
User Interface Toolbox

ii

Copyright © 1994 Acorn Computers Limited. All rights reserved.

Updates and changes copyright © 2014 RISC OS Open Ltd. All rights reserved.

Issue 1 published by Acorn Computers Technical Publications Department.

Issues 2 and 3 published by RISC OS Open Ltd.

No part of this publication may be reproduced or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, or
stored in any retrieval system of any nature, without the written permission of the
copyright holder and the publisher, application for which shall be made to the
publisher.

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by
the publisher in good faith. However, the publisher cannot accept any liability for
any loss or damage arising from the use of any information or particulars in this
manual.

If you have any comments on this manual, please complete the form at the back of
the manual and send it to the address given there.

All trademarks are acknowledged as belonging to their respective owners.

Published by RISC OS Open Ltd.

Issue 1, December 1994 (Acorn part number 0484,231).
Issue 2, October 2014 (updates by RISC OS Open Ltd).
Issue 3, October 2019 (minor corrections by RISC OS Open Ltd).

Contents

Introduction to the Toolbox 1

Introduction 1
Toolbox Application Model 5
Toolbox objects 7
Event handling 12
Resource files 15
Task initialisation and run-time information 16
Message texts and nationalisation 17
An Example object 18
Toolbox SWIs 20
SWI Toolbox_CreateObject (0x44ec0) 20
SWI Toolbox_DeleteObject (0x44ec1) 21
SWI Toolbox_ShowObject (0x44ec3) 22
SWI Toolbox_HideObject (0x44ec4) 23
SWI Toolbox_GetObjectState (0x44ec5) 24
SWI Toolbox_ObjectMiscOp (0x44ec6) 25
SWI Toolbox_SetClientHandle (0x44ec7) 26
SWI Toolbox_GetClientHandle (0x44ec8) 26
SWI Toolbox_GetObjectClass (0x44ec9) 27
SWI Toolbox_GetParent (0x44eca) 28
SWI Toolbox_GetAncestor (0x44ecb) 29
SWI Toolbox_GetTemplateName (0x44ecc) 30
SWI Toolbox_RaiseToolboxEvent (0x44ecd) 31
SWI Toolbox_GetSysInfo (0x44ece) 32
SWI Toolbox_Initialise (0x44ecf) 33
SWI Toolbox_LoadResources (0x44ed0) 35
SWI Toolbox_TemplateLookUp (0x44efb) 36
Toolbox events 37

Building an application 41
Guide To Hyper 41
How !Hyper was designed 43
How !Hyper was implemented 45
HyperCard Control Language 65
iii

Contents
Colour Dialogue box class 67
User interface 67
Application Program Interface 68
Colour Dialogue methods 71
Colour Dialogue events 78
Colour Dialogue templates 80

Colour Menu class 81
User interface 81
Application Program Interface 82
Colour Menu methods 84
Colour Menu events 88
Colour Menu templates 89
Colour Menu Wimp event handling 90

Discard/Cancel/Save Dialogue box class 91
User interface 91
Application Program Interface 92
DCS methods 94
DCS events 99
DCS templates 102
DCS Wimp event handling 103

File Info Dialogue box class 105
User interface 105
Application Program Interface 106
File Info methods 108
File Info events 117
File Info templates 118
File Info Wimp event handling 119

Font Dialogue box class 121
User interface 121
Application Program Interface 122
Font Dialogue methods 125
Font Dialogue events 133
Font Dialogue Templates 135
Font Dialogue Wimp event handling 137
iv

Contents
Font Menu class 139
User interface 139
Application Program Interface 140
Font Menu methods 142
Font Menu events 144
Font Menu templates 145
Font Menu Wimp event handling 146

Iconbar icon class 147
User interface 147
Application Program Interface 148
Iconbar icon methods 152
Iconbar icon events 164
Iconbar icon templates 165
Iconbar icon Wimp event handling 166

Menu class 167
User interface 167
Application Program Interface 168
Menu methods 175
Menu events 199
Menu Templates 201
Menu Wimp event handling 202

Print Dialogue box class 203
User interface 203
Application Program Interface 204
Print Dialogue Methods 208
Print Dialogue events 215
Print Dialogue templates 220
Print Dialogue Wimp event handling 222

Prog Info Dialogue box class 223
User interface 223
Application Program Interface 224
Prog Info methods 226
Prog Info events 232
Prog Info templates 233
Prog Info Wimp event handling 234
v

Contents
Quit Dialogue box class 235
User interface 235
Application Program Interface 236
Quit methods 238
Quit events 243
Quit templates 245
Quit Wimp event handling 246

SaveAs Dialogue box class 247
User interface 247
Application Program Interface 248
Save As methods 256
Save As events 267
Save As templates 270
Save As Wimp event handling 271

Scale Dialogue box class 273
User interface 273
Application Program Interface 274
Scale methods 278
Scale events 284
Scale templates 286
Scale Wimp event handling 287
vi

Contents
Window class 289
User interface 289
Application Program Interface 290
Window methods 297
Other SWIs 315
Window events 318
Window templates 319
Window Wimp event handling 322
Toolbars 324
User interface 324
Application program interface 325
Toolbar methods 326

Gadgets 327
Application Program Interface 327
Generic gadget methods 332
Gadget Wimp event handling 340
Action buttons 341
Adjuster arrows 350
Button gadget 351
Display fields 358
Draggable gadgets 361
Labels 369
Labelled boxes 370
Number ranges 371
Option buttons 379
Pop-up menus 386
Radio buttons 390
Sliders 399
String sets 407
Writable fields 416
vii

Contents
ResEd 423
Starting ResEd 426
The object prototypes window 427
The resource file display 428
Editing object templates in general 432
Editing the Menu class 435
Example menu 440
Editing a Window object template and gadgets 445
Gadgets 456
Editing other classes 481
Exporting and importing messages 493
Keystroke equivalents 494
Mouse behaviour 495

ResTest 497
The event log window 499

DrawFile 501
SWI DrawFile_Render 502
SWI DrawFile_BBox 503
SWI DrawFile_DeclareFonts 504

Resource File Formats 505
Resource file format 506

Support for RISC OS 3.10 511

Index 513
viii

1 Introduction to the Toolbox

his chapter is intended to give the reader an overview of the RISC OS Toolbox,

and to introduce the concepts used throughout the rest of this manual.

Introduction

The Toolbox was designed with the following goals:

● to facilitate writing consistent, high-quality desktop applications under
RISC OS 3.10 and later

● to encourage the writing of applications whose user interface complies with
the RISC OS Style Guide

● to be easy to learn

● to be language-independent

● to make it no harder to do operations which can currently be done using the
Wimp.

The Toolbox has the following characteristics:

● it is structured as a set of RISC OS relocatable modules

● it will only run on RISC OS 3.10 or later

● it does not directly call back to code in the client application

● it is SWI-driven

● it can be used from C, C++, BASIC or Assembler with equal ease

● communication back to the client application is via events

● the client application does not have direct access to data structures
maintained by the Toolbox

● it uses a new resource file format to hold templates for the user interface
objects which the application will use at run-time.

Note: The appendix Support for RISC OS 3.10 on page 511 describes support for
RISC OS 3.10 machines.

T

1

Introduction
Installing C/C++

The instructions for installing Acorn C/C++ are in the chapter Installing Acorn C/C++
on page 7 of the Desktop Tools manual.
2

Introduction to the Toolbox
Terminology

The following terms are used throughout this manual:

Term Meaning

Class A data type, together with a definition of the
operations which can be performed on that data type

Client application A piece of software which uses the Toolbox

Colours Refers either to desktop colours (in the range 0-15),
or to an RGB colour (represented by one word as
0xbbggrr00)

Dialogue box A window which contains gadgets, and which is
typically used to carry out a ‘dialogue’ with the user,
ending in the user either cancelling the dialogue, or
confirming that they want to apply the options
indicated by the current dialogue state

Method One of the operations defined for a class (it can be
thought of as a ‘function’)

Persistent dialogue box One which remains on the screen even when the
menu tree is closed down. It must be explicitly
removed by cancelling it, or by pressing Escape.

Resource file Described in Resource File Formats on page 505. It is a
file containing a sequence of templates from which
to build objects.

String A NUL-terminated sequence of ASCII characters.

Textual name (name) Can be formed of any sequence of alphanumeric
characters and underscores (‘_’). It must begin with
an alphabetic character. Special names used by the
Toolbox can begin with the underscore character
(‘_’).

A name cannot be longer than 12 characters,
including the NUL terminator character.

Transient dialogue box One which appears on the screen, and is removed
when the current menu tree is closed down

User The human user of a client application

User Interface Object
(object)

A fundamental building block for windowed
applications (e.g. a menu). All objects share a set of
common methods which can be applied to them. An
object consists of a fixed size header followed
immediately in memory by a variable size body.

Word A 4-byte entity, aligned at a 4-byte address.
3

Introduction
General notes
● Where a buffer holds a string, this string will be NUL-terminated on exit from a

SWI or when delivered in an event block. Strings which are given as input
parameters to a SWI should be terminated by a control character (i.e. in the
range 0-31 inclusive).

● Where the size of a buffer is specified, this includes any terminating character.
If the size of buffer supplied for a string is not large enough an error is not
returned; instead the buffer is filled (including a terminating NUL), and the
returned number of bytes ‘written to the buffer’ will be the size of buffer which
would be required. Thus you may wish to check that the number of bytes
written to the buffer is less than or equal to the supplied buffer size.

● Note that all SWIs have a flags word in R0. All undefined bits in this flags word
should be 0.

● Unless otherwise stated, changes to objects which are visible on the screen are
immediate.
4

Introduction to the Toolbox
Toolbox Application Model

The Toolbox is intended to provide a layer of abstraction between an application
and the Wimp. In a manner analogous to the use of High Level Programming
Languages, the Toolbox allows the programmer to think more in terms of the
problem to be solved rather than the detailed mechanics of how to achieve a
solution.

Traditional desktop application

In a traditional desktop application, the programmer writes code which interfaces
directly to the Window Manager (Wimp) through Wimp SWIs. Such an application
uses a ‘Templates’ file to define templates from which it can create windows at
run-time, but must create other user-interface objects from within its code (e.g.
menus). The events which are delivered to a Wimp application refer to low-level
Wimp operations like mouse clicks:

Figure 1.1 Wimp application model

Client application

Wimp SWIs

Wimp events

Wimp

Template file

Window
descriptions
5

Toolbox Application Model
Toolbox application

In a Toolbox desktop application, the programmer writes code which interfaces
mainly to the Toolbox through Toolbox ‘methods’, only occasionally resorting to
making low-level Wimp SWI calls. A Toolbox application uses a ‘Resources’ file to
define templates from which it can create a large number of user-interface objects
including windows, menus and iconbar icons. Events which are delivered to a
Toolbox application are at a higher level of abstraction than Wimp events.

Figure 1.2 Toolbox application model

Wimp events

The application will generally see all Wimp events, with the following exceptions:

ColourDbox will not see redraw events.

Where it has input focus you will not see keypress
events.

Window object will not see Open Window Request or Close Window
Request events if the window is marked as being
auto-open or auto-close respectively.

Client application

Wimp SWIs

Wimp events

Toolbox

Resource file

Wimp

Toolbox

Toolbox
events

methods Wimp
events

‘object’
descriptions

Wimp
SWIs
6

Introduction to the Toolbox
Toolbox objects

An object is essentially one part of the user interface of a desktop application; for
example, a window or a menu or an icon on the icon bar.

At run-time, each object is identified by an object id which is allocated when the
object is created. An object id is a 32-bit integer, which should not be interpreted
by the client application. An object id of 0 is used to indicate ‘no object’.

Object classes

The type of an object is called its ‘class’, which identifies its attributes and the set
of operations which can be performed on it at run-time.

It is possible to determine the class of an object at run-time, using
SWI Toolbox_GetObjectClass.

The set of classes which are supported in this release of the Toolbox are:

The Toolbox is designed to be extensible, so this set of classes will be increased in
future releases, and can also be increased by third party developers.

Object components

An object ‘component’ defines one of a set of distinct parts which make up an
object; for example a menu entry is a component of a Menu object, and a gadget
(see later) is a component of a Window object. A component is allocated a

Class name Meaning page

Colour Menu a menu for selecting a desktop colour 81

Colour Dbox a dialogue box for selecting any colour 67

DCS a dialogue box for discard/cancel/save for unsaved
data

91

File Info a dialogue box showing information on a given file 105

Font Dbox a dialogue box for selecting font characteristics 121

Font Menu a menu for selecting a font 139

Iconbar Icon an icon on the left or right of the iconbar 147

Menu a Wimp menu 167

Print Dbox a dialogue box for selecting print options 203

Prog Info a dialogue box for showing program information 223

Quit a dialogue box for handling quit with unsaved data 235

SaveAs a dialogue box for saving data by icon drag 247

Scale View a dialogue box for selecting a scale factor 273

Window a Wimp window 289
7

Toolbox objects
component id by which to identify it uniquely within its containing object; this
component id is chosen by the client application when the component is created.
For menus it can have a value in the range 0 to 0xfffffffd, and for windows a value
in the range 0 to 0x7fffff. All higher component ids are reserved for internal Toolbox
use. A component id of 0xffffffff is used to indicate ‘no component’.

Object Methods

At run-time, the client application manipulates its objects by using ‘methods’,
which are in fact implemented via Toolbox SWIs. The Toolbox will dispatch these
methods to the appropriate module which implements the class of object to which
the method is being applied.

Creating an object

An object is created using SWI Toolbox_CreateObject (see page 20). The client
application supplies either the name of a template for the object, or the address of
a block of memory containing such a template. If a name is provided, then the
Toolbox will look for the template in the application's Resource file (see later). The
client application will be passed back an object id for the newly-created object if
successful.

When an object which has ‘attached’ objects is created, then the attached objects
are also created. See Attached objects on page 12 for a fuller description of this
process.

Given its object id, it is possible to find out the name of the template used to
create an object using SWI Toolbox_GetTemplateName.

Deleting an object

An object is deleted using SWI Toolbox_DeleteObject (see page 21). If the object is
visible on the screen and it is deleted, then the Toolbox first hides the object.

When an object which has attached objects is deleted, then unless the
‘non-recursive’ bit is set in this SWI’s flags word, all its attached objects are also
deleted. See Attached objects on page 12 for a fuller description of this process.

Showing an object

An object is shown on the screen using SWI Toolbox_ShowObject (see page 22).

By setting bits in the SWI’s flags word, the client may choose to show the object
with either SWI Wimp_CreateMenu semantics or SWI Wimp_CreateSubMenu
semantics. This is generally referred to as showing the object ‘transiently’, and can
8

Introduction to the Toolbox
be used, for example, to show transient dialogue boxes. By default, an object is
shown ‘persistently’, in other words it must be explicitly dismissed from the
screen. Not all objects support both sets of semantics.

