneer

extern _kernel_oserror *menu_get_entry help_message (unsigned int flags,
ObjectId menu,
ComponentId entry,
char *buffer,
int buff_size,
int *nbytes

194

Menu class

Menu_AddEntry 20

On entry

RO = flags (bit 0 set means add the entry before the specified entry)
R1 = Menu object id
R2 =20
R3 = component id of entry after/before which to add this entry
(or -1 to mean at the beginning, -2 to mean at the end)
R4 = pointer to buffer containing a description of the new entry

On exit

RO = component id of added entry
R1-R9 preserved

Use

This method adds a new Menu entry at the specified place in the Menu. The
description of the Menu entry should have a format as specified under the Menu
Templates section.

By default the entry is added after the specified entry whose id is passed in R3, but
the client can specify that it is added before that entry, by setting bit 0 of the flags
word.

If the component id in the template of the Menu entry was specified as -1, then the
Toolbox uses the lowest numbered component id available for this Menu.

C veneer

extern _kernel_oserror *menu_add_entry (unsigned int flags,
ObjectId menu,
ComponentId at_entry,
const char *entry description,
ComponentId *new_entry

195

Menu methods

Menu_RemoveEntry 21

On entry

RO = flags

R1 = Menu object id
R2 =21

R3 = component id of the entry

On exit

R1-R9 preserved

Use

This method removes a Menu entry

C veneer

extern _kernel_oserror *menu_remove_entry (unsigned int flags,
ObjectId menu,
ComponentId entry
)

Menu_GetHeight 22

On entry

RO = flags
R1 = Menu object id
R2 =22

On exit

RO = height of menu work area in OS Units
R1-R9 preserved

Use

This method returns the height of the work area of the given Menu (in OS Units). It
takes into account whether items in the Menu have dashed line separators. This
can be used to accurately position the Menu in a call to Toolbox_ShowObiject.

C veneer

extern _kernel_oserror *menu_get_height (unsigned int flags,
ObjectId menu,
int *height
)

196

Menu class

Menu_GetWidth 23

On entry

RO = flags

R1 = Menu object id

R2 =23

On exit

RO = width of menu work area in OS Units
R1-R9 preserved

Use

This method returns the width of the work area of the given Menu (in OS Units).

C veneer

extern _kernel_oserror *menu_get_width (unsigned int flags,
ObjectId menu,
int *width
)

Menu_SetTitle 24

On entry

RO = flags

R1 = Menu object id
R2 =24

R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Menu.
Note that this has no immediate effect if the Menu is currently being displayed.

C veneer

extern _kernel_oserror *menu_set_title (unsigned int flags,
ObjectId menu,
const char *title

);

197

Menu methods

Menu_GetTitle 25

198

On entry

RO = flags

R1 = Menu object id
R2 =25

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Menu’s title bar.

C veneer

extern _kernel_oserror *menu_get_title (unsigned int flags,
ObjectId menu,
char *buffer,
int buff_size,
int *nbytes

Menu events

Menu class

Menu_AboutToBeShown (0x828c0)

Block

+8 0x828c0 (or client specified event — see Menu Templates on page 201)
+12 flags (as passed in to Toolbox_ShowObject)

+ 16 value as passed in R2 to ToolBox_ShowObject

+ 20... Dblock as passed in R3 to ToolBox_ShowObject

Use

This Toolbox event is raised due to a call to SWI Toolbox_ShowObject on a Menu
object which has bit 0 of its flags word set. It gives the application the opportunity
to tick, fade or change the text/sprite of any Menu entries before the Menu actually
appears on the screen.

This is useful where a shared Menu is being used by many Window objects, each of
which has a state which is reflected in the Menu state.

C data type

typedef struct

{
ToolboxEventHeader hdr;
int show_type;
TopLeft pos;

} MenuAboutToBeShownEvent;

Menu_HasBeenHidden (0x828c1)

Block

+8 0x828c]1 (or client specified event — see Menu Templates on page 201)

Use

This Toolbox event is raised by the Toolbox when Toolbox_HideObiject is called on
a Menu which has the appropriate bit set in its template flags word. It enables a
client application to clear up after a menu has been closed. It is also raised when
clicking outside a menu or hitting Escape.

C data type

typedef struct
{

ToolboxEventHeader hdr;
} MenuHasBeenHiddenEvent;

199

Menu events

200

Menu_SubMenu (0x828c2)

Block

+8 0x828c2
+ 16 x coordinate where the submenu will be shown
+20 vy coordinate where the submenu will be shown

Use

This Toolbox event is raised when the user moves the mouse over a Menu entry’s
submenu arrow, and the client application has not associated any other Toolbox
event with this event. The event is only delivered if the appropriate bit is set in the
menu entry’s flags word.

This Toolbox event is raised by the Menu class.

C data type

typedef struct
{
ToolboxEventHeader hdr;
TopLeft pos;
} MenuSubMenuEvent ;

Menu_Selection (0x828c3)

Block:
+8 0x828c3

Use

This Toolbox event is raised when the user makes a selection on a Menu object,
and the client application has not associated any other Toolbox event with this
event.

This Toolbox event is raised by the Menu class.

C data type

typedef struct
{

ToolboxEventHeader hdr;
} MenuSelectionEvent;

Menu class

Menu Templates

The layout of a Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

The current version for Menu templates is 102.

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type
flags 4 word
title 4 MsgReference
max_title 4 word
help_message 4 MsgReference
max_help 4 word
show_event 4 word
hide_event 4 word
num_entries 4 word

Followed by a list of menu entries, where each entry is:

Field Size in bytes Type

flags 4 word
component_id 4 word

text 4 MsgReference or StringReference
max_text 4 word
click_show 4 StringReference
submenu_show 4 StringReference
submenu_event 4 word
click_event 4 word
help_message 4 MsgReference
max_entry_help 4 word

201

Menu Wimp event handling

Menu Wimp event handling

202

The Menu class responds to certain Wimp events and takes the actions as

described below:

Wimp event
Menu Selection

Mouse Click

User Msg

Action

If there is a click event associated with the given Menu
entry, then that Toolbox event is raised;

if there is an object to be shown for this entry then
show it;

if neither of the above then the Menu_Selection
Toolbox event is raised.

If Adjust is held down, then the currently open Menu is
re-opened in the same place.

(on a dialogue box attached to the Menu)
If Adjust is held down, then the currently open Menu is
re-opened in the same place.

Message_HelpRequest

(while the pointer is over a Menu object) If a help
message is attached to this Menu or Menu entry, then
a reply is sent on the application’s behalf.

Message_MenuWarning
If a submenu event is associated with the given Menu
entry, then this Toolbox event is raised;

if a submenu object has been specified for this
Menu entry, then it is shown by the Toolbox.

if neither of the above, then a Menu_SubMenu
Toolbox event is raised.

Message_MenusDeleted
The Menu which was being shown is marked as hidden
(as if Toolbox_HideObject had been called).

11

User interface

Print Dialogue box class

Print dialogue object is used to allow the user to set a number of print options
(e.g. number of pages, number of copies etc), and then to request that a

document be printed given these options.

When a Print dialogue is created, it has the following components:

[=| LW Il NTX writable fields
/
SL @ From to
radio groups GOpieS /2 | number ranges

Scale e

@ Upright) Sideways __|Draft |- Draft button

save | Cancel | | Print | e Print button

a set of buttons and writable fields giving a page range to print (optional)

a number range giving the number of copies to print (optional)

a radio group consisting of two buttons, indicating whether the printing is to
be done Upright or Sideways (optional).

an action button Save which saves the current print options (optional)

an action button Set Up... which brings up a dialogue box allowing further
print options to be set (optional)

an action button Cancel which closes the dialogue box without printing

a default action button Print which causes a print operation to take place
using these print options

an option button Draft indicating that draft standard printing is to be used

a number range giving a percentage scale factor to apply during printing
(optional).

Pressing Escape cancels the dialogue (as well as clicking on the Cancel button).

203

Application Program Interface

The title bar of the dialogue box displays the name of the currently selected printer
or ‘Unknown printer’ if there is no such printer.

Application Program Interface

All processing of the dialogue box is handled by the Print module, and the client is
informed of any user actions via Toolbox events (PrintDbox_Print,
PrintDbox_SetUp, PrintDbox_DialogueCompleted and PrintDbox_Save).

204

Attributes

Print Dialogue box class

A Print Dialogue object has the following attributes which are specified in its
object template and can be manipulated at run-time by the client application:

Attributes
flags word

from

to

copies

scale

further options

Description
Bit Meaning
0 when set, this bit indicates that a

11

12

PrintDbox_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called for
this object.

when set, this bit indicates that a
PrintDbox_DialogueCompleted event should be
raised when the Print Dialogue object has been
removed from the screen.

when set, this bit indicates generate
PrintDbox_SetUpAboutToBeShown event before
the underlying SetUp object is shown

when set, dialogue box has the All/From/To Page
Range options

when set, dialogue box has the Copies writable
field

when set, dialogue box has the Scale writable field
when set, dialogue box has the Orientation options
(i.e. Upright and Sideways)

when set, dialogue box has Save action button
when set, dialogue box has Set Up ... action button
when set, dialogue box has Draft option button
when set, dialogue box has From/to set from
All/From/to

when set, dialogue box has Sideways (and not
Upright) selected

when set, dialogue box has Draft selected

initial value to put in the From writable field

initial value to put in the to writable field

initial value to put in the Copies number range

initial value to put in the Scale number range

name of the template for a Window object to be displayed
when Setup... is clicked

205

Application Program Interface

Attributes Description

window name of the template for an alternative window to use
instead of the default one (0 means use default)

Manipulating a Print Dialogue object

Creating and deleting a Print Dialogue object
A Print Dialogue object is created using SWI Toolbox_CreateObject.

When a Print Dialogue object is created, the following attached object (see
page 12) will be created (if specified):

e further options.

A Print Dialogue object is deleted using SWI Toolbox_DeleteObject. If it has any
attached objects (see above), these are also deleted, unless the non-recursive bit
is set for this SWI.

The setting of the non-recursive delete bit means that the SetUp dialogue box will
not be deleted.

Showing a Print Dialogue object

When a Print Dialogue object is displayed on the screen using SWI
Toolbox_ShowObiject it has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 +0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate
R3 +8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scrolly offset relative to work area
R3 + 24 Wimp window handle of window to open

behind
-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s
backwindow
2 (topleft) R3 +0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

206

Print Dialogue box class

Before the Print Dialogue box is shown

When the client (or the Toolbox) calls Toolbox_ShowObject on a Print Dialogue
object, a PrintDbox_AboutToBeShown Toolbox event is raised before the dialogue
box becomes visible on the screen (if the appropriate flags bit is set).

This allows the client to set up the contents of the dialogue box appropriately.

Getting and setting printing options

A Print dialogue box contains many fields which are either options or writable
fields. These are:

page range
number of copies
scale factor
orientation

draft.

Each of these components can be read and set dynamically using the following
methods:

PrintDbox_SetPageRangePrintDbox_GetPageRange
PrintDbox_SetCopiesPrintDbox_GetCopies
PrintDbox_SetScalePrintDbox_GetScale
PrintDbox_SetOrientationPrintDbox_GetOrientation
PrintDbox_SetDraftPrintDbox_GetDraft

Responding to action button clicks

When the user clicks a particular action button (or presses Return or Escape), the
client receives one of the following Toolbox events:

e PrintDbox_Save if Save has been clicked.
e PrintDbox_Print if Print has been clicked or Return has been pressed.

e PrintDbox_SetUp if Set Up... has been clicked and there is no specified
Window to be shown.

Getting the Print Dialogue’s title

The string appearing in the Print Dialogue’s title bar is the currently selected
printer (or ‘unknown printer’ if there is no such printer). This string can be read
using the PrintDbox_GetTitle method.

If the Print Dialogue is persistent, and the currently selected Printer is changed,
then the Title Bar will change to reflect this.

207

Print Dialogue Methods

Getting the id of the underlying Window object

The object id of the Window used to implement a Print Dialogue can be obtained
using the PrintDbox_GetWindowID method.

The SetUp Window

It is possible to specify the name of a template to be used for showing an object
when the SetUp... button is pressed. This object is shown in its default place
persistently.

Print Dialogue Methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a Print Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

PrintDbox_GetWindowID 0

On entry

RO = flags

R1 = Print Dbox object id
R2=0

On exit

RO = Window object id for this Print object

Use

This method returns the id of the underlying Window object used to implement
this Print object.

C veneer

extern _kernel_oserror *printdbox_get_window_id (unsigned int flags,
ObjectId printdbox,
ObjectId *window
)

208

Print Dialogue box class

PrintDbox_SetPageRange 1

On entry

RO = flags

R1 = Print Dbox object id
R2=1

R3 = start of page range
R4 = end of page range
On exit

R1-R9 preserved

Use

This method is used to set the page range for a Print Dialogue.
A ‘start’ value of -1 means ‘All’.

C veneer

extern _kernel_oserror *printdbox_set_page_range (unsigned int flags,
ObjectId printdbox,
int start,
int end

PrintDbox_GetPageRange 2

On entry

RO = flags

R1 = Print Dbox object id

R2=12

On exit

RO = start of page range (a ‘start’ value of -1 means ‘All’)

R1 = end of page range

Use

This method is used to return the page range for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_page_range (unsigned int flags,
ObjectId printdbox,
int *start,
int *end

209

Print Dialogue Methods

PrintDbox_SetCopies 3

On entry

RO = flags

R1 = Print Dbox object id
R2=173

R3 = number of copies

On exit

R1-R9 preserved

Use
This method is used to set the number of copies field for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_set_copies (unsigned int flags,
ObjectId printdbox,
int copies
)

PrintDbox_GetCopies 4

On entry

RO = flags

R1 = Print Dbox object id
R2=14

On exit

RO = number of copies to be printed

Use

This method returns the value of the Copies field for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_copies (unsigned int flags,
ObjectId printdbox,
int *copies

);

210

Print Dialogue box class

PrintDbox_SetScale 5

On entry

RO = flags

R1 = Print Dbox object id
R2=5

R3 = percentage value to scale by

On exit

R1-R9 preserved

Use

This method is used to set the scale factor for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_set_scale (unsigned int flags,
ObjectId printdbox,
int scale_factor
)i

PrintDbox_GetScale 6

On entry

RO = flags

R1 = Print Dbox object id
R2=06

On exit

RO = percentage scale factor

Use

This method returns the value of the scale factor for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_scale (unsigned int flags,
ObjectId printdbox,
int *scale_factor

)

211

Print Dialogue Methods

212

PrintDbox_SetOrientation 7

On entry

RO = flags

R1 = Print Dbox object id
R2=17

R3 = non-zero means Sideways, 0 means Upright

On exit

R1-R9 preserved

Use

This method is used to set the orientation for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_set_orientation (unsigned int flags,
ObjectId printdbox,
int orientation
)i

PrintDbox_GetOrientation 8

On entry

RO = flags

R1 = Print Dbox object id
R2=28

On exit

RO = orientation non-zero means Sideways, 0 means Upright

Use

This method returns the orientation for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_orientation (unsigned int flags,
ObjectId printdbox,
int *orientation

)

Print Dialogue box class

PrintDbox_GetTitle 9

On entry

RO = flags

R1 = Print Dbox object id
R2=9

R3 = pointer to buffer to hold title string
R4 = size of buffer to hold title string

On exit

R4 = size of buffer required to hold title string (if R3 was 0)
else buffer pointed at by R3 holds title string
R4 holds number of bytes written to buffer

Use

This method returns the current string used in a Print object’s title bar.