When an object is shown, the client application chooses where the object will
appear on the screen by specifying one of three ‘show types’.

● A ‘default’ show type means that the object will be shown at a place
determined by the module which implements the object's class. For example,
a Menu object will be shown by default at a place 64 OS units to the left of the
mouse pointer's position, to comply with the RISC OS Style Guide.

● A ‘top left’ show type means that the client application supplies the
coordinates of the top lefthand corner of where the object should be shown.

● A ‘full specification’ show type means that the client application supplies a
buffer which contains all the information needed to position the object on the
screen; the contents of this buffer is separately defined for each object class.

Hiding an object

An object is hidden using SWI Toolbox_HideObject (page 23). If the object was not
visible on the screen, then this method has no effect.

Object-specific methods

Each object class provides a number of methods which are specific to that class
(for example, a Window object's title can be set using the Window_SetTitle
method). These methods are all accessed using SWI Toolbox_ObjectMiscOp (see
page 25), with an appropriate reason code.

Shared objects

It is often useful in an application for many objects to refer to one single instance
of another object. A typical example is a multi-document editor, where a
potentially large number of Windows all refer to a single shared Menu structure.

A shared object is specified as such in its template description. Whenever an
attempt is made to create an object from such a template, the Toolbox first checks
to see if there is already a copy of the object in existence, and in which case the id
of this object is returned.

Reference counts are maintained for Shared objects. When the client tries to create
such an object the reference count is incremented, and it is decremented when the
client attempts to delete the object. The Shared object is only really deleted when
its reference count reaches zero.

Shared objects can also be used effectively in conjunction with attached objects
which are described on page 12.
9

Toolbox objects
Note: Sharedness is inherited by attached objects.

Client handles

Each object can have associated with it a one-word value called its client handle.
The value of this handle is specified entirely by the client application and is not
interpreted by the Toolbox. This mechanism is intended to allow a state to be
associated with an object by the client application (e.g. in a multi-document editor
a Window object's client handle might be a pointer to the data which must be
displayed in the Window).

An object's Client Handle is set and read using SWIs Toolbox_SetClientHandle
(see page 26) and Toolbox_GetClientHandle (see page 26) respectively.

Parent and ancestor objects

When an object is shown (using SWI Toolbox_ShowObject), there are two other
objects which may be useful for the client application; these are the parent and
ancestor objects.

Parent objects

The parent of an object is defined as the object (and optionally a component of
that object) which caused the object to be shown. This is represented by the parent
object id and parent component id. For example if a Window object has been
displayed as the result of a Menu selection, then that Window object has a parent
with an object id given by the Menu's id, and a parent component id given by the
component id of the entry which was selected.

When SWI Toolbox_ShowObject is called explicitly by the client, the parent object
and component ids must be specified. When this SWI is called on the client's
behalf (for example, when a Menu is shown automatically for a Window), then the
Toolbox fills this value in for the client.

Ancestor objects

It is always possible to trace the ‘parentage’ of an object by recursively requesting
the Parent of that object, thus moving ‘up’ the invocation hierarchy of objects
which have been displayed. Since this is a common operation, an object can be
designated as a potential so-called ‘Ancestor’. When an object is shown, it
normally inherits the ancestor of its parent object; however, if the parent is marked
as a potential ancestor, then the ancestor of the shown object is set to the id of the
parent object.

Take the case where a multi-document editor has a document Window which has a
Menu, which has a SaveAs dialogue box as a submenu. When an event occurs for
the dialogue box, the client is probably most interested in getting the id of the
10

Introduction to the Toolbox
document Window (to get at its data and save it). By designating the document
Window as an ancestor, the client can ensure that its id is available when events
occur on the SaveAs dialogue box.

The processes in the above example are as follows:

1 When the user presses Menu over the window, a Toolbox_ShowObject is raised
on the Menu with the window as parent. As the window has been designated
as ancestor, the Menu’s ancestor will be the window.

2 When the user moves the pointer over the Save submenu arrow, the Menu
module will show the SaveAs dialogue with itself (i.e. the Menu) as the parent
object, and the Save component as the parent component. The SaveAs
dialogue will inherit the Menu’s ancestor (in this case the window).

3 Any event now raised on the SaveAs dialogue box will have the id block filled
in with the Menu as the parent and the window as the ancestor.

The parent and ancestor of an object can be obtained by calling the SWIs
Toolbox_GetParent and Toolbox_GetAncestor. Normally this will not be necessary,
since (as shown in The id block on page 14) these values are made available on every
return from Wimp_Poll.

Auto-create and Auto-show objects

In order to save on coding required, it is possible to get the Toolbox to create an
object from its template as soon as the resource file containing the template is
loaded by the application. This is achieved by setting the Auto-create bit in the
object template's flags word (see the chapter ResEd on page 423 to see how to do
this). When such an object is created, the Toolbox raises a
Toolbox_ObjectAutoCreated event, to allow the application to ascertain and store
the object id of the newly-created object; the name of the template used to create
the object is reported in this event.

SaveAs dialogue

window designated as ancestor
11

Event handling
It is also possible to specify that as soon as an object is created, it should be
‘shown’ on the screen. This is achieved by setting the Auto-show bit in the object
template's flags word (see the chapter ResEd on page 423 to see how to do this).
When such an object is created, it is shown using SWI Toolbox_ShowObject in its
default place, and with no parent given.

It is also possible for an object to be auto-show but not auto-create.

If you specify an object as auto-create and that object is attached to another
object, you will get two instantiations of the object, unless it is marked as Shared.
It is therefore advisable to mark such objects as Shared, to avoid wastage.

Attached objects

Certain objects allow other objects to be attached to them. When an object is
created, all of its attached objects are also created, and a
Toolbox_ObjectAutoCreated event is raised for each such attached object.

An example of an attached object is the object which will be shown when a user
clicks the Select mouse button on an Iconbar Icon object. This attached object is
created when the Iconbar Icon object is created.

Such side-effects of creating a given object are described in the Application Program
Interface section in the chapter on each object class.

When an object with attached objects is deleted using SWI Toolbox_ObjectDelete,
unless the non-recursive delete bit has been set, all attached objects are also
deleted.

Attached objects can also usefully be combined with Shared objects. For example,
if an application wishes the same Window to be displayed when the use clicks
Select and Adjust on an Iconbar object, this can be achieved by specifying the
same Window template name as the attached object to show for each of these
mouse clicks, and marking the Window object as shared, so that the same object id
is used for both cases.

It is important to note this side-effect of creating an object. For example, a Window
object which has a complex menu tree attached to it, with many submenus and
dialogue boxes, will have considerable side-effects when it is created.

Thus, in many cases, it is only necessary to create explicitly the ‘topmost’ object,
and to allow the Toolbox to create the entire tree of attached objects.

Event handling

An important part of managing the user interface using the Toolbox is the concept
of a Toolbox event.
12

Introduction to the Toolbox
A Toolbox event is a Wimp event (not a message) which is delivered to the client
application with an event code of Wimp_ToolboxEvent (0x200). Each Toolbox event
has its own event code, which is a 32-bit integer defined in a similar manner to
Wimp message numbers.

Toolbox events are essentially an abstraction on Wimp events, and are generated
by the Toolbox modules in response to user interaction with Toolbox objects, and
also in response to client application operations. Toolbox events are also used to
warn the client application that a particular action has been taken by the Toolbox.

For example, if a client application creates and shows a Print Dialogue Box, when
the user clicks on the Print button, a Toolbox event will be delivered to the
application indicating that a Print operation has been requested, and giving the
number of pages to be printed, the scale factor to use during printing etc.

Note that underlying events will also be received by the client.

Toolbox event Codes

Event codes are allocated by RISC OS Open. Events which are delivered by a
Toolbox module will have codes which start at the SWI chunk base of the module.

The allocations are as follows; event codes are in the range 0 - 0x9ffff:

Format of a Toolbox event

When a Toolbox event is delivered to an application, the Wimp Poll block has the
following format:

Unless otherwise stated flags will be zero.

Event codes Use

0x00001 - 0x0ffff Available for use by the client

0x10000 - 0x3ffff Reserved for inter-application protocols

0x40000 - 0x9ffff Reserved for Toolbox module events

Offset Contents

+ 0 size of Toolbox event block
(16 - 236 in a multiple of four bytes; i.e. words)

+ 4 unique reference number

+ 8 Toolbox event code

+12 flags

+ 16... Event-specific data
13

Event handling
The id block

Whenever the client application calls SWI Wimp_Poll, the Toolbox fills in a 6-word
block of memory known as the id block, to indicate which object an event has
occurred on. However, as Wimp messages do not typically occur on an object the id
block will not be updated for a Wimp message.

This block is laid out as follows:

When a Toolbox event occurs, the object id of the object on which this event
occurred is placed in the ‘self id’ field of the id block, and the ‘self component’ field
is also filled in if the event has occurred for a particular component of that object.
For example, a mouse click on an action button gadget within a Window object will
result in an ActionButton_Selected Toolbox event being raised, with the Window
object's id in the self id field of the id block, and the component id of the action
button in the self component field.

The ‘parent id’ and ‘parent component’ fields are filled in by the Toolbox using the
values which were last passed to SWI Toolbox_ShowObject. The ‘ancestor id’ and
‘ancestor component’ fields are filled in accordingly (being the ancestor of the
parent).

The Toolbox uses a value of 0 as an object id to indicate ‘no object’, and a value of
-1 as a component id to indicate ‘no component’.

When a Wimp event happens on an object, then the setting of the contents of the
id block is object-specific, and is described in the object events section in the
chapter on each object class.

The address of the 6-word block of client memory used as the application's id Block
is passed to the Toolbox when the application registers itself using
SWI Toolbox_Initialise (see page 33).

Ancestor

Parent

Self

self id

self component

parent id

parent component

ancestor id

ancestor component

+0

+4

+8

+12

+16

+20
14

Introduction to the Toolbox
Note that Toolbox events are delivered to the object to which they are most
appropriate, so for example a SaveAs object will receive
SaveAs_DialogueCompleted events, whereas mouse clicks on a SaveAs object's
underlying Window will be seen as being delivered to the Window object.

This behaviour can best be seen by taking some example Resource Files and
dragging them to !ResTest, and monitoring the contents of the id Block as shown
in !ResTest's log window, as events occur on the objects created from the Resource
File.

Raising a Toolbox event

A Toolbox event is raised using SWI Toolbox_RaiseToolboxEvent. Normally a client
application will not need to use this SWI directly; the client simply quotes the
Toolbox event code (or number), and associates it with a particular user action in
its description of an object in the resource file. For example, one of the attributes
of a Menu object, is the Toolbox event which is raised when a particular Menu entry
is selected by the user. The Toolbox will raise this Toolbox event on the
application's behalf, whenever a Menu Selection event is returned for that menu
entry.

Resource files

A resource file contains templates for the objects which a client application will
create at run-time.

Loading resource files

An application can load a resource file at run-time using SWI
Toolbox_LoadResources. This is done on the application's behalf for a file called
‘res’ when the application calls SWI Toolbox_Initialise as described in Task
initialisation and run-time information on page 16. SWI Toolbox_LoadResources could
then be called after task start-up to load any further Resource Files which it needs
to use.

Resource file format

Resource files replace Wimp template files as the means to define templates for
the user interface objects which an application will create at run-time. Whereas
Wimp template files only allowed window descriptions to be given, a resource file
will contain templates for any kind of Toolbox object.

A resource file consists of a fixed size header, followed by a contiguous sequence of
object templates, where each template has a fixed size header, followed by an
object body.
15

Task initialisation and run-time information
A resource file format is similar to a Drawfile, and can be represented
diagrammatically as follows:

Each template has a textual name which can have no more than 12 characters
(including the terminating NUL). This name is used by the application when using
a template in a call to SWI Toolbox_CreateObject.

If a resource file is loaded which has named templates whose names clash with
earlier loaded templates, the latest loaded template will be used, and the earlier
template will no longer be accessible.

For a full description of the resource file format see the appendix Resource File
Formats on page 505.

Task initialisation and run-time information

Before it can use the Toolbox, a client application must first call SWI
Toolbox_Initialise to register itself as a Toolbox task. This has several side-effects:

● If there is a file called res<n>, where n is the currently configured territory
number, in the application's resource directory then it is loaded using SWI
Toolbox_LoadResources; if such a file is not found, then the Toolbox tries a file
called res.

● The application directory is searched for a Sprites file, looking for file names in
the following order:

● TVSprs<nn> (only for interlaced modes, indicated by mode flags bit 8).

● <Wimp$IconTheme>Sprites<nn>

● Sprites<nn>

In each case nn is the resolution suffix appropriate for the current screen
mode, as returned by Wimp_ReadSysInfo 2 (11, 22, 23 or 24). If no file with the
correct suffix is present a file with no suffix will be used. This file is then loaded
into a block of memory and will be used as the application's sprite area.

File Header 3 words

eOF

sequence of object templates
16

Introduction to the Toolbox
● The application resource directory is searched for a file called Message<n>,
where n is the currently configured territory number, which is then loaded and
registered with MessageTrans. If no such file is found, then a file called
Messages is searched for. The minimum requirement is that the Messages
file should contain a message whose tag is _TaskName, giving the name of
the application.

● SWI Wimp_Initialise is then called on behalf of the application.

When a Toolbox task has been registered with the Toolbox, the client application
can obtain the following information by calling SWI Toolbox_GetSysInfo:

● the task's name (as given by the _TaskName message in the Messages file).

● the 4-word message file descriptor returned when the task was initialised.

● the application's directory name.

● the application's Wimp task handle.

● a pointer to the sprite area used to load the application's Sprites file.

Important: Since the Toolbox uses Wimp messages, a client application should
not call SWI Wimp_AddMessages or SWI Wimp_RemoveMessages.

Message texts and nationalisation

When using the Toolbox, the writer of a client application should be aware of where
textual messages are held, which will need translating if the client is to be
‘nationalised’ for a particular RISC OS territory.

All of the modules contained in the Toolbox have a default set of messages and
object templates which they will use when displaying windows, reporting errors,
displaying menus etc. These are registered with ResourceFS, and are looked up
using MessageTrans. So in order to produce a nationalised Toolbox, these
messages and templates will need replacing.

In a resource file, textual messages are held in Messages Tables, and objects
created at run-time will contain pointers to these messages. These messages are
the ones which have been specified by the client of the Toolbox to be used when
creating objects, and will often consist of alternative text to use instead of the
defaults provided by the Toolbox modules themselves. These messages are not
tagged messages looked up using MessageTrans, but are actual strings.