C veneer

extern _kernel_oserror *printdbox_get_title (unsigned int flags,
ObjectId printdbox,
char *buffer,
int buff_size,
int *nbytes

213

Print Dialogue Methods

PrintDbox_SetDraft 10

On entry

RO = flags

R1 = Print Dbox object id
R2 =10

R3 = non-zero means Draft, 0 means ‘non-draft’

On exit

R1-R9 preserved

Use
This method is used to set whether draft printing is used for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_set_draft (unsigned int flags,
ObjectId printdbox,
int draft

PrintDbox_GetDraft 11

On entry

RO = flags

R1 = Print Dbox object id
R2=11

On exit

RO = draft non-zero means Draft, 0 means ‘non-draft’

Use
This method returns whether draft printing is used for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_draft (unsigned int flags,
ObjectId printdbox,
int *draft

214

Print Dialogue box class

Print Dialogue events

The Print module generates the following Toolbox events:

PrintDbox_AboutToBeShown (0x82b00)

Block

+8 0x82b00

+12 flags (as passed in to Toolbox_ShowObject)

+ 16 value which will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box

Use

This Toolbox event is raised just before the Print module is going to show its
underlying Window object.

C data type

typedef struct
{
ToolboxEventHeader hdr;

int show_type;
union
{
TopLeft pos;
WindowShowObjectBlock full;
} info;

} PrintDboxAboutToBeShownEvent;

215

Print Dialogue events

PrintDbox_DialogueCompleted (0x82b01)

Block

+8 0x82b01
+12 flags
Use

This Toolbox event is raised after the Print object has been hidden, either by a
Cancel click, or after a successful print, or by the user clicking outside the dialogue
box (if it is transient) or pressing Escape. It allows the client to tidy up its own state
associated with this dialogue.

C data type

typedef struct
{
ToolboxEventHeader hdr;
} PrintDboxDialogueCompletedEvent;

216

PrintDbox_SetUpAboutToBeShown (0x82b02)

Block

+8 0x82b02

Print Dialogue box class

(note that the ‘self id in the id block will be for the Print Dialogue object,

+ 16 object id of the object about to be shown
not the object which will be shown)

+20 value which will be passed in R2 to ToolBox_ShowObiject

+24... block which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box

Use

This Toolbox event is raised just before the Print module is going to show its
underlying Window object.

C data type

typedef struct

{

ToolboxEventHeader hdr;

ObjectId object_id;
int show_type;
union
{

TopLeft pos;

WindowShowObjectBlock full;
} info;

PrintDboxSetUpAboutToBeShownEvent ;

217

Print Dialogue events

PrintDbox_Save (0x82b03)

Block

+8 0x82b03

+12 flags
bit 0 set means print Sideways (default is Upright)
bit 1 set means print Draft (default is non-draft)

+ 16 page range start (-1 means All)

+20 page range end

+ 24 number of copies

+28 value to scale by (a percentage)

Use

This Toolbox event is raised when the user clicks on the Save button. The client
should save any options associated with this Print Dialogue (usually in a

document which is being edited).

C data type

typedef struct
{
ToolboxEventHeader hdr;

int start_page;
int finish_page;
int copies;

int scale_factor;

} PrintDboxSaveEvent;

PrintDbox_SetUp (0x82b04)

218

Block
+8 0x82b04

Use

This Toolbox event is raised when the user clicks on the Set Up
no dialogue box associated with this button.

C data type

typedef struct
{

ToolboxEventHeader hdr;
} PrintDboxSetUpEvent;

... button, if there is

Print Dialogue box class

PrintDbox_Print (0x82b05)

Block
+8 0x82b05
+12 flags

bit 0 set means print Sideways (default is Upright)
bit 1 set means print Draft (default is non-draft)

+ 16 page range start (-1 means All)

+ 20 page range end

+ 24 number of copies

+ 28 value to scale by (a percentage)

Use

This Toolbox event is raised when the user clicks on the Print button or presses
Return.

C data type

typedef struct
{
ToolboxEventHeader hdr;

int start_page;
int finish_page;
int copies;

int scale_factor;

} PrintDboxPrintEvent;

219

Print Dialogue templates

Print Dialogue templates

220

The layout of a Print template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type
flags 4 word
from 4 word
to 4 word
copies 4 word
scale 4 word
further_options 4 StringReference
window 4 StringReference

Underlying window template

The Window object used to implement a Print dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82b000.
Component id Details
0 action button (Print) this should be marked as
the ‘default’ action button
1 action button (Save) this should be marked as a
‘local’ action button
2 action button (Cancel) this should be marked as
the ‘cancel action button
3 radio button (From/To) this is selected to allow
page ranges to be printed
4 radio button (All) selected for all page print
5&6 writable field (From) these are used by the user
writable field (To) to enter a page range

Component id

7

10
11
12

13
14
15
16

number range (Copies)

number range (Scale)

radio button (Upright)
radio button (Sideways)
option button (Draft)
action button (SetUp...)

Print Dialogue box class

these are used by the user
to enter the number of
copies

these are used by the user
to specify a scale

selected for portrait
selected for landscape
selected for draft

this is used to bring up a
Window of further options

221

Print Dialogue Wimp event handling

Print Dialogue Wimp event handling

222

Wimp event
Mouse Click

Key Pressed

User Message

Action
on Print button then raise PrintDbox_Print Toolbox
event
on Cancel button then raise
PrintDbox_DialogueCompleted Toolbox event
on Save button then raise PrintDbox_Save Toolbox
event
on Setup... then raise a
PrintDbox_SetUpAboutToBeShown,
then show the specified Window object, or raise a
PrintDbox_SetUp Toolbox event if there is no such
Window
on All (pages) and All is off then
set All on
set From off
and shade the writable fields
on From and From is off then
set From on
set All to off
and unshade the writable fields
on Copies or Scale up/down arrows then
increment/decrement values
on Upright then set Upright on and Sideways off
on Sideways then set Sideways on and Upright off
on Draft then toggle state of option button
if key is Return raise PrintDbox_Print Toolbox event
if key is Escape act as if Cancel has been clicked
Window_HasBeenHidden Toolbox event
hide the dialogue box, and raise a
PrintDbox_DialogueCompleted Toolbox event
Message_HelpRequest
return help message to sender

12

User interface

Prog Info Dialogue box class

Prog Info dialogue object is used to display information about the client

application in a dialogue box.

A Prog Info Dialogue has the following information held in its dialogue box:

About this program

name — p Name |

Edit

purpose —»~ | Purpose |

Text editor

author —» | Author |

@ Acorn Computers Ltd, 1993

licence type ——» | Licence |

Single User

version —» | Version |

1.45 (09-Jul-93)

e the name of the application (taken from the message whose tag is

‘_TaskName’)
the purpose of the application

the author of the application

the version of the application.

the licence type of the application (optional)

All of the above are display field gadgets.

The last of these fields can be set dynamically by the client at run-time.

This gives the simplest of Prog Info Dialogue boxes. If the client wishes to use

further fields, or wishes to customise the dialogue box, then there is a facility for
including the name of a different template to use rather than the standard Prog

Info one.

223

Application Program Interface

Application Program Interface

Attributes

A Prog Info object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description
flags word Bit Meaning
0 when set, this bit indicates that a

Proginfo_AboutTobeShown event should be
raised when SWI Toolbox_ShowObiject is called
for this object.

1 when set, this bit indicates that a
Proginfo_DialogueCompleted event should be
raised when the ProgInfo object has been
removed from the screen.

2 when set, include a licence type field in the
dialogue box
title alternative title bar string to ‘About this program’
(0 means use default title)

max title length this gives the maximum length in bytes of title text
which will be used for this Prog Info dialogue’s title bar

purpose a string giving the purpose of this application

author a string giving the author of this application

licence type an integer giving the licence type of the application
version a string giving version information for this application
window the name of an alternative window template to use

instead of the default one (0 means use default)

Manipulating a Prog Info object

Creating and deleting a Prog Info object

A Prog Info object is created using SWI Toolbox_CreateObject.
When this object is created it has no attached objects (see page 12).
A Prog Info object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Prog Info
objects.

224

Showing a Prog Info object

Prog Info Dialogue box class

When a Prog Info object is displayed on the screen using SWI Toolbox_ShowObject

it has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3+0
R3 +4
R3+8
R3+ 12
R3+ 16
R3 + 20
R3 + 24
behind

2 (topleft) R3+0
R3+4

Changing the version string

visible area minimum x coordinate
visible area minimum y coordinate
visible area maximum x coordinate
visible area maximum y coordinate
scroll x offset relative to work area

scroll y offset relative to work area
Wimp window handle of window to open

-1 means top of stack

-2 means bottom of stack

-3 means the window behind the Wimp’s
backwindow

visible area minimum x coordinate
visible area minimum y coordinate

Most of the fields in a Prog Info object will remain unchanged at run-time.

The client may wish to set and read the version string field at run-time. This is done
using the Proglnfo_SetVersion/Proginfo_GetVersion methods.

Setting the licence type

If the client wishes to set and read the licence type displayed in the Prog Info
dialogue box, then it can use the Proginfo_SetLicenceType and
ProgInfo_GetLicenceType methods (described on page 229).

Licence types are one of:
public domain
single user

single machine

site

network

authority.

225

Prog Info methods

Prog Info methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a Prog Info Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Proginfo_GetWindowlID 0

On entry

RO = flags
R1 = Prog Info object id
R2=0

On exit

RO = Window object id for this Prog Info object

Use

This method returns the id of the underlying Window object used to implement
this Prog Info object.

C veneer

extern _kernel_oserror *proginfo_get_window_id (unsigned int flags,
ObjectId proginfo,
ObjectId *window
)

226

Prog Info Dialogue box class

Proginfo_SetVersion 1

On entry

RO = flags

R1 = Prog Info object id
R2=1

R3 = pointer to buffer holding version string (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the version string used in the Prog Info Dialogue’s Window.

C veneer

extern _kernel_oserror *proginfo_set_version (unsigned int flags,
ObjectId proginfo,
const char *version_string

)

227

Prog Info methods

Proginfo_GetVersion 2

228

On entry

RO = flags

R1 = Prog Info object id
R2=2

R3 = pointer to buffer to hold version string
R4 = size of buffer to hold version string

On exit

R4 = size of buffer required to hold version string (if R3 was 0)
else buffer pointed at by R3 holds version string
R4 holds number of bytes written to buffer

Use

This method returns the current version string used in a Prog Info object.

C veneer

extern _kernel_oserror *proginfo_get_version (unsigned int flags,
ObjectId proginfo,
char *buffer,
int buff_size,
int *nbytes

Prog Info Dialogue box class

Proginfo_SetLicenceType 3

On entry

RO = flags

R1 = Prog Info object id
R2=73

R3 = licence type
0 = public domain
1 = single user
2 = single machine
3 = site
4 = network
5 = authority

On exit

R1-R9 preserved

Use

This method sets the licence type used in the Prog Info Dialogue’s Window.

C veneer

extern _kernel_oserror *proginfo_set_licence_type (unsigned int flags,
ObjectId proginfo,
int licence_type
)

229

Prog Info methods

Proginfo_GetLicenceType 4

On entry

RO = flags
R1 = Prog Info object id
R2=14

On exit

RO = licence type of application
0 = public domain
1 = single user
2 = single machine
3 = site
4 = network
5 = authority

Use

This method returns the current licence type used in a Prog Info object.

C veneer

extern _kernel_oserror *proginfo_get_licence_type (unsigned int flags,
ObjectId proginfo,
int *licence_type

)

230

Prog Info Dialogue box class

Proginfo_SetTitle 5

On entry

RO = flags

R1 = Prog Info object id
R2=5

R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Prog Info
dialogue.

C veneer

extern _kernel_oserror *proginfo_set_title (unsigned int flags,
ObjectId proginfo,
const char *title

)

Proginfo_GetTitle 6

On entry

RO = flags

R1 = Prog Info object id
R2=26

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Prog Info dialogue’s title bar.

231

Prog Info events

C veneer

extern _kernel_oserror *proginfo_get_title (unsigned int flags,
ObjectId proginfo,
char *buffer,
int buff_size,
int *nbytes

Prog Info events

The Prog Info module generates the following Toolbox events:

Proginfo_AboutToBeShown (0x82b40)

Block

+38 0x82b40

+12 flags (as passed in to Toolbox_ShowObject)

+ 16 value which will be passed in R2 to ToolBox_ShowObject

+20... block which will be passed in R3 to ToolBox_ShowObject for the
underlying dialogue box

Use

This Toolbox event is raised just before the Prog Info module is going to show its
underlying Window object.

C data type

typedef struct
{
ToolboxEventHeader hdr;

int show_type;
union
{
TopLeft pos;
WindowShowObjectBlock full;
} info;

} ProgInfoAboutToBeShownEvent ;

232

Prog Info Dialogue box class

Proginfo_DialogueCompleted (0x82b41)

Block

+8 0x82b41
+ 12 flags
(none yet defined)

Use

This Toolbox event is raised after the Prog Info object has been hidden, either by
the user clicking outside the dialogue box or pressing Escape. It allows the client
to tidy up its own state associated with this dialogue.

C data type

typedef struct
{
ToolboxEventHeader hdr;
} ProgInfoDialogueCompletedEvent;

Prog Info templates

The layout of a Prog Info template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference
max-title 4 word

purpose 4 MsgReference
author 4 MsgReference
licence_type 4 word

version 4 MsgReference
window 4 StringReference

233

Prog Info Wimp event handling

Underlying window template

The Window object used to implement a Prog Info dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets
Component ids are derived by adding to 0x82b400.
Component id Details
0 display field (Name of Application)
1 display field (Purpose)
2 display field (Author)
3 display field (Licence Type)
4 display field (Version)
5 label (name)
6 label (purpose)
7 label (author)
8 label (licence)
9 label (version)

Prog Info Wimp event handling

Wimp event Action

Open Window request show the dialogue box
Key Click if Escape then cancel dialogue
User Message Message_MenusDeleted

hide the dialogue box

234

13

User interface

Quit Dialogue box class

Quit Dialogue box is used by the client application when the user attempts to
quit the application or shut down the computer whilst there is still unsaved
data.

A Quit Dialogue object is used to warn the user of quitting without saving unsaved
data.

The dialogue box which appears on the screen has a number of components:

title bar ——» Artist
message — 2 Files modified
Qut| | cancel|
Quit button ” \ Cancel button

e atitle bar (by default containing the name of the application, i.e. the message
whose tag is '_TaskName’)

® a message stating (by default) that there is unsaved data
e two action buttons:
e a Cancel button (default action button)
e a Quit button.
The user sees the following behaviour:
e if they click on Quit, the application quits

e if they click on Cancel (or press Return or Escape), the application returns to
normal operation.

235

Application Program Interface

Application Program Interface

236

When a Quit object is created, it has a number of optional components:
e an alternative title bar string instead of the client’'s name
® an alternative message to use in the dialogue box

o the name of an alternative template to use for the underlying Window object.

If the dialogue box is opened as a transient dialogue box, then it closes when the
user clicks outside the box.

Just before the Quit dialogue box is shown on the screen, the client is delivered a
Quit_AboutToBeShown Toolbox event (if enabled by the appropriate bit in the
flags).

Once the dialogue box is displayed on the screen, the Quit module handles events
for it, and raises a number of Toolbox events to indicate what choice the user has
made. These are Quit_DialogueCompleted, Quit_Cancel and Quit_Quit
(respectively).

Attributes

A Quit object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes Description
flags word Bit Meaning
0 when set, this bit indicates that a

Quit_AboutToBeShown event should be raised
when SWI Toolbox_ShowObiject is called for this
object.