The client application will also have a file called Messages in its application
directory. This file is automatically loaded by the Toolbox when the client calls SWI
Toolbox_Initialise. The Messages file will contain at least the name of the
application (in a message whose tag is _TaskName), and any other messages which
the application wishes to look up using MessageTrans at run-time. This will
17

An Example object
typically contain error messages, and ones which are not associated with objects.
After calling SWI Toolbox_Initialise, the client will have a MessageTrans file
descriptor to use when looking up these Messages.

This means that in order to nationalise an application, the writer will need to
provide new Messages and new resource file messages (using Export messages in
ResEd).

An Example object

Let us look at an example of a Toolbox object, to illustrate some of the features
detailed in earlier sections.

An Iconbar Icon object is used to place an application icon sprite (and optionally
some text) on the RISC OS icon bar. The template for such an object has the
following fields, which can be set using !ResEd (the Resource Editor):

Field Meaning

position a negative integer giving the position of the Icon on the
Iconbar (as specified in SWI Wimp_CreateIcon)

priority the priority of this Icon on the Iconbar (as specified in
SWI Wimp_CreateIcon)

sprite name the name of the sprite to use for this Iconbar Icon

max sprite name the maximum length of sprite name to be used

text an optional string which will be used for a Text&Sprite
Iconbar Icon (ie the text that will appear underneath the
Icon on the Iconbar)

max text length if the Iconbar Icon has text, then this field gives the
maximum length of a text string which will be used for it

menu the name of the template to use to create a Menu object
for this Iconbar Icon

select event the Toolbox event code to be raised when the user clicks
Select on the Iconbar Icon (if 0 then Iconbar_Clicked is
raised)

adjust event the Toolbox event code to be raised when the user clicks
Adjust on the Iconbar Icon (if 0 then Iconbar_Clicked is
raised)

select show the name of a template to use to show an object when
the user clicks Select on the Iconbar Icon

adjust show the name of a template to use to show an object when
the user clicks Adjust on the Iconbar Icon
18

Introduction to the Toolbox
The client application will create an Iconbar Icon object by calling SWI
Toolbox_CreateObject, supplying a template which gives values for all of the above
fields.

As a side-effect of this creation, the Iconbar Icon's attached objects are also
created (if their templates have been provided) i.e. menu, select show and adjust
show. The object ids of these attached objects are then held within the Toolbox
internal data structure which represents the Iconbar Icon.

When the application calls SWI Toolbox_ShowObject on an Iconbar Icon, it will be
shown in a Style Guide compliant place on the Iconbar. When SWI
Toolbox_HideObject is called, the Icon will be removed from the Iconbar.

When a HelpRequest message is received, the supplied help message will
automatically be returned to the sender of the message.

When the user clicks the Select or Adjust mouse buttons on the Iconbar Icon, then
if the names of suitable object Templates have been supplied, these objects will be
shown automatically by the Toolbox.

When the user clicks the Menu button on the Iconbar Icon, then if the name of a
suitable Menu object Template has been supplied, it will be shown in a RISC OS
Style Guide compliant place (i.e. 96 OS units above the bottom of the screen).

There are a number of methods which have been defined for an Iconbar Icon to
allow the client application to manipulate it at run-time; for example if it wishes to
change the sprite used on the Iconbar for this Icon, then the Iconbar_SetSprite
method will be used; if it wishes to provide a new Menu object which will be
displayed when the Menu button is clicked on the Iconbar Icon, then the
Iconbar_SetMenu method will be used.

help message the message to respond to a help request with, instead
of the default

max help the maximum length of help message to be used

Field Meaning
19

Toolbox SWIs
Toolbox SWIs

SWI Toolbox_CreateObject (0x44ec0)

On entry

R0 = flags (bit 0 set means create from memory)
R1 = pointer to name of template

(R1 = pointer to description block if bit 0 of flags word set)

On exit

R0 = id of created object
R1-R9 preserved

Use

This SWI creates an object either from a named template description which has
been loaded from the resources file or from a template description block in
memory. The exact format of the description block depends on the class of the
object.

If the client application wishes to use the description block form of this SWI, then
the block should begin with a standard object header, and the body of the object
should be as specified in the Templates section of the chapter for that object. Any
StringReferences, MsgReferences, and SpriteAreaReferences should hold ‘real’
pointers, and should not require relocation; also the ‘body offset’ field should
contain a real pointer to the object body.

C veneer
extern _kernel_oserror *toolbox_create_object (unsigned int flags,
 const void *name_or_template,
 ObjectId *id
);
20

Introduction to the Toolbox
SWI Toolbox_DeleteObject (0x44ec1)

On entry

R0 = flags (bit 0 set means do not delete recursively)
R1 = object id

On exit

R1 - R9 preserved

Use

This SWI deletes a given object.

By default, any objects ‘attached’ to this object are also deleted. If bit 0 of the flags
word is set, then this does not happen.

If it is a Shared object, this will result in its reference count being decremented,
and it will only be really deleted when this reaches 0.

The Toolbox raises a Toolbox_ObjectDeleted event when the object's reference
count reaches zero.

C veneer
extern _kernel_oserror *toolbox_delete_object (unsigned int flags,
 ObjectId id
);
21

SWI Toolbox_ShowObject (0x44ec3)
SWI Toolbox_ShowObject (0x44ec3)

On entry

R0 = flags
bit 0 set means show using the semantics of Wimp_CreateMenu
bit 1 set means show using the semantics of Wimp_CreateSubMenu
bit 2 set means show as a nested window (requires use of show ‘type’ 1 to
specify the Wimp handle of the parent window)

R1 = object id
R2 = show ‘type’:

Type Meaning

0 show in the ‘default’ place. This has a different meaning
depending on the type of object shown

1 R3 points to a buffer giving full details of how to show
the object

2 R3 points to a 2-word buffer giving the screen coordinates
of the top left corner of the object to be displayed

3 show centred
4 show at pointer

R3 = 0
or pointer to buffer giving object-specific data for showing this object
or pointer to 2-word buffer giving coordinates of top left corner of object

R4 = Parent object id
R5 = Parent component id

On exit

R1-R9 preserved

Use

This SWI shows the given object on the screen.

R2 gives the type of ‘show’ operation which is being performed. Not all types of
show operation will be appropriate to all objects.

The buffer pointed at by R3 may hold data specific to this class of object, including
information as to where the object should appear on the screen. The exact format
of the buffer is specified separately for each object class. For example for a Window
object, the buffer will hold a block of data which can be passed to SWI
Wimp_OpenWindow.
22

Introduction to the Toolbox
Note: some objects support a bit in their flags word specifying that a warning
should be raised before the object is shown. In this case, the SWI
Toolbox_ShowObject will return, but the object will not yet be visible on the
screen. The object will be visible (at the earliest) after the next call to Wimp_Poll
after the warning is delivered.

C veneer
extern _kernel_oserror *toolbox_show_object (unsigned int flags,
 ObjectId id,
 int show_type,
 const void *type,
 ObjectId parent,
 ComponentId parent_component
);

SWI Toolbox_HideObject (0x44ec4)

On entry

R0 = flags
R1 = object id

On exit

R1-R9 preserved

Use

This SWI removes the given object from the screen, if it is currently being shown.

C veneer
extern _kernel_oserror *toolbox_hide_object (unsigned int flags,
 ObjectId id
);
23

SWI Toolbox_GetObjectState (0x44ec5)
SWI Toolbox_GetObjectState (0x44ec5)

On entry

R0 = flags
R1 = object id

On exit

R0 = object state

Use

This SWI returns information regarding the current state of an object. The state is
indicated by bits in the value returned in R0. Bits 0-7 refer to all objects and bits
8-31 are used to indicate object-specific state.

The generic state bits are:

C veneer
extern _kernel_oserror *toolbox_get_object_state (unsigned int flags,
 ObjectId id,
 unsigned int *state
);

Bit Meaning when set

0 object is currently showing
24

Introduction to the Toolbox
SWI Toolbox_ObjectMiscOp (0x44ec6)

On entry

R0 = flags
R1 = object id
R2 = method code
R3-R9 contain method-specific data.

On exit

R1-R9 preserved

Use

The exact operation of this SWI depends on the class of the object being
manipulated, and on the reason code supplied.

Each object class implements a number of methods which are specific to that
object (e.g. a Window class may implement a method for adding/removing
keyboard short-cuts for a Window object).
25

SWI Toolbox_SetClientHandle (0x44ec7)
SWI Toolbox_SetClientHandle (0x44ec7)

On entry

R0 = flags
R1 = object id
R2 = client handle

On exit

R1-R9 preserved

Use

This SWI sets the value of the client handle for this object.

C veneer
extern _kernel_oserror *toolbox_set_client_handle (unsigned int flags,
 ObjectId id,
 void *client_handle
);

SWI Toolbox_GetClientHandle (0x44ec8)

On entry

R0 = flags
R1 = object id

On exit

R0 = client handle for this object

Use

This SWI returns the value of the client handle for this object.

C veneer
extern _kernel_oserror *toolbox_get_client_handle (unsigned int flags,
 ObjectId id,
 void **client_handle
);
26

Introduction to the Toolbox
SWI Toolbox_GetObjectClass (0x44ec9)

On entry

R0 = flags
R1 = object id

On exit

R0 = object class

Use

This SWI returns the class of the specified object. This is a 32-bit integer, which
identifies a given class; allocation of class identifiers is handled by RISC OS Open.

C veneer
extern _kernel_oserror *toolbox_get_object_class (unsigned int flags,
 ObjectId id,
 ObjectClass *object_class
);
27

SWI Toolbox_GetParent (0x44eca)
SWI Toolbox_GetParent (0x44eca)

On entry

R0 = flags
R1 = object id

On exit

R0 = Parent id
R1 = Parent component id

Use

This returns the value of the object id which was passed as the parent in a SWI
Toolbox_ShowObject call (even if the parent has subsequently been deleted). The
component id is for cases where the parent has a subcomponent like a Menu with
a Menu entry. An object which has not yet been shown will have a parent object id
of 0 and a component id of -1.

C veneer
extern _kernel_oserror *toolbox_get_parent (unsigned int flags,
 ObjectId id,
 ObjectId *parent,
 ComponentId *parent_component
);
28

Introduction to the Toolbox
SWI Toolbox_GetAncestor (0x44ecb)

On entry

R0 = flags
R1 = object id

On exit

R0 = Ancestor id
R1 = Ancestor component id

Use

This returns the id of the Ancestor of the given object (and its component id, in the
case of an ancestor which has subcomponents like a Menu with a Menu entry).
Note that the Ancestor may have been deleted, since this object was shown. An
object which has not yet been shown will have an ancestor object id of 0 and a
component id of -1.

C veneer
extern _kernel_oserror *toolbox_get_ancestor (unsigned int flags,
 ObjectId id,
 ObjectId *ancestor,
 ComponentId *ancestor_component
);
29

SWI Toolbox_GetTemplateName (0x44ecc)
SWI Toolbox_GetTemplateName (0x44ecc)

On entry

R0 = flags
R1 = object id
R2 = pointer to buffer to hold template name
R3 = length of buffer

On exit

R3 = length of buffer required (if R2 was zero)
else buffer pointed at by R2 holds template name
R3 holds number of bytes written to buffer

Use

This SWI returns the name of the template used to create the object whose id is
passed in R1.

C veneer
extern _kernel_oserror *toolbox_get_template_name (unsigned int flags,
 ObjectId id,
 char *buffer,
 int buff_size,
 int *nbytes
);
30

Introduction to the Toolbox
SWI Toolbox_RaiseToolboxEvent (0x44ecd)

On entry

R0 = flags
R1 = object id
R2 = component id
R3 = pointer to Toolbox event block

On exit

R1-R9 preserved

Use

This SWI raises the given Toolbox event. The block pointed at by R3 should have
the format described in Format of a Toolbox event on page 13. The Toolbox will put the
unique reference number into the block before exit from this SWI. The object id
and (optional) component id will be those filled in on return from Wimp_Poll; they
refer to the object on which the Toolbox event is being raised; the Toolbox does not
check the validity of these values.

C veneer
extern _kernel_oserror *toolbox_raise_toolbox_event (unsigned int flags,
 ObjectId id,
 ComponentId component,
 const ToolboxEvent *evnt
);
31

SWI Toolbox_GetSysInfo (0x44ece)
SWI Toolbox_GetSysInfo (0x44ece)

On entry

R0 = flags

R0 ValueMeaning

0 return task name
1 return 4-word messages file descriptor
2 return name of directory/path passed to Toolbox_Initialise
3 return task’s Wimp task handle
4 return pointer to sprite area used

R1, R2 depends on entry value of R0 (see below)

On exit

R0

On entryOn exit

0 R2 holds size of buffer required (if R1 was 0)
else buffer pointed at by R1 holds task name

1 buffer pointed at by R1 contains a 4-word messages file
descriptor

2 R2 holds size of buffer required (if R1 was 0)
else buffer pointed at by R1 holds directory name passed to
Toolbox_Initialise

3 R0 contains task handle

4 R0 contains sprite area pointer

Use

This SWI is used to get information for the client application. The nature of the
information required is indicated by R0.

C veneer
extern _kernel_oserror *toolbox_get_sys_info (unsigned int reason_code,
 _kernel_swi_regs *regs
);
32

Introduction to the Toolbox
SWI Toolbox_Initialise (0x44ecf)

On entry

R0 = flags
R1 = last Wimp version number known to task * 100 (must be 310)
R2 = pointer to list of Wimp message numbers which the client wishes to receive,

terminated by a 0 word
If R2 points to just a 0 word, then all messages are delivered
If R2 = 0, then no messages are delivered (apart from the Quit message)

R3 = pointer to list of Toolbox event codes which the client wishes to receive,
terminated by a 0 word
If R3 points to just a 0 word, then all Toolbox events are delivered
If R3 = 0, then no Toolbox events are delivered

R4 = pointer to Directory name in which to find resources (may end with ‘:’
character to specify a path from Toolbox version 1.50 onwards)

R5 = pointer to 4-word buffer to receive messages file descriptor
R6 = pointer to buffer to hold object ids on return from Wimp_Poll (the id block)

On exit

R0 = current Wimp version number * 100
R1 = Wimp task handle for this client
R2 = Pointer to Sprite area used
Buffer pointed to by R5 is filled in with a MessageTrans file descriptor for the
messages file to be used

Use

This SWI is used by the client application before any other Toolbox SWIs.

First the Toolbox looks in the directory/path given by the string pointed to by R4 for
a file called res<n>, where n is the currently configured territory number (“res7”
for Germany for example), and tries to load it; this is done by calling SWI
Toolbox_LoadResources. If a file for the current territory is not found, then the
Toolbox looks for res.

The application directory is searched for a Sprites file appropriate for the current
mode as described in Task initialisation and run-time information on page 16, and if such
a file exists, a sprite area is allocated, and the file loaded into this area. A pointer
to the area is returned in R2 (or 1 is returned if there was no such file found, and so
the Wimp Sprite pool is used for Sprite references in the client application).
33

SWI Toolbox_Initialise (0x44ecf)
The resources directory/path is checked for a file called Message<n>, where n is
the currently configured territory number, and if no such file is found for a file
called Messages. This file is registered with MessageTrans and the 4-word
MessageTrans file descriptor passed back in the buffer pointed to by R5 for use by
the client.