1 when set, this bit indicates that a
Quit_DialogueCompleted event should be raised
when the Quit object has been removed from the
screen.

title alternative title to use instead of client’'s name
(0 means default title)

max title length this gives the maximum length in bytes of title text
which will be used for this object

message the string to use as the message in the Quit dialogue
box

(0 means default message)

Quit Dialogue box class

Attributes Description

max message maximum length of string used in dialogue’s message
field

window alternative window template to use instead of the
default one

Manipulating a Quit object
Creating and deleting a Quit object
A Quit object is created using SWI Toolbox_CreateObject.
When this object is created it has no attached objects (see page 12).
A Quit object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Quit
objects.

Showing a Quit object

When a Quit object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 +0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate
R3 +8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open

behind
-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s
backwindow
2 (topleft) R3 +0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

237

Quit methods

Quit methods

Changing the Quit Dialogue’s message

When a Quit Dialogue object is created it has a default message warning the user
that he has unsaved data which will be lost if he quits the application.

This can be set and read dynamically using the Quit_SetMessage and
Quit_GetMessage methods.

Getting the id of the underlying window for a Quit Dialogue

The Window object id of the Window object used to implement the Quit Dialogue
can be obtained by using the Quit_GetWindowID method.

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word (which is zero unless otherwise stated)
R1 being a Quit Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Quit_GetWindowlID 0

238

On entry

RO = flags
R1 = Quit object id
R2=0

On exit

RO = Window object id for this Quit object

Use

This method returns the id of the underlying Window object used to implement
this Quit object.

C veneer

extern _kernel_oserror *quit_get_window_id (unsigned int flags,
ObjectId quit,
ObjectId *window
)

Quit Dialogue box class

Quit_SetMessage 1

On entry

RO = flags

R1 = Quit object id
R2=1

R3 = pointer to buffer holding new message (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the message used in the Quit Dialogue’s Window.

C veneer

extern _kernel_oserror *quit_set_message (unsigned int flags,
ObjectId quit,
const char *message
)i

239

Quit methods

240

Quit_GetMessage 2

On entry

RO = flags

R1 = Quit object id
R2=2

R3 = pointer to buffer to hold message
R4 = size of buffer to hold message

On exit

R4 = size of buffer required to hold message (if R3 was 0)
else buffer pointed at by R3 holds message
R4 holds number of bytes written to buffer

Use

This method returns the current message used in a Quit object.

C veneer

extern _kernel_oserror *quit_get_message (unsigned int flags,
ObjectId quit,
char *buffer,
int buff_size,
int *nbytes

Quit Dialogue box class

Quit_SetTitle 3

On entry

RO = flags

R1 = Quit object id
R2=13

R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Quit
dialogue.

C veneer

extern _kernel_oserror *quit_set_title (unsigned int flags,
ObjectId quit,
const char *title

241

Quit methods

Quit_GetTitle 4

On entry

RO = flags

R1 = Quit object id
R2=14

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Quit dialogue’s title bar.

C veneer

extern _kernel_oserror *quit_get_title (unsigned int flags,
ObjectId quit,
char *buffer,
int buff_size,
int *nbytes

242

Quit Dialogue box class

Quit events

The Quit module generates the following Toolbox events:

Quit_AboutToBeShown (0x82a90)

Block

+8 0x82a90

+12 flags (as passed in to Toolbox_ShowObject)

+ 16 value which will be passed in R2 to ToolBox_ShowObiject

+20... block which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box

Use

This Toolbox event is raised just before the Quit module is going to show its
underlying Window object.

C data type

typedef struct

{
ToolboxEventHeader hdr;

int show_type;
union
{
TopLeft pos;
WindowShowObjectBlock full;
} info;

} QuitAboutToBeShownEvent;

243

Quit events

Quit_Quit (0x82a91)

Block
+8 0x82a91

Use
This Toolbox event is raised when the user clicks on the Quit Button.

C data type

typedef struct
{
ToolboxEventHeader hdr;

} QuitQuitEvent;

Quit_DialogueCompleted (0x82a92)

Block

+38 0x82a92
+12 flags
(none yet defined)

Use

This Toolbox event is raised after the Quit object has been hidden, either by a
Cancel click, or a Quit click, or by the user clicking outside the dialogue box (if it
was opened transiently) or pressing Escape. It allows the client to tidy up its own
state associated with this dialogue.

C data type

typedef struct
{
ToolboxEventHeader hdr;

} QuitDialogueCompletedEvent;

244

Quit Dialogue box class

Quit_Cancel (0x82a93)

Quit templates

Block
+8 0x82a93

Use

This Toolbox event is raised when the user clicks on the Cancel button or presses
Return or Escape.

C data type

typedef struct
{
ToolboxEventHeader hdr;

} QuitCancelEvent;

The layout of a Quit template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference
max_title 4 word

message 4 MsgReference
max_message 4 word

window 4 StringReference

245

Quit Wimp event handling

Underlying window template

The Window object used to implement a Quit Dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.
Gadgets
Component Ids are derived by adding 0x82a900:

Component id Details

0 button

1 action button (Quit)

2 action button (Cancel) must be marked as default

and Cancel action button

Quit Wimp event handling

Wimp event Action

Mouse Click on Quit button raise Quit_Quit and
Quit_DialogueCompleted (if enabled) Toolbox event
on Cancel button raise Quit_Cancel and
Quit_DialogueCompleted (if enabled) Toolbox event

Key Pressed if key is Return raise Quit_Cancel Toolbox event
if key is Escape act as if Cancel had been pressed

246

14

User interface

SaveAs Dialogue box class

bjects of the Save As Dialogue class are used to display a standard (or

customised) Save As dialogue box, and to handle the drag of the ‘file icon’ to
its destination, and to request the client application to do the save operation.
Most of the Wimp message protocol is hidden from the client.

A Save As Dialogue object is used to allow the user to drag an icon representing a
document from a dialogue box to another application or to a directory display.

When a Save As Dialogue object is created, it has a number of components:

title bar string —— » Save as

/| <| —— default filetype
=5y

< default filename

Selection button — __| selection
optional
(op) Gancell | Save[

Cancel button Save button

It is possible to specify the following:

e adefault filename to use in the Save As dialogue box

e adefault filetype to use in the Save As dialogue box

® astring to use in the dialogue box’s title bar, instead of ‘Save as’.
°

the name of a Window template to use instead of the Save As module’s
internal Window template.

The default Save As dialogue box, has a draggable sprite to represent the data to
be saved, a writable field giving the name to save the data under, a Save (default)
action button, a Cancel action button, and an option button saying whether the
whole data or just a selection should be saved. If the client wishes to customise
the dialogue box, then the above components must be present in that dialogue
box, and must have the same component ids.

247

Application Program Interface

If the dialogue box is opened as a transient dialogue box, then it closes when the
user clicks outside the box.

The user can interact with the Save As dialogue box in the following ways:

o clicking Cancel or pressing Escape will close the dialogue box, and cancel the
Save.

o clicking Save (or pressing Return) will save the data in a file whose name is
given by the contents of the Writable Field (if it is a full pathname).

o dragging the sprite to its destination will save the data to that destination,
with the ‘leaf’ part of its name.

When the Selection option button is clicked on, then the filename will change to
the string ‘Selection’.

Application Program Interface

248

Once the Save As dialogue box is on display, the Save As module handles much of
the messaging protocols associated with saving to another application or to a
directory display. The client no longer deals in the normal Wimp protocols for data
transfer, but instead responds to Toolbox events raised by the Save As module. In
fact in the very simplest of cases, the client does no more than just provide a
pointer to the data to be saved, and leaves the rest up to the Save As module.