SWI Wimp_Initialise is called on the client’s behalf, using the Wimp version
number passed in R1, and the messages list pointed at by R2. The task name
passed to SWI Wimp_Initialise must be given in the client’s messages file; it should
be an entry with tag ‘_TaskName’.

The buffer pointed at by R6 will be used on each call to Wimp_Poll to inform the
client which object an event occurred on, and that object’s parent and ancestor
objects. On return from Wimp_Poll this block will be filled in as follows:

R6 + 0 ancestor object id
R6 + 4 ancestor component id
R6 + 8 parent object id
R6 + 12parent component id
R6 + 16‘self’ object id
R6 + 20‘self’ component id

C veneer
extern _kernel_oserror *toolbox_initialise (unsigned int flags,
 int wimp_version,
 const int *wimp_messages,
 const int *toolbox_events,
 const char *directory,
 MessagesFD *mfd,
 IdBlock *idb,
 int *current_wimp_version,
 int *task,
 void “*sprite_area
);
34

Introduction to the Toolbox
SWI Toolbox_LoadResources (0x44ed0)

On entry

R0 = flags
R1 = pointer to resource filename

On exit

R1 - R9 preserved

Use

This SWI loads the given resource file, and creates any objects which have the
auto-create bit set. When such an object is created, the Toolbox raises a
Toolbox_ObjectAutoCreated Toolbox event.

The filename of the resource file should be a full pathname.

After this SWI has been called, any templates from the resource file can be used to
create objects, by quoting the template name.

C veneer
extern _kernel_oserror *toolbox_load_resources (unsigned int flags,
 const char *resources
);
35

SWI Toolbox_TemplateLookUp (0x44efb)
SWI Toolbox_TemplateLookUp (0x44efb)

On entry

R0 = flags
R1 = pointer to template name (Ctrl terminated)

On exit

R0 = pointer to description block

Use

This SWI returns a pointer to a block suitable to pass to Toolbox_CreateObject or
Window_ExtractGadgetInfo.

C veneer
extern _kernel_oserror *toolbox_template_lookup (unsigned int flags,
 const char *name,
 ObjectTemplateHeader **hdr
);
36

Introduction to the Toolbox
Toolbox events

Toolbox_Error (0x44ec0)

Block

+ 8 0x44ec0
+ 16 error number
+ 20... error text

Use

All Toolbox SWIs may return direct errors, with the V bit set. If any part of the
Toolbox detects an error, whilst it is not processing a SWI, it will raise a
Toolbox_Error event which the client can report when it next calls Wimp_Poll.

For example, if a client uses Toolbox_ShowObject on an object which has the bit
set to warn the client before the object is shown, the Toolbox will wait until the
next call to Wimp_Poll before actually showing the object; if there is an error when
it tries to do the show, then this will be reported through a Toolbox_Error event,
since the SWI Toolbox_ShowObject will have already returned with no error
indicated.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int errnum;
 char errmess [256-20-sizeof(ToolboxEventHeader)
 -sizeof(ObjectId)
 -sizeof(ComponentId)
 -sizeof(int)];
} ToolboxErrorEvent;
37

Toolbox events
Toolbox_ObjectAutoCreated (0x44ec1)

Block

+ 8 0x44ec1
+ 16... Name of template from which object was created

Use

This Toolbox event is raised by the Toolbox after it creates objects from templates
which have their auto-create bit set, when the application’s resource file is loaded.
This allows the client application to get the ids of such objects for later use.

This event is also raised when an attached object is created as a side-effect of
creating the object to which it is attached.

The client can establish the object’s id by looking at the ‘self’ field of the id block
which it passed to Toolbox_Initialise (see later).

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 char template_name
[256-20-sizeof(ToolboxEventHeader)-sizeof(ObjectId)-sizeof(ComponentId)];
} ToolboxObjectAutoCreatedEvent;

Toolbox_ObjectDeleted (0x44ec2)

Block

+ 8 0x44ec2
+ 12 flags bit 0 set means class id and client handle fields are valid
+ 16 class id of deleted object (if flags bit 0 is set)
+ 20 client handle of deleted object (if flags bit 0 is set)

Use

This Toolbox event is raised by the Toolbox after it deletes an object. It is useful
when a ‘recursive’ delete is done, resulting in other objects being deleted.

The client can establish the object's id by looking at the ‘self’ field of the id block
which it passed to Toolbox_Initialise.

When this event is received it is not possible to call any further Toolbox methods
for the object.
38

Introduction to the Toolbox
C data type

typedef struct
{
 ToolboxEventHeader hdr;
 ObjectClass class_id;
 void *client_handle;
} ToolboxObjectDeletedEvent;
39

Toolbox events
40

2 Building an application

his chapter describes how an application (!Hyper, which can be found in the

Sources.DDE-Examples.Toolbox directory) was designed with Acorn C/C++. In

particular it demonstrates how using !ResEd and !ResTest can lead to very short
design times. The first section describes how to use !Hyper, and the second section
is a description of how it was designed and implemented.

Guide To Hyper

!Hyper is a multi-document viewer for HCL files (see HyperCard Control Language on
page 65 for the syntax). HCL files define stacks of cards allowing multiple Draw
objects to be linked such that a user may click on active areas (called hot spots) of a
viewer to navigate between different cards. Only one card from a stack is visible at
any time in a viewer, although being multi-document, !Hyper may display several
views onto the same stack, each of which may be displaying a different card.

!Hyper is started by double-clicking on its application icon or by double clicking on
an HCL file (but only after !Hyper has been seen by the Filer).

Application icon menu

Clicking Menu over the application icon will display the following menu:

Info leads to a standard program information dialogue box.

Show stack allows any closed viewers to be reopened or brings to the top an
already opened one.

Delete stack will remove it from memory.

Note that if no stacks have been loaded then the show stack/delete stack will be
greyed out.

Quit will exit the application.

T

41

Guide To Hyper
Once a stack has been loaded, !Hyper will open a viewer displaying the ‘Home
Card’ of that stack. For example:

The user can move from one card to another by clicking on hotspots. Hot Spots will
usually be identifiable in some way, though !Hyper will change the pointer shape
whilst it is over one. It is also possible to jump to the Home Card or back to the
previous card by clicking on the action buttons in the status area at the bottom of
the window.

Pressing menu over a viewer window will display the following menu:

This allows various operations to be performed on the stack being displayed:

File Info displays information about the file.

Scale View leads to a standard scale dialogue box which lets the user zoom in and
out on a card.

Find Keyword allows searching for keywords that are stored in the stack. This
allows an index type search to be applied.

Print... allows the current card to be printed.
42

Building an application
Status Line controls whether or not the status area is to be displayed at the
bottom of the viewer window.

Keyboard Short-cuts

Clicking in a viewer gives it the keyboard input focus. This then allows various
keyboard short-cuts to work. The standard keys for Find Keyword, Scale View,
File Info and Print... all work (as can be seen from the menu, pictured above) as
well as p and h for previous and home.

How !Hyper was designed

It is worth having !Hyper at hand whilst reading this section. Loading its resource
file into !ResEd and !ResTest will make it easier to see the various linkages
between objects and observe the events that are raised when interacting with the
user interface. The chapters later in this manual give full information on each of
the classes involved.

Requirements

Before designing the structure of !Hyper we had to decide what it must be able to
do. We wanted to design a HyperCard-type application with the following features:

● multi-document capability

● navigation between cards (based around Draw files) using hotspots

● home/previous facility

● keyboard driven option

● suitable for range of screen modes/scalable output

● easily extendible

● easy to make a demo version

● find capability

● ability to print a card

● maintain history of all loaded cards.
43

How !Hyper was designed
Design decisions

From the required features, we made the following design decisions.

Shared objects and client handles

The multi-document support suggested the use of shared objects and the use of
client handles for maintaining what file the viewer was showing. By doing this we
would reduce memory usage (by just having one copy of the shared menus and
dialogues) without complicating the association between events on a menu and
the viewer that it was opened from.

Event driven interface

Given that we wanted to extend and modify the interface easily, we decided to
make it event driven as opposed to object driven. In other words when registering
event handlers, we register for specific event numbers, rather than a generic event
(e.g. ActionButton_Selected) on a specific component of an object. In this way we
are able to modify the interface (e.g. reorder a menu or even move menu entries off
onto a submenu) without having to change the code.

AboutToBeShown events

We also decided to take advantage of a number of features offered by the toolbox
such as the ‘About To Be Shown’ events. These made it possible to set up dialogue
boxes as they were being shown, and not have to update them constantly as other
parts of the application altered data. A less obvious benefit of this mechanism is
that since the toolbox tells us the object id of what is being shown, we do not have
to remember this ourselves, and in fact it is possible to let the toolbox
automatically create such objects.

A good example of this is the Program Information box. This is created by the
toolbox as a side effect of creating the iconbar (which is created on initialisation
due to it having its AutoCreate bit set). We then just need to register for the
ProgInfo_AboutToBeShownEvent and in our handler set the version string from
our message file.

Standard objects

To be Style Guide compliant (and to make less work for ourselves) we can use the
standard PrintDbox, Scale, ProgInfo and FileInfo object templates supplied by the
Toolbox.

Keyboard short-cuts

As we want !Hyper to be keyboard drivable, we can make use of the Toolbox’s
keyboard short-cuts facility.
44

Building an application
How !Hyper was implemented

The rest of this chapter takes you through the stages involved in implementing
!Hyper. It breaks down into the following sections:

● Creating and testing a simple resource file for !Hyper (below).

● File loading on page 50 – coping with Filer_Open messages on HCL files.

● Handling views on page 52 – extending our simple resource file, redraw handlers,
implementing hotspots, linking data structures, showing and hiding views,
adding keyboard short-cuts etc.

● Modifying the interface on page 61 – changing the interface by editing the resource
file.

● Client Events on page 65 – a list of client events used in !Hyper.

● Summary on page 65 – features of the toolbox demonstrated in this chapter.

Creating and testing a simple resource file for !Hyper

The first stage in implementing !Hyper was to create and test a very simple
resource file consisting of an IconBar object template, a Menu object template for
the iconbar icon, and a ProgInfo object template.
45

How !Hyper was implemented
Creating a basic resource file

1 We began by starting the resource file editor (ResEd – described in the chapter
ResEd on page 423), and then opened a new resource file display. Next we
opened an object prototypes window and dragged an IconBar object template,
menu and ProgInfo object template to our empty resource file:

2 Next we double-clicked on the ProgInfo object template in the resource file
display. This opened its properties box and we entered the information we
wanted to appear in this box. We also switched on Deliver event Before
showing:

3 Then we edited the Menu object template in the resource file display and
renamed it to IbarMenu. Next we double-clicked on IbarMenu and created
two menu entries. The first entry we named Info, and the second entry Quit.

drag the three
object prototypes
to the empty
resource file display

rename this object template to IbarMenu
46

Building an application
The Info entry we edited to include a submenu option to display the ProgInfo
object template:

The Quit entry was edited to return a particular event:

As we could choose our own events, the choice of 82a91 may seem strange.
However, this is the same event that is generated by the Quit dialogue class,
hence if we added editor features and required a quit confirmation, we could
still use the same handles.

drag the ProgInfo object to the
Show object option

1

3

open IbarMenu and create

open the properties box for2
this menu entry and switch

an Info menu entry

on Has submenu
47

How !Hyper was implemented
4 Finally we edited the Iconbar object template. We set up the sprite name,
inserted some Help text, and dragged IbarMenu to the Menu button option:

Using ResTest to check the resource file

To test out this initial design we dragged the resource file from !ResEd to
!ResTest’s iconbar icon (ResTest is described on page 497). As we had set the
AutoCreate and AutoShow options for the iconbar object template, it appeared
immediately on the iconbar. Pressing Menu over the icon opened our menu
(IbarMenu) with the Quit and Info options. Sliding the mouse pointer over the
submenu arrow opened the ProgInfo box:

drag IbarMenu to the Show object option
48

Building an application
Clicking on !ResTest’s iconbar icon opened its Event Log window. We could now
see what events were being raised when we tested the interface:

Coding

We could now start writing some code. Being event driven, we decided to use
eventlib. Our initial code merely consisted of initialising the Toolbox and eventlib
and then registering our handlers. At this point we just needed some quit handlers
(for the event generated by the Quit menu option and for the Wimp messages) and
a handler to fill in the version string on the ProgInfo box.

Note the use of wimplib to provide easy access to the Wimp SWIs.

(from main.c)

 static void app_init(void)
 {
 /* initialise as a toolbox task */
 _kernel_oserror *e;
 if ((e=toolbox_initialise(0,310, messages, tbcodes,
 “<hyper$dir>”,&mbl, &idblk,0,0,0)) != NULL) {
 wimp_report_error(e,0,0,0,0,0);
 exit(1);
 }

 /* initialise event lib */

 event_initialise(&idblk);

 /* not interested in nulls or keypresses- the toolbox
 handles all our keyboard shortcuts */

 event_set_mask(1+256);

 /* register events */

 event_register_message_handler(Wimp_MQuit,quit_handler,0);
 event_register_toolbox_handler(-1,Quit_Quit,
 tbquit_handler,NULL);

 }
49

How !Hyper was implemented
(from handler.c)

 int tbquit_handler(int event_code, ToolboxEvent *event,
 IdBlock *id_block, void *handle)

 {

 IGNORE(event);
 IGNORE(event_code);
 IGNORE(handle);
 IGNORE(id_block);

 quit =1;
 return 1;
 }

 int quit_handler(WimpMessage *message, void *handle)
 {
 IGNORE(message);
 IGNORE(handle);

 quit =1;
 return 1;
 }

 int proginfo_show(int event_code, ToolboxEvent *event,
 IdBlock *id_block, void *handle)
 {

 IGNORE(handle);
 IGNORE(event);
 IGNORE(event_code);

 proginfo_set_version(0,id_block->self_id,
 lookup_token(“Version”));

 return 1;

 }

File loading

Next we turned our attention to file loading. This involved coping with Filer_Open
messages on HCL files and files that are dragged to the iconbar icon. To do this we
registered some more Wimp message handlers.

(from main.c)

 event_register_message_handler(Wimp_MDataOpen,file_loader,0);
 event_register_message_handler(Wimp_MDataLoad,file_loader,0);

(from file.c)
50

Building an application
 int file_loader(WimpMessage *message, void *handle)
 {
 /* only interested in HCL files */
 WimpMessage msg;
 IGNORE(handle);

 if (message->data.data_open.file_type != 0xfac) return 0;

 msg = *message;

 msg.hdr.your_ref = msg.hdr.my_ref;

 load_hcl_file(msg.data.data_load_ack.leaf_name);

 if (message->hdr.action_code == Wimp_MDataLoad)
 msg.hdr.action_code = Wimp_MDataLoadAck;
 wimp_send_message(Wimp_EUserMessage,&msg, msg.hdr.sender,0,0);

 return 1;
 }
51

How !Hyper was implemented
Handling views

Now it was time to open a viewer onto a file. This involved going back to our
resource file and adding some more object templates:

● a window object template to view the files in, which we called HyperViewer

● a menu to be shown on the viewer, which we called ViewerMenu

● attached to this menu a FileInfo box, a Scale box and a PrintDbox object
template.

The dialogue box for FileInfo we filled in as follows (note that we switched on
Deliver event Before showing):

The dialogue box for Print we filled in as follows:
52

Building an application
We changed the default values in the dialogue box for Scale as follows:

We then edited ViewerMenu, dragging the above three object templates to the
Show object options in the appropriate Menu entry properties boxes.

For example, the Scale View Menu entry properties box:

Having filled in all three menu entries, we then edited the HyperViewer window
object template. We dragged ViewerMenu to the Show menu field, and filled in
the other window properties boxes as appropriate.
53

How !Hyper was implemented
Note that, to receive redraw events, we switched off the Auto-redraw flag in the
Other properties dialogue in the HyperViewer window. This will affect the
appearance in !ResTest and so, for the purposes of this demonstration, is left on.

Our resource file display now looked like this:

After connecting them we dragged the resource file to !ResTest. Our icon appeared
on the iconbar as before, but now when we pressed Menu over !ResTest’s icon and
looked at the Create submenu, we saw all the new object templates that we added.

We then clicked on HyperViewer to create a viewer. This also unfaded the Show
option and allowed us to go into the Show submenu and see all the object ids that
had been created:

The Show submenu has three columns:

● the first indicates (via a tick) whether the object is showing

● the second is the unique identifier for a particular object – called the object id

● the third is the name of the template from which it was created.
54

Building an application
When we clicked on the HyperViewer entry in the Show submenu the viewer was
displayed on the screen. As a side effect of the creation the menu tree for the
viewer was created as well. Pressing Menu over the viewer displayed the menu as
one would expect:

Moving the pointer over the submenu arrows displayed the File Info and Scale
View dialogue boxes:

Clicking on Print ... displayed the Print dialogue persistently:
55

How !Hyper was implemented
The code to support these new features can be found in the C files under the
!Hyper directory of the examples. As with the code fragments above, they take the
form of registering a handler for a specific event in app_init (e.g.
FileInfo_AboutToBeShown) and then handling the event elsewhere. Note that the
print code is an essentially standard print job/render loop, differing only in that it
uses the DrawFile module to do the rendering. See print.c for more information on
this.

For the viewer (see view.c) we create a window object from a template (called
HyperView, as seen in the !ResTest menu) and attach various handlers to cope with
RedrawRequests and CloseWindow requests. Note that there is no need to register
for OpenWindow requests as this is done on our behalf by the toolbox (as we set
the AutoOpen bit of the window’s template). We also register for mouse click
events on the window. The relevant handler (click_viewer) sets input focus to the
window and if applicable jumps to a new card.

Redraw handler

The redraw handler (in draw.c) is a standard Wimp redraw handler that uses the
DrawFile module to render into the window. Note that the DrawFile module is a
generic renderer (i.e. not Wimp specific) and so needs absolute coordinates and a
transformation matrix. We use the latter in the simplest sense – just as a way of
scaling the Draw files.

Scaling

The scaling is set whenever the user clicks scale on the Scale box. If you have the
!ResTest Event log window open with the Resource file loaded, you will see that a
‘Scale_ApplyFactor’ event is generated. We use this in a handler (in draw.c) to
adjust the transformation matrix.

The object id for the ancestor of the Scale_ApplyFactor event in this example is
&187CEF0. This equates to the object id of HyperViewer (as shown in the Show
submenu on page 54). This is because the viewer is the ancestor of this menu. The
usefulness of this becomes apparent when more than one viewer object is shown.

ancestor object id
56

Building an application
Implementing hotspots

To implement the hotspots on a view, we add gadgets (components of a Window
Object) to our viewer window. We use the simplest gadget type, a button gadget,
which is quite close in functionality to a Wimp icon (see button.c). Rather than
hard code the definition of the gadget into the code, Window_ExtractGadgetInfo is
used to get the basic gadget definition from a window template called ‘Properties’.

Linking the data structures

Not surprisingly, we link all the data structures for the loaded files together on a
linked list. However, we do not need to search down this list every time an event
happens: by using client handles (see view.c) we can attach the address of the
relevant structure to an object. In this way, when we get a redraw event, we just find
out the client handle of the viewer on which it happened and can determine what
Draw files are to be rendered.

This also works for the menu tree; even though we are sharing the menu tree
amongst all the open views, the IdBlock that initialised the toolbox is filled in with
the ancestor of the tree. In Hyper, that will be a viewer (we set the Ancestor bit of
the HyperView template). So, for example, when we receive a Scale_ApplyFactor
event (as in Scaling on page 56), the ancestor is the viewer that leads to the scale
object being shown. This also applies to PrintDboxes, even though they are shown
persistently.

Showing and hiding views

As we want a history of all views, we build a ‘Views’ submenu which will be off the
icon bar menu. In common with other applications we want the ability to show a
view and remove one from memory. In both cases the list of views is the same. This
allows us to take advantage of shared objects again. We just need one menu that
we build up entry by entry and make this a submenu of the ‘Remove View’ and
‘Show View’ entries that are added to the iconbar menu. When an event happens
on this menu, we just need to find out the parent component (from the IdBlock) to
determine whether we are removing or showing a view. We can also use another
useful toolbox feature, in that it is the client that chooses the component ids. This
means we can choose the address of the structure that defines a view as its
component id – allowing very easy association between the menu entry and the
view it refers to. Note that by having an about to be shown event enabled for the
iconbar menu, it was possible to fade or unfade the ‘Show view’ and ‘Remove view’
entries as required (simply by checking whether our linked list was NULL).
57

How !Hyper was implemented
Adding keyboard short-cuts

With the interface beginning to stabilise, it was possible to start adding some of
the keyboard short-cuts. These were generally decided by the Style Guide (e.g. F11
for scale), though some aspects of the interface required keys specific to Hyper
(e.g. previous and home) to generate events. All this was handled through !ResEd
(using the keyboard short-cuts option from the window object template menu)
without any additional code requirement.

Adding a status bar

A status bar was also provided by creating a Toolbar containing a button gadget:

This Toolbar object template was then dragged to the Toolbars dialogue box from
the HyperViewer window:
58

Building an application
By using an internal bottom left toolbar, the parent window could be resized whilst
still allowing the status to be visible. Previous and home action buttons were
added (generating the same event codes as the keyboard short-cuts, so no
additional code was required) as well.

To control the visibility of the status bar, a menu entry (and appropriate keyboard
short-cut) was added that would tick according to whether the status was showing.
The handler for this is in handler.c. Note that since the status is on a per-viewer
basis, we need to know when the viewer menu is opened (and over what viewer) to
determine whether the option should be ticked or not.

Adding a find capability

Finally, to provide a find capability, a custom dialogue was designed using !ResEd
starting from a basic Window and adding gadgets from the gadgets window:

The properties dialogues for the two action buttons were:

writable fieldlabel

action buttonsradio buttons

labelled box

gadgets window

leaving the Local options switched off results in the Toolbox
automatically closing the dialogue box when clicked on
59

How !Hyper was implemented
The Next action button was made the default and assigned a specific event code.

The Home Card radio button properties dialogue was filled in as follows (this
radio button was specified as the selected radio button):

The Current Card radio button properties dialogue was edited to be similar to the
Home Card radio button, except that it was not specified as the selected radio
button.

The Keyword writable field properties dialogue was filled in as follows:

After choosing suitable components and event codes, the handler code can be
written in a self contained unit.
60

Building an application
Modifying the interface

One of the original requirements was that it should be easy to modify the interface
to !Hyper. By taking an event driven approach, it is possible to make significant
changes to the User Interface, without altering the code. Alternatively, when adding
new functionality, this can be done in a modular fashion by adding the required
handlers and registering them when required.

Adding an export DrawFile facility

As an example, consider adding an export DrawFile facility. This would allow saving
away the Draw files that make up the card on show in the viewer. The best way to
implement this would be:

● add a new submenu to the main menu, and call this new submenu File

● create two menu entries in this submenu; the first entry will replace the
FileInfo menu entry currently on the main menu; the second entry would
provide an export facility (implemented using a simple SaveAs dialogue).

This can be achieved easily by some very simple editing of the resource file:

1 Drag a Menu object template from the Object prototype window to the
resource file, and rename the object template to FileMenu.

2 Edit ViewerMenu and add a new menu entry to it:
61

How !Hyper was implemented
Now edit the new menu entry and rename it to File. Then drag the new menu
object template FileMenu to the Show object option:

3 Next double-click on the FileMenu object template. Rename the title File,
and then Shift-drag the File Info menu entry from ViewerMenu to it. To make
the copied menu entry Style Guide compliant rename it to Info:

Moving the File Info menu entry from ViewerMenu to the new File submenu is
a very simple way of relocating this menu option from one menu to another. As
we rely on the FileInfo_AboutToBeShown event, it doesn't matter where it is in
the interface; it will still work.

shift-drag the
File Info menu
entry to the new
submenu and rename
the entry Info
62

Building an application
4 Now drag a SaveAs object template from the Object prototype window to the
resource file. Edit this object template to specify that the filetype should be
DrawFile:

5 Finally return to the File menu and create an Export menu entry (by renaming
the default entry title Menu Entry to Export). Edit this entry and drag the
SaveAs object template to the Show object option:
63

How !Hyper was implemented
The final submenu should now appear as follows:

The code for the export facility would consist of registering for the various toolbox
events and then handling them in a separate area of the code.

If you now dragged the resource file to ResTest, you would see:

Other possible modifications

By this time the viewer menu could begin to get cluttered. It would then be very
easy to drag off some of the entries to a separate 'Utilities' submenu. Again, being
event driven and remembering that the handlers operate on the Ancestor of the
menu tree, they will continue to work without code alteration.

Making a demo version of Hyper could be achieved by removing or fading parts of
the interface with !ResEd.
64

Building an application
Client Events

A number of events were used in Hyper that were ‘Client specified’. These are listed
here to help understand properties and output in !ResEd and !ResTest.

Other standard events were enabled for dialogues being shown, Print etc.

Summary

This chapter has demonstrated the following features of the toolbox:

HyperCard Control Language

HyperCard Control Language (HCL) is used by !Hyper to control which draw files
are displayed to the user and when jumps should be made to new cards. It is
beyond the scope of this example to describe an editor, so the following section is
provided to describe the commands that are used.

Event
number Usage

&101 Go to Home card

&103 Go to previous card

&150 Start find operation

&151 Iconbar menu is about to be shown

&900 Viewer menu is about to be shown

&901 Toggle status bar

Toolbox feature see section/file

shared objects and client handles Shared objects and client handles on
page 44

About to be shown events AboutToBeShown events on page 44

adding and removing gadgets
at run-time

button.c
(see Implementing hotspots on page 57)

creating objects from a template view.c (see page 56)

auto creation AboutToBeShown events on page 44

the Draw file renderer draw.c (see page 56)

event handling with eventlib Coding on page 49

Menu handling Creating a basic resource file on page 46

keyboard short-cuts Adding keyboard short-cuts on page 58

client specified events and
component ids

Showing and hiding views on page 57
65

HCL commands

All card definitions are enclosed within start and end directives:

!!start name
...
!!end

where name is cardXXXXXXXX, XXXXXXXX being an 8 digit hex number.

Other commands are as follows:

There are also a number of commands that are only used by an editor. These are
not described here as they are not required by !Hyper.

Command Action

button bbox name sets up a hotspot at the given position and
sets its behaviour to go to the named card
when clicked on

clear removes all buttons and Draw files from the
viewer window

colour n sets the background colour to the given
decimal value

gosub name allows ‘inclusion’ of common functionality

goto name allows common ending of cards

keyword string sets keyword(s) for this card – allows
searching with the find dialogue box

load file loads a file into the bottom layer – overlay will
do this if it follows a clear

overlay file loads a draw file into the next available layer

stack string sets the name of this stack to the given string.
This will appear in the iconbar menu

status string changes the status line to the given string

title string sets the title bar to the given string
66

3 Colour Dialogue box class

 Colour Dialogue box object allows the user to specify a colour using a variety

of colour models.

User interface

The colour selection window can be described as follows:

● At the top is a row of radio buttons – these select which colour model is being
used.

● In the middle is an area defined by the current colour model – details of this
are described overleaf.

● At the bottom of the window is the colour patch, an optional None button
which controls transparency, and the window’s action buttons.

A

colour model

colour patch action buttonsNone button

colour model
specific area

radio buttons
67

Application Program Interface
Application Program Interface

Attributes

A Colour Dialogue object has the following attributes which are specified in its
object template and can be manipulated at run-time by the client application:

Note that it is possible to set and read whether a Colour Dialogue has a None entry
at run-time using the following methods (described on page 77):

ColourDbox_SetNoneAvailable
ColourDbox_GetNoneAvailable

Manipulating a Colour Dialogue object

Creating and deleting a Colour Dialogue object

A Colour Dialogue object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

Attributes Description

flags Bit Meaning

0 when set, this bit indicates that a
ColourDbox_AboutTobeShown event should be
raised when SWI Toolbox_ShowObject is called
for this object.

1 when set, this bit indicates that a
ColourDbox_DialogueCompleted event should
be raised when the Colour Dialogue object has
been removed from the screen.

2 when set, include a None button in the dialogue
box

3 when set, select the None button when the
dialogue box is created

title this gives an alternative string to use instead of the
string ‘Colour Choice’ in the title bar of the dialogue box
(0 means use default)

max title length this gives the maximum length in bytes of title text
which will be used for this object

colour an RGB value for the initial colour value
68

Colour Dialogue box class
A Colour Dialogue object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Colour
Dialogue objects.

Showing a Colour Dialogue object

When a Colour Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

For most applications it will not be necessary to make these calls explicitly, but
instead to mark the templates with their auto-create bit set, so that a Colour
Dialogue object is created on start-up.

Before the dialogue box is shown

When the client calls Toolbox_ShowObject, a ColourDbox_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to
take any last minute action. Typically, a client will indicate which of the colours
should be shown as the currently selected one, when it receives this event.