Attributes

SaveAs Dialogue box class

A Save As object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes
flags

filename

filetype
title

max title length

window

Manipulating a SaveAs object

Description

Bit
0

Meaning

when set, this bit indicates that a
SaveAs_AboutToBeShown event should be
raised when SWI Toolbox_ShowObiject is called
for this object.

when set, this bit indicates that a
SaveAs_DialogueCompleted event should be
raised when the Save As object has been
removed from the screen.

when set, do not include the Selection option
button in the dialogue box. This is used by
clients where there is no concept of a current
selection.

when set, handle the SaveAs operation entirely
in the SaveAs module, from the supplied buffer
when set, client is willing to support RAM
transfers

a message string which gives the default filename to use
in the writable field

an integer giving the RISC OS type of the file being saved

a string to use for the Save As dialogue box title bar,
instead of ‘Save as’ (0 means use the default string)
this gives the maximum length in bytes of title text
which will be used for this object

an alternative window template to use instead of the
default one (null implies default)

Creating and deleting a SaveAs object

A SaveAs object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A SaveAs object is deleted using SWI Toolbox_DeleteObject.

249

Application Program Interface

The setting of the non-recursive delete bit does not have a meaning for SaveAs
objects.

Showing a SaveAs object

When a SaveAs object is displayed on the screen using SWI Toolbox_ShowObiject it
has the following behaviour:

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 +0 visible area minimum x coordinate
R3 +4 visible area minimum y coordinate
R3 +8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open

behind
-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp's
backwindow
2 (topleft) R3+0 visible area minimum x coordinate

R3 +4 visible area minimum y coordinate

Setting the SaveAs Dialogue box’s filename and filetype

When a SaveAs Dialogue object is created, it is given the filename from its
template to use in its writable field, and a filetype which will be used to look up
and use a sprite (from the Wimp sprite pool) whose name is £ile_HHH, where
HHH is a 3-digit hex representation of the filetype. If such a sprite does not exist
then a sprite called file_xxx is used instead. For saving directories and
applications the filetype values 0x1000 and 0x2000 should be used. In the latter
case, the standard ‘App’ sprite is used.

Both of these attributes can be set and read dynamically using the
SaveAs_SetFileName/SaveAs_GetFileName and SaveAs_SetFileType/
SaveAs_GetFileType methods.

250

SaveAs Dialogue box class

Summary of how to save data from a Toolbox client

There are essentially three sorts of application:

® Type |1 —an application which will allow the Toolbox to do data saving entirely
on its behalf.

® Type 2 —an application which needs to do the data saving itself, but is not
willing to support RAM transfers.

e Type 3 —an application which needs to do the data saving itself, and is willing
to support RAM transfers.

Let us look at how a client should react to each Toolbox event which it will receive.
Notice that these are the only events which the client needs to watch for to achieve
the SaveAs operation; there is no need to watch for user drags and window events,
and no need to watch for Message_ RAMFetch events. The following is some
pseudo-C showing how a client might process Toolbox events delivered to it:

Type 1

switch (toolbox_event_code)
{
case SaveAs_AboutToBeShown:
/* call SaveAs_SetFileSize, SaveAs_SetFileName, SaveAs_SetFileType
and SaveAs_SelectionAvailable if necessary.
Also call SaveAs_SetDataAddress to tell the Toolbox
the address and size of data to be saved.
*/
break;

case SaveAs_SaveCompleted:
/* maybe mark a document as ‘unmodified’ */
break;

case SaveAs_DialogueCompleted:
/* do any tidying up
maybe delete the SaveAs object if desired
*/
break;

default:
break;

Type 2

switch(toolbox_event_code)
{
case SaveAs_AboutToBeShown:
/* call SaveAs_SetFileSize, SaveAs_SetFileName, SaveAs_SetFileType
and SaveAs_SelectionAvailable if necessary
*/
break;

251

Application Program Interface

case SaveAs_SaveToFile:
/* save the data to the given filename
and call SaveAs_FileSaveCompleted
*/
break;

case SaveAs_SaveCompleted:
/* maybe mark a document as ‘unmodified’ */

break;

case SaveAs_DialogueCompleted:
/* do any tidying up
maybe delete the SaveAs object if desired
*/
break;

default:
break;

Type 3

switch(toolbox_event_code)
{
case SaveAs_AboutToBeShown:
/* SaveAs_SetFileSize, call SaveAs_SetFileName, SaveAs_SetFileType
and SaveAs_SelectionAvailable if necessary
*/
break;

case SaveAs_SaveToFile:
/* save the data to the given filename
and call SaveAs_FileSaveCompleted
*/
break;

case SaveAs_FillBuffer:
/* 1f (address of buffer == 0)
allocate a buffer for RAM transfer
if (more data to go)
{
fill buffer with data
call SaveAs_BufferFilled

*/
break;

case SaveAs_SaveCompleted:
/* maybe mark a document as ‘unmodified’ */

break;

case SaveAs_DialogueCompleted:
/* do any tidying up
maybe delete the SaveAs object if desired
*/
break;

252

SaveAs Dialogue box class

default:
break;

}

Setting the File Size for the SaveAs Dialogue

In the file transfer protocol under RISC OS, the sender of a file must specify an
estimated size in bytes of the file being saved. This should be set using the
SaveAs_SetFileSize method, and can be read using the SaveAs_GetFileSize
method. This value will be used in the initial Message_DataSave message which
will be sent by the SaveAs module when the file icon is dragged to its destination.

Enabling/disabling the Selection option button

In the dialogue box used to implement the SaveAs Dialogue object, there is an
option button which is used to show whether the Save operation is to be done on
the whole file or just a selection. Handling this button is done entirely by the
SaveAs module. It is, however, the responsibility of the client to either enable or
disable this option button, depending on whether there is a selection currently in
existence. This will cause the button to appear greyed out when no selection exists.

The SaveAs module provides the method SaveAs_SelectionAvailable for this use.
The client should typically use this method in response to the
SaveAs_AboutToBeShown Toolbox event.

Before the SaveAs Dialogue box is shown

Once a SaveAs dialogue has been started by using Toolbox_ShowObiject on a
SaveAs Dialogue object, a SaveAs dialogue box will appear on the screen. By
setting an appropriate bit in the SaveAs Dialogue object’s flags word, the client will
be sent a SaveAs_AboutToBeShown Toolbox event before the dialogue box
appears. This allows the client to set any relevant state like a different filename, or
filetype etc.

Cancelling the dialogue

If the user clicks on the Cancel button or presses Escape (or clicks outside the
SaveAs dialogue box if it was transient), then the SaveAs module delivers a
SaveAs_DialogueCompleted Toolbox event to the client application (if enabled).
This allows the client to update any of its data structures and to clean up any state
associated with this dialogue.

Saving handled entirely by the SaveAs module

If the client is able to supply the data to be saved in a contiguous block of memory
(i.e. client type 1), then by setting bit 3 in the SaveAs object’s flags word, the client
can request that the SaveAs module handles the entire Save operation itself. To do

253

Application Program Interface

254

this, the client must supply the address of the data (and its size), using the
SaveAs_SetDataAddress method. Typically the client will do this when it receives
the SaveAs_AboutToBeShown Toolbox event.

The SaveAs module will then conduct the rest of the dialogue. If it receives a
Message_RAMFetch message from the receiver, it will do a RAM transfer on behalf
of the client; otherwise it will do a scrap transfer (or save directly to file if the
destination is a filing system). All of this is transparent to the client if bit 3 is set in
the SaveAs object’s flags word.

Saving to a file

If bit 3 of the SaveAs object’s flags word is not set (thus indicating that the Toolbox
cannot do a save operation on the client’s behalf), then when the SaveAs module
wants the application to save to a file, it will deliver a SaveAs_SaveToFile Toolbox
event. On receipt of this event, the client (type 2 always and type 3 when necessary)
should save its data into the file whose name is given in the event block. The client
should then use the SaveAs_FileSaveCompleted method to inform the SaveAs
module whether the Save was successful or not. This must be done before the next
call to SWI Wimp_Poll, since the SaveAs module will assume this.