Setting and reading the colour used in a Colour Dialogue box

It is possible for the colour which is currently selected in the dialogue box to be set
by the client application. This is independent of the colour model being used,
since the colour is specified as an RGB colour value. The client passes a ‘colour
block’ to the Colour Dialogue module which has a one-word RGB value as its first
word; the remainder of the block is intended to support any future colour models
other than RGB, CMYK and HSV. It has a size field followed by
colour-model-specific data. For clients not requiring this extensibility, the size field
should be set to 0. The method for setting the colour thus used in a Colour
Dialogue is ColourDbox_SetColour.

The current colour (and colour model data) can be read using the
ColourDbox_GetColour method (described on page 74).

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or near the mouse pointer, if it has not
already been shown

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
69

Application Program Interface
Setting and reading the colour model used in a Colour Dialogue

The colour model used in a Colour Dialogue is normally chosen by the user by
clicking on the appropriate radio button. The client can however set this at
run-time using the ColourDbox_SetColourModel method, passing a colour
number (RGB=0, CMYK=1, HSV=2). If any other colour model is required, then
further colour-model-specific data must also be passed to this method (none are
currently supported).

The current colour model used can be read using the
ColourDbox_GetColourModel method.

Reacting to colour selections

When the user has found the correct colour he wants, he will click the OK button in
the Colour Dialogue box. The Colour Dialogue module delivers a
ColourDbox_ColourSelected Toolbox event to the client at this point giving the
RGB value of the colour chosen.

Completion of a Colour Dialogue

When the Colour Dialogue module has hidden its dialogue box at the end of a
dialogue, it delivers a ColourDbox_DialogueCompleted Toolbox event to the
client, with an indication of whether a colour selection occurred during the
dialogue.
70

Colour Dialogue box class
Colour Dialogue methods

The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Colour Dialogue id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

ColourDbox_GetWimpHandle 0

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 0

On exit

R0 = Wimp window handle of underlying window

Use

This method returns the Wimp window handle of the window used by the
underlying Colour Picker module to implement the Colour dialogue. The value
returned is only valid when the Colour dialogue box is showing.

C veneer

extern _kernel_oserror *colourdbox_get_wimp_handle (unsigned int flags,
 ObjectId colourdbox,
 int *wimp_handle
);
71

Colour Dialogue methods
ColourDbox_GetDialogueHandle 1

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 1

On exit

R0 = ColourPicker dialogue handle of underlying dialogue box

Usage

This method returns the handle of the dialogue box used by the underlying Colour
Picker module to reference the Colour dialogue. The value returned is only valid
when the Colour dialogue box is showing.

C veneer

extern _kernel_oserror *colourdbox_get_dialogue_handle (unsigned int flags,
 ObjectId colourdbox,
 int *dialogue_handle
);
72

Colour Dialogue box class
ColourDbox_SetColour 2

On entry

R0 = flags
bit 0 set  select the None option
bit 1 set  deselect the None option

R1 = Colour Dbox object id
R2 = 2
R3 = pointer to colour block

On exit

R1-R9 preserved

Use

This method sets the colour currently displayed in the Colour Dialogue (adjusting
the colour slice shown, the sliders, and the writable fields appropriately).

The colour block is defined as follows:

+0 0
+1 blue value (0, ..., &FF)
+2 green value
+3 red value
+4 size of the remainder of this block (which may be 0)
+8 colour model number
+12... other model-dependent data

Currently there are no extra colour models supported, so the size field at byte
offset 4 should be set to 0.

If bit 0 of the flags word is set (select the None option) then R3 may be 0.

C veneer

extern _kernel_oserror *colourdbox_set_colour (unsigned int flags,
 ObjectId colourdbox,
 const int *colour_block
);
73

Colour Dialogue methods
ColourDbox_GetColour 3

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 3
R3 = pointer to buffer for colour block
R4 = size of buffer

On exit

if bit 0 of R0 is set  None is selected

R4 = size of buffer required (if R3 was 0)
(currently fixed because no extra colour models are supported)
else buffer pointed at by R3 contains colour information
R4 holds number of bytes written to buffer.

Use

This method returns the colour currently displayed in the Colour Dialogue.

The colour block is defined as follows:

+0 0
+1 blue value (0, ..., &FF)
+2 green value
+3 red value
+4 size of the remainder of this block (which may be 0)
+8 colour model number
+12... other model-dependent data

C veneer

extern _kernel_oserror *colourdbox_get_colour (unsigned int flags,
 ObjectId colourdbox,
 int *buffer,
 int buff_size,
 int *outflags,
 int *nbytes
);
74

Colour Dialogue box class
ColourDbox_SetColourModel 4

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 4
R3 = pointer to colour model block

On exit

R1-R9 preserved

Use

This method sets the colour model currently used in the Colour Dialogue. The
colour which is being displayed will now be shown using the new colour model,
and the layout of the dialogue box will change accordingly.

The colour model block is defined as follows:

+0 size of the remainder of this block (currently only 4)
+4 colour model number
+8... other model-dependent data

The current valid colour model numbers are:

0 RGB
1 CMYK
2 HSV

Currently there are no extra colour models supported, so the size field at byte
offset 0 should be set to 4 (i.e. just a colour model number).

C veneer

extern _kernel_oserror *colourdbox_set_colour_model (unsigned int flags,
 ObjectId colourdbox,
 const int *model_block
);
75

Colour Dialogue methods
ColourDbox_GetColourModel 5

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 5
R3 = pointer to buffer for colour block
R4 = size of buffer

On exit

R4 = size of buffer required (if R3 was 0)
(currently fixed because no extra colour models are supported)
else buffer pointed at by R3 contains colour information
R4 holds number of bytes written to buffer

Use

This method returns the number of the colour model currently used in the Colour
Dialogue.

The colour model block is defined as follows:

+0 size of the remainder of this block
+4 colour model number (currently: 0 = RGB, 1 = CMYK and 2 = HSV)
+8... other model-dependent data

C veneer

extern _kernel_oserror *colourdbox_get_colour_model (unsigned int flags,
 ObjectId colourdbox,
 int *buffer,
 int buff_size,
 int *nbytes
);
76

Colour Dialogue box class
ColourDbox_SetNoneAvailable 6

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 6
R3 = non-zero means None is available

On exit

R1-R9 preserved

Use

This method sets whether a None option appears in the Colour Dialogue.

C veneer

extern _kernel_oserror *colourdbox_set_none_available (unsigned int flags,
 ObjectId colourdbox,
 int none
);

ColourDbox_GetNoneAvailable 7

On entry

R0 = flags
R1 = Colour Dbox object id
R2 = 7

On exit

if bit 0 of R0 is set, then None is available

Use

This method returns whether the None option appears in a Colour Dialogue.

C veneer

extern _kernel_oserror *colourdbox_get_none_available (unsigned int flags,
 ObjectId colourdbox,
 int *out_flags
);
77

Colour Dialogue events
Colour Dialogue events

There are a number of Toolbox events which are generated by the Colour Dialogue
module:

ColourDbox_AboutToBeShown (0x829c0)

Block

+ 8 0x829c0
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box.

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Colour Dialogue object. It gives the application the opportunity to set fields in the
dialogue box before it actually appears on the screen.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} ColourDboxAboutToBeShownEvent;
78

Colour Dialogue box class
ColourDbox_DialogueCompleted (0x829c1)

Block

+ 8 0x829c1
+ 12 flags

Use

This Toolbox event is raised after the Colour Dialogue object has been hidden,
either by a Cancel click, or after an OK click, or by the user pressing Escape. It
allows the client to tidy up its own state associated with this dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} ColourDboxDialogueCompletedEvent;

ColourDbox_ColourSelected (0x829c2)

Block

+ 8 0x829c2
+ 12 flags bit 0 set means None was chosen
+ 16 colour block chosen

Use

This Toolbox event is raised when the user clicks OK in the dialogue box. The
colour block has the same format shown in the ColourDbox_SetColour method.

Note that event if the None button is set, a colour value is still returned, reflecting
the current state of the dialogue box.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 unsigned int colour_block[(212/4)];
} ColourDboxColourSelectedEvent;
79

Colour Dialogue templates
Colour Dialogue templates

The layout of a Colour Dialogue template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference

max_title 4 word

colour 4 word
80

4 Colour Menu class

Colour Menu object is used to show a menu giving the 16 desktop colours

(and an optional None entry), and to allow the user to select one of these

colours by clicking on its menu entry.

User interface

The Colour Menu allows the user to select from the set of available desktop colours
(and an optional None entry which appears at the bottom). The menu is displayed
showing the 16 desktop colours. Optionally any one of the colours can be shown as
selected (with a tick against it).

When a hit is received for the Colour Menu, a Toolbox event is returned to the
client. This contains the colour number of the selected colour. The selected colour
is shown as ticked in the Colour Menu, when the menu is next shown (or
immediately if Adjust is held down).

A

81

Application Program Interface
Application Program Interface

Attributes

A Colour Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Manipulating a Colour Menu object

Creating and deleting a Colour Menu

A Colour Menu object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A Colour Menu object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Colour
menus.

Attribute Description

flags word Bit Meaning

0 when set, this bit indicates that a
ColourMenu_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called for this
Colour Menu

1 when set, this bit indicates that a
ColourMenu_HasBeenHidden event should be raised
when the Menu has been removed from the screen

2 when set, include a None entry in the menu (will
appear with None as its last entry)

 menu title this gives an alternative string to use instead of the string
‘Colour’ in the title bar of the menu

max title
length

this gives the maximum length in bytes of title text which
will be used for this Colour Menu.

colour this is an indication of which colour is selected when the
Colour Menu is first created. Possible values are:

0-15 for the desktop colours
16 for ‘None’
-1 to indicate that no colour should be selected
82

Colour Menu class
Showing a Colour Menu

When a Colour menu is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Before the menu is shown

When the client calls Toolbox_ShowObject, a ColourMenu_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to
take any last minute action. Typically, a client will indicate which of the colours
should be shown as the currently selected one, when it receives this event.

Setting and getting the selected colour

For a Colour Menu, one of the colour entries can be designated the selected colour
(indicated by a tick against it in the menu). Colours within the menu are numbered
like the Wimp colours from 0-15 (with 16 meaning ‘None’, and -1 meaning ‘nothing
selected’).

The currently selected colour entry can be set and read dynamically using the
ColourMenu_SetColour/ColourMenu_GetColour methods.

Note that when the user clicks on a colour entry, that will become the selected
colour automatically without calling ColourMenu_SetColour. As will be seen later,
a user click results in a Toolbox event being delivered to the client, indicating
which colour was selected.

The client can dynamically set whether a None entry is given, by using the
ColourMenu_SetNoneAvailable method (and read whether it is available using the
ColourMenu_GetNoneAvailable method).

Processing a colour selection

Whenever the user clicks on a colour entry a ColourMenu_Selection Toolbox event
is raised to indicate which colour was chosen (one of 0-15, or 16 to indicate
‘None’).

Show type Position

0 (default) 64 OS units to the left of the mouse pointer

1 (full spec) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu
83

Colour Menu methods
Colour Menu methods

The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Colour Menu id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data.

ColourMenu_SetColour 0

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 0
R3 = Wimp colour (0-15, or 16 for ‘None’, or -1 for ‘nothing selected’)

On exit

R1-R9 preserved

Use

This method selects a colour as being the currently selected one for this Colour
Menu, and places a tick next to it. Note that this change will only be visible when
the Colour Menu is next shown.

C veneer

extern _kernel_oserror *colourmenu_set_colour (unsigned int flags,
 ObjectId colourmenu,
 int wimp_colour
);
84

Colour Menu class
ColourMenu_GetColour 1

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 1

Exit

R0 = Wimp colour selected (0-15, or 16 for ‘None’, or -1 for ‘nothing selected’)

Use

This method returns the Wimp colour which is currently selected for this Colour
Menu.

C veneer

extern _kernel_oserror *colourmenu_get_colour (unsigned int flags,
 ObjectId colourmenu,
 int *wimp_colour
);

ColourMenu_SetNoneAvailable 2

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 2
R3 = non-zero means allow a ‘None’ entry

On exit

R1-R9 preserved

Use

This method sets whether there is a ‘None’ entry for this Colour Menu.

C veneer

extern _kernel_oserror *colourmenu_set_none_available (unsigned int flags,
 ObjectId colourmenu,
 int none
);
85

Colour Menu methods
ColourMenu_GetNoneAvailable 3

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 3

On exit

R0 = non-zero means there is a ‘None’ entry

Use

This method returns whether this Colour Menu has a ‘None’ entry.

C veneer

extern _kernel_oserror *colourmenu_get_none_available (unsigned int flags,
 ObjectId colourmenu,
 int *none
);

ColourMenu_SetTitle 4

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 4
R3 = pointer to text string to use

Exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Colour
Menu.

C veneer

extern _kernel_oserror *colourmenu_set_title (unsigned int flags,
 ObjectId colourmenu,
 const char *title
);
86

Colour Menu class
ColourMenu_GetTitle 5

On entry

R0 = flags
R1 = Colour Menu object id
R2 = 5
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

Exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Colour Menu’s title bar.

C veneer

extern _kernel_oserror *colourmenu_get_title (unsigned int flags,
 ObjectId colourmenu,
 char *buffer,
 int buff_size,
 int *nbytes
);
87

Colour Menu events
Colour Menu events

There are a number of Toolbox Events which are generated by the Colour Menu
module:

ColourMenu_AboutToBeShown (0x82980)

Block

+ 8 0x82980
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying Menu object

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Colour Menu object. It gives the application the opportunity to set the selected
colour before the menu actually appears on the screen.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 TopLeft pos;
} ColourMenuAboutToBeShownEvent;

ColourMenu_HasBeenHidden (0x82981)

Block

+ 8 0x82981

Use

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on
a Colour Menu which has the appropriate bit set in its template flags word. It
enables a client application to clear up after a menu has been closed. It is also
raised when clicking outside a menu or hitting Escape.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} ColourMenuHasBeenHiddenEvent;
88

Colour Menu class
ColourMenu_Selection (0x82982)

Block

+ 8 0x82982
+ 16 Wimp colour selected (0-15, or 16 for ‘None’)

Use

This Toolbox event is raised when the user has clicked on one of the Colour entries
in the Colour Menu. The colour value returned is in the range 0-15 for the desktop
colours, or 16 for ‘None’.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int colour;
} ColourMenuSelectionEvent;

Colour Menu templates

The layout of a Colour Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference

max-title 4 word

colour 4 word
89

Colour Menu Wimp event handling
Colour Menu Wimp event handling

The Colour Menu class responds to certain Wimp events and takes the actions as
described below:

Wimp event Action

Menu Selection The colour number corresponding to the menu
selection is sent back to the client via a
ColourMenu_Selection event.

If Adjust is held down, then the currently open
menu is re-opened in the same place.

User Msg Message_HelpRequest
(while the pointer is over a Colour Menu object)

If a help message is attached to this Colour Menu,
then a reply is sent on the application’s behalf.
90

5 Discard/Cancel/Save Dialogue
box class
Discard/Cancel/Save (DCS) Dialogue box is used by the client application
when the user attempts to close a window containing modified and unsaved

data.

User interface

A DCS dialogue object is used to allow the user to save data which has been
modified, usually before a document window is closed.

The dialogue box which appears on the screen has a number of components:

● a title bar (by default containing the name of the application, i.e. the message
whose tag is ‘_TaskName’)

● a message stating (by default) that there is unsaved data

● three Action Buttons: Discard, Cancel and Save (default action button).

The user sees the following behaviour (note that a click with the adjust button is
treated in the same way as a select click):

● if they click on Discard, the box is closed, the parent window is closed, and its
(new) contents discarded

● if they click outside the dialogue box (and it was opened transiently, i.e. with
Menu semantics), or click on Cancel, the box is closed, and the close on the
parent window is cancelled

A

title bar

message

Discard button Cancel button Save button
91

Application Program Interface
● if they click on Save or press Return, the box is closed, and either the data is
saved without further interaction (if a suitable full pathname is available), or a
SaveAs dialogue appears allowing an icon to be dragged to where the data
should be saved. When the save is complete, the parent window is closed.

Application Program Interface

When a DCS object is created, it has a number of optional components:

● an alternative title bar string instead of the client’s name

● an alternative message to use in the dialogue box

● the name of an alternative template to use for the underlying Window object.

Just before the DCS dialogue box is shown on the screen, the client is delivered a
DCS_AboutToBeShown Toolbox event if enabled by the flags word.

Once the dialogue box is displayed on the screen, the DCS module handles events
for it, and raises a number of Toolbox Events to indicate what choice the user has
made. These are DCS_Discard, DCS_Cancel and DCS_Save respectively. If the
dialogue is closed, then the client receives a DCS_DialogueCompleted event if
enabled by the appropriate bit in the flags word (see below).

Attributes

A DCS object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes Description

flags Bit Meaning

0 when set, this bit indicates that a
DCS_AboutTobeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
DCS_DialogueCompleted event should be raised
when the DCS object has been removed from the
screen.

DCS title an alternative string for the title bar other than the
client’s name (0 means use application name)

max title length this gives the maximum length in bytes of title text
which will be used for this object

message an alternative message to use in the DCS dialogue box
(other than ‘This file has been modified’)
92

Discard/Cancel/Save Dialogue box class
Manipulating a DCS object

Creating and deleting a DCS object

A DCS object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A DCS object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for DCS
objects.

Showing a DCS object

When a DCS object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

max message
length

this gives the maximum length in bytes of the message
which will be used for this object

window an alternative window template to use instead of the
default one (o means use default)

Show type Position

0 (default) close to the pointer

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate

Attributes Description
93

DCS methods
Changing the DCS dialogue’s message

When a DCS dialogue object is created it has a default message warning the user
that he has unsaved data which will be lost if he closes the window.

This can be set and read dynamically using the DCS_SetMessage and
DCS_GetMessage methods (described on page 95).

Getting the id of the underlying window for a DCS object

The window object id of the Window object used to implement the DCS Dialogue
can be obtained by using the DCS_GetWindowID method.

DCS methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word (which is zero unless otherwise stated)
R1 being a DCS Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

DCS_GetWindowID 0

On entry

R0 = flags
R1 = DCS object id
R2 = 0

On exit

R0 = Window object id for this DCS object

Use

This method returns the id of the underlying Window object used to implement
this DCS object.

C veneer

extern _kernel_oserror *dcs_get_window_id (unsigned int flags,
 ObjectId dcs,
 ObjectId *window
);
94

Discard/Cancel/Save Dialogue box class
DCS_SetMessage 1

On entry

R0 = flags
R1 = DCS object id
R2 = 1
R3 = pointer to buffer holding new message (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the message used in the DCS dialogue’s window.

C veneer

extern _kernel_oserror *dcs_set_message (unsigned int flags,
 ObjectId dcs,
 const char *message
);
95

DCS methods
DCS_GetMessage 2

On entry

R0 = flags
R1 = DCS object id
R2 = 2
R3 = pointer to buffer to hold message
R4 = size of buffer to hold message

On exit

R4 = size of buffer required to hold message (if R3 was 0)
else buffer pointed at by R3 holds message
R4 holds number of bytes written to buffer

Use

This method returns the current message used in a DCS object.

C veneer

extern _kernel_oserror *dcs_get_message (unsigned int flags,
 ObjectId dcs,
 char *buffer,
 int buff_size,
 int *nbytes
);
96

Discard/Cancel/Save Dialogue box class
DCS_SetTitle 3

On entry

R0 = flags
R1 = DCS object id
R2 = 3
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given DCS
dialogue.

C veneer

extern _kernel_oserror *dcs_set_title (unsigned int flags,
 ObjectId dcs,
 const char *title
);
97

DCS methods
DCS_GetTitle 4

On entry

R0 = flags
R1 = DCS object id
R2 = 4
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a DCS dialogue’s title bar.

C veneer

extern _kernel_oserror *dcs_get_title (unsigned int flags,
 ObjectId dcs,
 char *buffer,
 int buff_size,
 int *nbytes
);
98

Discard/Cancel/Save Dialogue box class
DCS events

The DCS module generates the following Toolbox events:

DCS_AboutToBeShown (0x82a80)

Block

+ 8 0x82a80
+12 value which will be passed in R0 to Toolbox_ShowObject

(i.e. show flags, such as 'Show as menu')
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box.

Use

This Toolbox event is raised just before the DCS module is going to show its
underlying Window object.

C data type

typedef struct
{
ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;

} DCSAboutToBeShownEvent;
99

DCS events
DCS_Discard (0x82a81)

Block

+ 8 0x82a81

Use

This Toolbox event is raised when the user clicks on the Discard button.

C data type

typedef struct
{
 ToolboxEventHeader hdr;

} DCSDiscardEvent;

DCS_Save (0x82a82)

Block

+ 8 0x82a82

Use

This Toolbox event is raised when the user clicks on the Save Button or presses
Return. It is then the client’s responsibility to either save the data directly to file, or
to display a SaveAs Dialogue object.

C data type

typedef struct
{
 ToolboxEventHeader hdr;

} DCSSaveEvent;
100

Discard/Cancel/Save Dialogue box class
DCS_DialogueCompleted (0x82a83)

Block

+ 8 0x82a83

Use

This Toolbox event is raised after the DCS object has been hidden, either by a
Cancel click, a Save click or a Discard click, or by the user clicking outside the
dialogue box (if opened transiently) or pressing Escape. It allows the client to tidy
up its own state associated with this dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;

} DCSDialogueCompletedEvent;

DCS_Cancel (0x82a84)

Block

+ 8 0x82a84

Use

This Toolbox event is raised when the user clicks on the Cancel button or presses
the Escape key.

C data type

typedef struct
{
 ToolboxEventHeader hdr;

} DCSCancelEvent;
101

DCS templates
DCS templates

The layout of a DCS template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Underlying window template

The window object used to implement a DCS dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82a800

Field Size in bytes Type

flags 4 word

title 4 MsgReference

max_title 4 word

message 4 MsgReference

max_message 4 word

window 4 StringReference

Component id Details

0 button gadget

1 action button (Discard)

2 action button (Cancel)
must be marked as a ‘Cancel’ action button

3 action button (Save)
must be marked as a ‘Default’ action button
102

Discard/Cancel/Save Dialogue box class
DCS Wimp event handling

* if enabled

Note that if opened transiently, DCS_DialogueCompleted may be raised without
any of DCS_Cancel, DCS_Discard or DCS_Save being raised. This could arise from
the user clicking on the backdrop or opening a menu.

Wimp event Action

Mouse Click on Discard button raise DCS_Discard Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

on Cancel button raise DCS_Cancel Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

on Save button raise DCS_Save Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

Key Pressed on Return raise DCS_Save Toolbox event,
then a DCS_DialogueCompleted Toolbox event*

on Escape then act as if Cancel had been clicked.
103

104

6 File Info Dialogue box class

File Info dialogue object is used to display information about a file (or a

directory or application) in a dialogue box.

User interface

A File Info dialogue has the following information held in its dialogue box:

● an indication of whether the file is modified (a textual display field with the
text ‘YES’ or ‘NO’)

● a sprite representing the file type (i.e. a sprite named file_xxx where xxx is the
hex representation of the file type). If the filetype is 0x1000 a directory sprite is
used, and if 0x2000 an application sprite is used.

● the type of the file (a textual display field with the textual filetype followed by
its hex value in brackets)

● the full pathname of the file or ‘<untitled>’ (a display field)

● the size of the file in bytes (a display field giving the size of the file)

● the date the file was last written to (a textual display field showing the date in
‘*time’ format).

A

modified

type of file
button gadget

filename

file size

file date
105

Application Program Interface
Application Program Interface

Attributes

A File Info object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description

flags Bit Meaning

0 when set, this bit indicates that a
FileInfo_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called
for this object.

1 when set, this bit indicates that a
FileInfo_DialogueCompleted event should be
raised when the File Info object has been
removed from the screen.

File Info title alternative title to use instead of ‘About this file’
(0 means use default title)

max title length this gives the maximum length in bytes of title text
which will be used for this object

modified an indication as to whether the file is to be marked as
modified from creation

filetype a word giving the RISC OS filetype

filename the initial filename to use in the dialogue box (if this
field is 0, then the string ‘<untitled>’ is used

filesize size of the file in bytes

date a 5-byte UTC time

window the name of an alternative window template to use
instead of the default one (0 means use default)
106

File Info Dialogue box class
Manipulating a File Info object

Creating and deleting a File Info object

A File Info object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A File Info object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for File Info
objects.

Showing a File Info object

When a File Info object is displayed on the screen using SWI Toolbox_ShowObject
it has the following behaviour:

Before the File Info dialogue box is shown

When SWI Toolbox_ShowObject is called, a FileInfo_AboutToBeShown Toolbox
event is raised, if the appropriate bit is set in the File Info dialogue object’s flags
word. This enables the client to set any of the dialogue box’s fields before it is
displayed.

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
107

File Info methods
Setting and reading the fields of the File Info dialogue

All of the display fields in a File Info dialogue can be set and read dynamically at
run-time. The sprite displayed in the dialogue box depends on the value of the
filetype field.

The methods used to do this are:

FileInfo_SetModifiedFileInfo_GetModified
FileInfo_SetFileTypeFileInfo_GetFileType
FileInfo_SetFileNameFileInfo_GetFileName
FileInfo_SetFileSizeFileInfo_GetFileSize
FileInfo_SetDateFileInfo_GetDate

File Info methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a File Info Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FileInfo_GetWindowID 0

On entry

R0 = flags
R1 = File Info object id
R2 = 0

On exit

R0 = window object id for this File Info object

Use

This method returns the id of the underlying window object used to implement this
File Info object.

C veneer

extern _kernel_oserror *fileinfo_get_window_id (unsigned int flags,
 ObjectId fileinfo,
 ObjectId *window
);
108

File Info Dialogue box class
FileInfo_SetModified 1

On entry

R0 = flags
R1 = File Info object id
R2 = 1
R3 = value

On exit

R1-R9 preserved

Use

This method sets whether the file is to be indicated as modified or not. If the value
passed in R3 is 0, this indicates that the file is not modified; any other value in R3
means the file is modified.

C veneer

extern _kernel_oserror *fileinfo_set_modified (unsigned int flags,
 ObjectId fileinfo,
 int modified
);

FileInfo_GetModified 2

On entry

R0 = flags
R1 = File Info object id
R2 = 2

On exit

R0 = modified state (0 unmodified, non-0  modified)

Use

This method returns whether the file is indicated as modified or not.

C veneer

extern _kernel_oserror *fileinfo_get_modified (unsigned int flags,
 ObjectId fileinfo,
 int *modified
);
109

File Info methods
FileInfo_SetFileType 3

On entry

R0 = flags
R1 = File Info object id
R2 = 3
R3 = file type

On exit

R1-R9 preserved

Use

This method sets the file type to be indicated in the dialogue box.

C veneer

extern _kernel_oserror *fileinfo_set_file_type (unsigned int flags,
 ObjectId fileinfo,
 int file_type
);

FileInfo_GetFileType 4

On entry

R0 = flags
R1 = File Info object id
R2 = 4

On exit

R0 = file type

Use

This method returns the file type shown in the dialogue box.

C veneer

extern _kernel_oserror *fileinfo_get_file_type (unsigned int flags,
 ObjectId fileinfo,
 int *file_type
);
110

File Info Dialogue box class
FileInfo_SetFileName 5

On entry

R0 = flags
R1 = File Info object id
R2 = 5
R3 = pointer to buffer holding filename

On exit

R1-R9 preserved

Use

This method sets the filename used in the File Info dialogue’s Window. There is a
limit of 256 characters on the filename length.

C veneer

extern _kernel_oserror *fileinfo_set_file_name (unsigned int flags,
 ObjectId fileinfo,
 const char *file_name
);
111

File Info methods
FileInfo_GetFileName 6

On entry

R0 = flags
R1 = File Info object id
R2 = 6
R3 = pointer to buffer to hold filename
R4 = size of buffer to hold filename

On exit

R4 = size of buffer required to hold filename (if R3 was 0)
else buffer pointed at by R3 holds filename
R4 holds number of bytes written to buffer

Use

This method returns the current filename used in a File Info object.

C veneer

extern _kernel_oserror *fileinfo_get_file_name (unsigned int flags,
 ObjectId fileinfo,
 char *buffer,
 int buff_size,
 int *nbytes
);
112

File Info Dialogue box class
FileInfo_SetFileSize 7

On entry

R0 = flags
R1 = File Info object id
R2 = 7
R3 = file size

On exit

R1-R9 preserved

Use

This method sets the file size to be indicated in the dialogue box.

C veneer

extern _kernel_oserror *fileinfo_set_file_size (unsigned int flags,
 ObjectId fileinfo,
 int file_size
);

FileInfo_GetFileSize 8

On entry

R0 = flags
R1 = File Info object id
R2 = 8

On exit

R0 = file size

Use

This method returns the file size shown in the dialogue box.

C veneer

extern _kernel_oserror *fileinfo_get_file_size (unsigned int flags,
 ObjectId fileinfo,
 int *file_size
);
113

File Info methods
FileInfo_SetDate 9

On entry

R0 = flags
R1 = File Info object id
R2 = 9
R3 = pointer to 5-byte UTC time

On exit

R1-R9 preserved

Use

This method sets the date string used in the File Info dialogue’s window. The
Territory Manager is used to convert the UTC time into a time string.

C veneer

extern _kernel_oserror *fileinfo_set_date (unsigned int flags,
 ObjectId fileinfo,
 const int *UTC
);

FileInfo_GetDate 10

On entry

R0 = flags
R1 = File Info object id
R2 = 10
R3 = pointer to buffer to hold 5-byte UTC time

On exit

R1-R9 preserved

Use

This method returns the current UTC time used in a File Info object.