The SaveAs_SaveToFile event will be delivered if
e the user clicks on Save
® a WimpSScrap transfer is being used

o the user has dragged the file icon onto a directory display.

Saving via RAM transfer

If bit 3 of the SaveAs object’s flags word is not set (thus indicating that the Toolbox
cannot do a save operation on the client’s behalf), then the client (type 3 only) may
wish to help support RAM transfers if they are requested by the receiving task. This
is indicated by setting bit 4 of the SaveAs object’s flags word.

The client must supply a buffer, into which it places data ready for transmission to
the receiving task.

The SaveAs module will deal with all subsequent RAMFetch requests, and will call
SWI Wimp_TransferBlock to do the data transfer, and will reply to the receiver using
Message_RAMTransmit.

The client will receive SaveAs_FillBuffer Toolbox events when the buffer has been
transmitted, and on receipt of such events should fill the buffer and call the
SaveAs_BufferFilled method. If the field in the SaveAs_FillBuffer event giving the
address of the buffer is 0, then the client has not yet supplied a buffer, and they
should allocate one. Each SaveAs_FillBuffer Toolbox event contains an indication

SaveAs Dialogue box class

of how many bytes have been transmitted so far during the transfer. As soon as the
number of bytes which the client writes into the buffer is less than the size of the
buffer, the SaveAs module assumes that the transfer is complete.

Successful completion of a Save operation

When a Save operation has been successfully completed (i.e. the data has been

saved), the SaveAs module will send a SaveAs_SaveCompleted Toolbox event to
the client, and will hide the SaveAs object, unless the user has clicked Adjust on
the Save button.

One field in the event block passed back to the client is a one-word indication of
whether the destination was a ‘safe’ place (like a filing system) or ‘unsafe’ (like
another application). The client may choose to use this value to decide whether to
mark the data as ‘un-modified’, if the client is an editor.

If the original save operation was started by the user dragging the file icon from the
SaveAs dialogue box, then the SaveAs_SaveCompleted event block also contains
the Wimp message reference number of the Message_DataSave sent by the SaveAs
module, to allow the client to use in conjunction with any Message_DataSaved
replies.

Completion of the SaveAs dialogue

When the SaveAs module has hidden its dialogue box at the end of a dialogue, it
delivers a SaveAs_DialogueCompleted Toolbox event to the client, with an
indication of whether a successful save occurred during the dialogue.

Error handling

Any errors referring to the SaveAs dialogue box itself will be reported to the user by
the SaveAs module. For example, if there is only a leafname in the writable field,
and the user clicks on Save, then the SaveAs module will display an error box
saying ‘To save, drag the icon to a directory display’.

The SaveAs module will also report any errors which occur while it is carrying out a
Save operation.

The client should report (via SWI Wimp_ReportError), any errors which occur if it is
requested to save to a given filename.

255

Save As methods

Save As methods
The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

RO holding a flags word

R1 being a Save As Dialogue object id

R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

SaveAs_GetWindowlID 0

On entry

RO = flags
R1 = Save As object id
R2=0

On exit

RO = Window object id for this Save As object

Use

This method returns the id of the underlying Window object used to implement
this Save As object.

C veneer

extern _kernel_oserror *saveas_get_window_id (unsigned int flags,
ObjectId saveas,
ObjectId *window
);

256

SaveAs Dialogue box class

SaveAs_SetTitle 1

On entry

RO = flags

R1 = Save As object id
R2=1

R3 = pointer to text string to use

On exit

R1-R9 preserved

Use
This method sets the text which is to be used in the title bar of the given Save As
dialogue.

C veneer

extern _kernel_oserror *saveas_set_title (unsigned int flags,
ObjectId saveas,
const char *title

257

Save As methods

SaveAs_GetTitle 2

258

On entry

RO = flags

R1 = Save As object id
R2=2

R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Save As dialogue’s title bar.

C veneer

extern _kernel_oserror *saveas_get_title (unsigned int flags,
ObjectId saveas,
char *buffer,
int buff_size,
int *nbytes

SaveAs Dialogue box class

SaveAs_SetFileName 3

On entry

RO = flags

R1 = Save As object id
R2=13

R3 = pointer to filename to use in writable field

On exit

R1-R9 preserved

Use

This method sets the filename which is to be used in the Save As object’s writable
field.

C veneer

extern _kernel_oserror *saveas_set_file_name (unsigned int flags,
ObjectId saveas,
const char *file_name

)

259

Save As methods

SaveAs_GetFileName 4

On entry

RO = flags

R1 = Save As object id
R2=4

R3 = pointer to buffer to return the filename in (or 0) R4 =size of buffer

On exit

R4 = size of buffer required to hold the filename (if R3 was 0)
else Buffer pointed to by R3 contains filename
R4 holds number of bytes written to buffer

Use

This method returns the filename displayed in this Save As object’s writable field.

C veneer

extern _kernel_oserror *saveas_get_file_name (unsigned int flags,
ObjectId saveas,
char *buffer,
int buff_size,
int *nbytes

260

SaveAs Dialogue box class

SaveAs_SetFileType 5

On entry

RO = flags

R1 = Save As object id
R2=5

R3 = filetype

On exit

R1-R9 preserved

Use

This method is used to set the filetype for this Save As object, and hence the sprite
which will be displayed in the dialogue box.

C veneer

extern _kernel_oserror *saveas_set_file_type (unsigned int flags,
ObjectId saveas,
int file_type
)

SaveAs_GetFileType 6

On entry

RO = flags

R1 = Save As object id
R2=26

On exit

RO = filetype

Use

This method is used to get the filetype of this Save As object.

C veneer

extern _kernel_oserror *saveas_get_file_type (unsigned int flags,
ObjectId saveas,
int *file_type
)

261

Save As methods

SaveAs_SetFileSize 7

On entry

RO = flags

R1 = Save As object id
R2=17

R3 = file size in bytes

On exit

R1-R9 preserved

Use

This method is used to set the estimated file size in bytes for this Save As Dialogue.
This will be used in a Message_DataSave message when the file icon is dragged to
its destination.

C veneer

extern _kernel_oserror *saveas_set_file_size (unsigned int flags,
ObjectId saveas,
int file_size
)

SaveAs_GetFileSize 8

On entry

RO = flags

R1 = Save As object id
R2=28

On exit

RO = file size

Use

This method is used to get the file size of this Save As object.

C veneer

extern _kernel_oserror *saveas_get_file_size (unsigned int flags,
ObjectId saveas,
int *file_size

);

262

SaveAs Dialogue box class

SaveAs_SelectionAvailable 9

On entry

RO = flags

R1 = Save As object id
R2=9

R3 = non-zero means selection is available, otherwise it is not available

On exit

R1-R9 preserved

Use

This method is used to indicate to the Save As module whether there is a current
selection in existence. If there is a selection, then the Selection option button will
be enabled (i.e. the user can click on it), if not the Selection option button will be
greyed out.

If the Save As object has no Selection option button then an error is returned.

C veneer

extern _kernel_oserror *saveas_selection_available (unsigned int flags,
ObjectId saveas,
int selection
)

263

Save As methods

SaveAs_SetDataAddress 10

264

On entry

RO = flags

R1 = Save As object id
R2 =10

R3 = address of contiguous block of data which is to be saved

R4 = size of data

R5 = address of contiguous block of data, which is the current selection
R6 = size of selection

On exit

R1-R9 preserved

Use

This method indicates to the Save As module the address of a contiguous block of
memory containing the data to be saved. It is used if the client wishes the entire
Save operation to be carried out by the Save As module. It is typically called in
response to a SaveAs_SaveAboutToBeShown Toolbox event. If there is a current
selection, then its address and size should also be passed to this method.

Note: This method is only suitable for Type 1 clients.

C veneer

extern _kernel_oserror *saveas_set_data_address (unsigned int flags,
ObjectId saveas,
void *data,
int data_size,
void *selection,
int selection_size

SaveAs Dialogue box class

SaveAs_BufferFilled 11

On entry

RO = flags

R1 = Save As object id
R2=11

R3 = address of buffer which has been filled
R4 = number of bytes written into buffer

On exit

R1-R9 preserved

Use

This method is used to respond to a SaveAs_FillBuffer Toolbox event; it confirms
that the requested buffer fill has taken place, and states the number of bytes
written to the buffer.

C veneer

extern _kernel_oserror *saveas_buffer_filled (unsigned int flags,
ObjectId saveas,
void *buffer,
int bytes_written

265

Save As methods

SaveAs_FileSaveCompleted 12

On entry

RO = flags bit 0 set means that the save was successful
R1 = Save As object id

R2=12

R3 = filename where the client tried to save the data
On exit

R1-R9 preserved

Use

This method is used by the client to report whether an attempt to save the data to
file as a result of a SaveAs_SaveToFile Toolbox event was successful or not.

If this SWI is called with bit 0 of RO clear, then it will return an error.
Note: This method is only suitable for Type 2 and Type 3 clients.

C veneer

extern _kernel_oserror *saveas_file_save_completed (unsigned int flags,
ObjectId saveas,
const char *filename

266

Save As events

SaveAs Dialogue box class

The Save As module generates the following Toolbox events:

SaveAs_AboutToBeShown (0x82bc0)

Block

+8
+12
+ 16

+20...

Use

0x82bc0

flags (as passed in to Toolbox_ShowObject)

value which will be passed in R2 to ToolBox_ShowObiject

block which will be passed in R3 to ToolBox_ShowObiject for the
underlying dialogue box

This Toolbox event is raised just before the Save As module is going to show its
underlying Window object, to enable the client to set its filename and filetype
appropriately.

C data type

typedef struct

{

ToolboxEventHeader hdr;

int show_type;
union
{
TopLeft pos;
WindowShowObjectBlock full;
} info;

} SaveAsAboutToBeShownEvent;

267

Save As events

SaveAs_DialogueCompleted (0x82bc1)

Block

+8 0x82bcl
+12 flags
bit 0 set means that a successful save was done during this dialogue

Use

This Toolbox event is raised after the Save As object has been hidden, either by a
Cancel click, or after a successful save, or by the user clicking outside the dialogue
box or pressing Escape. It allows the client to tidy up its own state associated with
this dialogue.

Note that if the dialogue was cancelled, a successful save may still have been done,
for example if the user clicked Adjust on Save, and then cancelled the dialogue.

C data type

typedef struct
{
ToolboxEventHeader hdr;
} SaveAsDialogueCompletedEvent;

SaveAs_SaveToFile (0x82bc2)

268

Block

+38 0x82bc2
+ 12 flags bit 0 set means save only the current selection
+ 16... nul-terminated filename to which the data should be saved

Use

This Toolbox event is raised by the Save As module to request that the client
should save its data to the given filename. If bit 0 of the flags word is set, then only
the current selection should be saved.

C data type

typedef struct
{

ToolboxEventHeader hdr;

char filename [212];
} SaveAsSaveToFileEvent;

SaveAs Dialogue box class

SaveAs_FillBuffer (0x82bc3)

Block
+8
+12

+ 16
+ 20
+ 24

Use

0x82bc3

flags

bit 0 set means a selection is being saved
size of buffer being used

address of buffer

number of bytes already transmitted

This Toolbox event is raised by the Save As module to request that the client
should fill the given buffer (which is the one which the client will have allocated).

If the address returned by this event is 0, then the client application needs to do
one of the following:

e reserve memory for buffering and return its address using SWI BufferFilled

e maintain a pointer to the current location in the data to be transferred.

C data type

typedef struct

{

ToolboxEventHeader hdr;

int
char
int

size;
*address;
no_bytes;

} SaveAsFillBufferEvent;

269

Save As templates

SaveAs_SaveCompleted (0x82bc4)

Block

+38 0x82bc4
+12 flags
bit 0 set means a selection was saved
bit 1 set means the destination was safe (e.g. a filing system)
+16 Wimp message number of original Message_DataSave
(or 0 if the save operation was not started via a drag)
+20... ifbit 1 is set in the flags word (i.e. safe save), then this field indicates the
full pathname of the place where the save was done.

Use

This Toolbox event is raised when the Save is successfully completed. Bit 0 of the
flags word indicates whether just a selection was saved; bit 1 means that the Save
was to a place where the data is safe (e.g. it is in a real file, on a filing system).

C data type

typedef struct
{
ToolboxEventHeader hdr;
int wimp_message_no;
char filename [208];
} SaveAsSaveCompletedEvent;

Save As templates

270

The layout of a Save As template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

filename 4 MsgReference
filetype 4 word

title 4 MsgReference
max_title 4 word

window 4 StringReference

SaveAs Dialogue box class

Underlying Window template

The Window object used to implement a Save As dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82bc00.

Component id
0
1
2

4 (if required)

Save As Wimp event handling

Wimp event
Mouse Click

ActionButton_Selected
Draggable_DragEnded
(Toolbox event)

Key Pressed

Details
draggable (file icon) must be sprite only
writable field (filename)

action button (Cancel) must be marked as a
Cancel action button

action button (Save) must be marked as the
Default action button

option button (Selection)

Action

if this is a drag event on the file icon, then set up an
appropriate Wimp drag box

on the Save button then start save operation

on the Cancel button then hide the dialogue box, and
raise a SaveAs_DialogueCompleted Toolbox event
start save operation to the destination of the drag (i.e.
send a Message_DataSave to the destination
window/icon pair.

if dialogue box has the input focus, and the key pressed
is Return, then the Save Button is activated, and a save
operation is started

if key is Escape act as if Cancel had been pressed.

271

Save As Wimp event handling

272

Wimp event
User Message

User Message
Recorded

Action
Message_DataSaveAck

if (a SaveAs dialogue is in progress)
{
if (the save can be done entirely
by the SaveAs module)

do the save

send Message_DatalLoad to destination
}
else
{

raise a SaveAs_SaveToFile Toolbox event
}

Message_DatalLoadAck

if (a SaveAs dialogue is in progress)
{
raise a SaveAs_SaveCompleted Toolbox event
If (not an Adjust click on OK)
(
hide the dialogue box
raise a SaveAs_DialogueCompleted
Toolbox event

}
Message_RAMFetch

if (a SaveAs dialogue is in progress)
{
transfer current buffer contents
send Message_RAMTransmit to destination
if (save cannot be done entirely by the Toolbox
module)
raise SaveAs_FillBuffer Toolbox event

}

Message_MenusDeleted

If (a SaveAs dialogue is in progress)
{

raise a SaveAs_DialogueCompleted Toolbox event

15

User interface

Scale Dialogue box class

Scale Dialogue obiject is used to present the user with a dialogue box from
which he can set the scale factors for a view on a document. This scale is given

as a percentage of the original size of the document.

The Scale class provides a dialogue box from which a scale factor can be chosen:

title bar string —» [E] Scale view

Scale 7 5% %I%ll } local action buttons

__ Cancel | Scale _ |
/‘V -
Cancel button Scale button

number range —

The default Scale dialogue box has the following attributes:

a title bar string

a writable number range with up/down arrows and a percentage sign to the
right of the up/down arrows

four ‘standard’ size action buttons with the values: 33%, 80%, 100%, 120% as
their text plus an optional Scale to Fit action button

a Cancel action button

a Scale action button.

The user can:

type an integral value in the writable field between its lower and upper bounds
or use the up/down arrows to adjust the value currently in the field

use one of the standard size action buttons to set the scale factor. Clicking on
these buttons only causes a value to be inserted in the writable field; it does
not apply the scale factors

click outside the dialogue box (if it is transient) or click on Cancel, to cancel
the dialogue

273

Application Program Interface

o click on Scale or press Return to apply the scale factors

e if there is a Scale to Fit button, then clic