C veneer

extern _kernel_oserror *fileinfo_get_date (unsigned int flags,
 ObjectId fileinfo,
 const int *UTC
);
114

File Info Dialogue box class
FileInfo_SetTitle 11

On entry

R0 = flags
R1 = File Info object id
R2 = 11
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given File Info
dialogue.

C veneer

extern _kernel_oserror *fileinfo_set_title (unsigned int flags,
 ObjectId fileinfo,
 char *title
);
115

File Info methods
FileInfo_GetTitle 12

On entry

R0 = flags
R1 = File Info object id
R2 = 12
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a File Info dialogue’s title bar.

C veneer

extern _kernel_oserror *fileinfo_get_title (unsigned int flags,
 ObjectId fileinfo,
 char *buffer,
 int buff_size,
 int *nbytes
);
116

File Info Dialogue box class
File Info events

The File Info module generates the following Toolbox events:

FileInfo_AboutToBeShown (0x82ac0)

Block

+ 8 0x82ac0
+ 12 flags (as passed in to Toolbox_ShowObject
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the File Info module is going to show its
underlying Window object.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} FileInfoAboutToBeShownEvent;
117

File Info templates
FileInfo_DialogueCompleted (0x82ac1)

Block

+ 8 0x82ac1
+ 12 flags

(none yet defined)

Use

This Toolbox event is raised after the File Info object has been hidden, either by the
user clicking outside the dialogue box or pressing Escape. It allows the client to
tidy up its own state associated with this dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} FileInfoDialogueCompletedEvent;

File Info templates

The layout of a File Info template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference

modified 4 word

filetype 4 word

filename 4 MsgReference

filesize 4 word

date 8 2 words

window 4 StringReference
118

File Info Dialogue box class
Underlying window template

The window object used to implement a File Info dialogue has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82ac00.

File Info Wimp event handling

Component id Details

0 Display Field (date)

1 Display Field (size in bytes)

2 Display Field (filename)

3 Display Field (filetype)

4 Display Field (modified field)

5 Button gadget (indirected sprite used to display icon
for file type)

6 Label (date)

7 Label (size)

8 Label (modified)

9 Label (type)

Wimp event Action

Open Window Request show the dialogue box

Key Click if Escape, then cancel this dialogue.

User Message Window_HasBeenHidden
hide the dialogue box
119

120

7 Font Dialogue box class

Font Dialogue box shows font, weight and style of the currently selected font,

together with a chosen height and aspect ratio. The dialogue box also has a

writable field in which a test string in the chosen font is displayed.

User interface

The Font Dialogue box can be broken down into the following components:

● A boxed area for setting the font, which contains three labels giving the font’s
name, weight and style; with three accompanying string sets (each string set
contains a display field and a pop-up menu, which gives viable values for these
fields, based on the list of currently available fonts). The pop-up menus are
built and processed by the Toolbox, and do not require (or allow) any client
intervention. The Toolbox deals with ensuring that only valid font id’s are
available to be chosen.

● Another boxed area, in which the user can set the height and aspect ratio used
to plot the selected font. There are a number of standard sizes which can be
chosen by clicking action buttons, and a number range into which a
non-standard size can be entered. The aspect ratio used is specified by the
contents of another number range.

A

Try button Cancel button Apply button

string sets

writable field

action buttons

number ranges

labels
121

Application Program Interface
● At the bottom of the dialogue box, there is a writable field which by default
contains the string, ‘The quick brown fox jumps over the lazy dog’. When the
user clicks on the Try button, this string is rendered in the selected font (and
height and aspect ratio). The try string is limited to 64 characters long.

● The user can cancel the dialogue by clicking on the Cancel action button, or
can apply the font selection by clicking on Apply.

Note that the strings which appear in the font, weight and style display fields may
be localised for the current territory, but the strings used to communicate font
selections between the client and the Toolbox are always the ‘real’ font id of the
font (e.g. Corpus.Bold.Oblique).

Application Program Interface

Attributes

A Font Dialogue object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description

flags word Bit Meaning

0 when set, this bit indicates that a
FontDbox_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called
for this object.

1 when set, this bit indicates that a
FontDbox_DialogueCompleted event should be
raised when the Font Dialogue object has been
removed from the screen.

2 when set, include a System font entry in the list
of fonts.

title an alternative title for the dialogue box instead of ‘Type
style’ (0 means use default title)

max title length the maximum length in bytes of title text which will be
used for this object

initial font the font id to be displayed in the dialogue box as the
selected font, on creation. If 0, the default is to display
the first font in the list of currently available fonts.

initial height the initial height value when the dialogue box is created

initial aspect the initial aspect ratio value when the dialogue box is
created
122

Font Dialogue box class
Manipulating a Font Dialogue object

Creating and deleting a Font Dialogue object

A Font Dialogue object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A Font Dialogue object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Font
Dialogue objects.

Showing a Font Dialogue object

When a Font Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

try string an alternative string to use in the Try writable field,
instead of ‘The quick brown fox jumps over the lazy dog’

 window an alternative window template to use instead of the
default one.

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate

Attributes Description
123

Application Program Interface
Before the Font Dialogue box is shown

When the client calls Toolbox_ShowObject, a FontDbox_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to
take any last minute action. Typically, a client will indicate which of the fonts
should be shown as the currently selected one, when it receives this event.

Setting and getting the current selection

The currently selected font id can be set and read at run-time using the
FontDbox_SetFont and FontDbox_GetFont methods. These use a font id which
assumes a <name>.<weight>.<style> structure (i.e. the first component appears in
the Font field, the second in the Weight field, and the third in the Style field).

The size (both height and aspect ratio components) are set and read using the
FontDbox_SetSize/FontDbox_GetSize methods respectively.

The Try string can be set and read using the FontDbox_SetTryString and
FontDbox_GetTryString methods.

Receiving a font selection

When the user clicks the Apply button (or presses the Return key when the Font
Dialogue box has the input focus), the client application is sent a
FontDbox_ApplyFont Toolbox event. This event gives the font id of the currently
selected font.

Completing a Font Dialogue

When the dialogue box is closed, either because Apply or Cancel has been clicked,
or Escape has been pressed, a FontDbox_DialogueCompleted Toolbox event is
raised for the client, with an indication of whether a font was selected during the
dialogue.
124

Font Dialogue box class
Font Dialogue methods

The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Font Dialogue Box id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FontDbox_GetWindowID 0

On entry

R0 = flags
R1 = FontDbox object id
R2 = 0

On exit

R0 = Window object id for this FontDbox object

Use

This method returns the id of the underlying Window object used to implement
this FontDbox object.

C veneer

extern _kernel_oserror *fontdbox_get_window_id(unsigned int flags,
 ObjectId fontdbox,
 ObjectId *window
);
125

Font Dialogue methods
FontDbox_SetFont 1

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 1
R3 = pointer to font id of font to select (0 means none)

On exit

R1-R9 preserved

Use

This method selects a font as being the currently selected one for this Font
Dialogue box, and displays its name appropriately in the Font/Weight/Style
display fields.

The special font id ‘SystemFont’ is used to indicate that the System entry should
be selected.

C veneer

extern _kernel_oserror *fontdbox_set_font (unsigned int flags,
 ObjectId fontdbox,
 const char *font_id
);
126

Font Dialogue box class
FontDbox_GetFont 2

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 2
R3 = pointer to buffer to hold font id
R4 = buffer size for font id

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds font id
R4 holds number of bytes written to buffer

Use

This method returns the font id for the font which was last specified in a
FontDbox_SetFont call, or was last chosen by a user choice from a pop-up menu.

The special font id ‘SystemFont’ is used to indicate that the System entry is
selected.

C veneer

extern _kernel_oserror *fontdbox_get_font (unsigned int flags,
 ObjectId fontdbox,
 char *buffer,
 int buff_size,
 int *nbytes
);
127

Font Dialogue methods
FontDbox_SetSize 3

On entry

R0 = flags
bit 0 set means change the height value
bit 1 set means change the aspect ratio

R1 = Font Dbox object id
R2 = 3
R3 = height value
R4 = aspect ratio value

On exit

R1-R9 preserved

Use

This method sets the height value and/or the aspect ratio displayed in the Font
Dialogue box.

C veneer

extern _kernel_oserror *fontdbox_set_size (unsigned int flags,
 ObjectId fontdbox,
 int height,
 int aspect_ratio
);
128

Font Dialogue box class
FontDbox_GetSize 4

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 4

On exit

R0 = height value
R1 = aspect ratio

Use

This method returns the height value and/or aspect ratio currently displayed in the
Font Dialogue box.

C veneer

extern _kernel_oserror *fontdbox_get_size (unsigned int flags,
 ObjectId fontdbox,
 int *height,
 int *aspect_ratio
);

FontDbox_SetTryString 5

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 5
R3 = pointer to ‘try’ string to use

On exit

R1-R9 preserved

Use

This method sets the string used in the Try writable field of a Font Dialogue box. If
the string is longer than 64 characters, an error is returned.

C veneer

extern _kernel_oserror *fontdbox_set_try_string (unsigned int flags,
 ObjectId fontdbox,
 const char *try_string
);
129

Font Dialogue methods
FontDbox_GetTryString 6

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 6
R3 = pointer to buffer to hold try string
R4 = buffer size for try string

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds try string
R4 holds number of bytes written to buffer

Use

This method returns the string currently displayed in the Try writable field of the
Font Dialogue box.

C veneer

extern _kernel_oserror *fontdbox_get_try_string (unsigned int flags,
 ObjectId fontdbox,
 char *buffer,
 int buff_size,
 int *nbytes
);
130

Font Dialogue box class
FontDbox_SetTitle 7

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 7
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Font
dialogue box.

C veneer

extern _kernel_oserror *fontdbox_set_title (unsigned int flags,
 ObjectId fontdbox,
 const char *title
);
131

Font Dialogue methods
FontDbox_GetTitle 8

On entry

R0 = flags
R1 = Font Dbox object id
R2 = 8
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Font dialogue’s title bar.

C veneer

extern _kernel_oserror *fontdbox_get_title (unsigned int flags,
 ObjectId fontdbox,
 char *buffer,
 int buff_size,
 int *nbytes
);
132

Font Dialogue box class
Font Dialogue events

There are a number of Toolbox events which are generated by the Font Dialogue
box module.

FontDbox_AboutToBeShown (0x82a00)

Block

+ 8 0x82a00
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox Event is raised when SWI Toolbox_ShowObject has been called for a
Font Dialogue Box object. It gives the application the opportunity to set the
selected font before the dialogue box actually appears on the screen.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} FontDboxAboutToBeShownEvent;
133

Font Dialogue events
FontDbox_DialogueCompleted (0x82a01)

Block

+ 8 0x82a01
+ 12 flags

Use

This Toolbox Event is raised after the Font Dialogue object has been hidden, either
by a Cancel click, or by a click on Apply. It allows the client to tidy up its own state
associated with this dialogue.

Note that if the dialogue was cancelled, a font selection may still have been made,
for example if the user clicked Adjust on Apply, and then cancelled the dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} FontDboxDialogueCompletedEvent;

FontDbox_ApplyFont (0x82a02)

Block

+ 8 0x82a02
+ 16 font height
+ 20 aspect ratio
+ 24... font id

Use

This Toolbox Event informs the client that a Font Dialogue box selection has been
made.

The special font id SystemFont is used to indicate that the System entry is
selected.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 unsigned int height;
 unsigned int aspect;
 char font[208];
} FontDboxApplyFontEvent;
134

Font Dialogue box class
Font Dialogue Templates

The layout of a Font Dialogue box template is shown below. Fields which have
types MsgReference and StringReference are those which will require relocation
when they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Underlying Window template

The Window object used to implement a Font Dialogue has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82a000

Field Size in bytes Type

flags 4 word

title 4 MsgReference

max_title 4 word

initial_font 4 StringReference

initial_height 4 word

initial_aspect 4 word

try_string 4 MsgReference

window 4 StringReference

Component id Details

0 action button (Apply) must be marked as the
‘default’ action button

1 action button
(Cancel)

must be marked as the ‘cancel’
action button

2 action button (Try) must be marked as a ‘local’
action button

3 writable field
(Try string)

buffer must be 64 bytes

4 number range
(Aspect ratio)
135

Font Dialogue Templates
5 number range
(Height)

6-15 action buttons
(Standard sizes)

these should all be local action
buttons containing the text 8,
10 12, 14, 18, 24, 28, 36, 48 72
respectively.

16 string set (Style) non-writable, with pop-up
menu

17 string set (Weight) non-writable, with pop-up
menu

18 string set (Font) non-writable, with pop-up
menu

19 label box (Font)

20 label box (Style)

21 label (Height)

22 label (Aspect)

23 label (%)

24 label (Font)

25 label (Weight)

26 label (Style)

Component id Details
136

Font Dialogue box class
Font Dialogue Wimp event handling

The Font Dialogue box class responds to certain Wimp events and takes the
actions as described below:

Wimp event Action

Mouse Click on Apply, deliver a FontDbox_ApplyFont event

on Cancel, deliver a FontDbox_DialogueCompleted event

on one of the pop-up menu buttons, a menu is displayed

on one of the ‘standard sizes’, this size is entered into the
Height writable field

on one of the arrow keys, increment/decrement the value
of its associated writable field (either height or aspect
ratio)

Key Pressed if Return then act as if Apply button had been clicked

if Escape, then act as if Cancel button had been clicked
137

Font Dialogue Wimp event handling
138

8 Font Menu class

Font Menu is a menu which shows the currently selected font, and allows the

user to set this from a list of font names, and submenus which give styles and

weights.

User interface

A typical Font Menu might look as follows:

When a hit is received for the Font Menu, it is decoded by the Font Menu module,
and a Toolbox event is returned to the client. This contains the font id of the
selected font (see SWI Font_DecodeMenu). The chosen font is shown as ticked in
the font menu when the menu is next shown (or immediately if Adjust is held
down).

A

font menu

submenu
139

Application Program Interface
Application Program Interface

The RISC OS Font manager provides a facility of building a font menu from the
current fontlist.

A Font Menu object is an abstraction on this facility. A Font Menu is built for the
client using the Font manager.

Attributes

A Font Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Manipulating a Font Menu object

Creating and deleting a Font Menu object

A Font Menu object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A Font Menu object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Font Menu
objects.

Attributes Description

flags word Bit Meaning

0 when set, this bit indicates that a
FontMenu_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called
for this object

1 when set, this bit indicates that a
FontMenu_HasBeenHidden event should be
raised when the Font Menu object has been
removed from the screen

2 when set, include a System font entry at head of
menu

ticked_font font id of the font to tick in the Font Menu when it is first
created

The special font id ‘SystemFont’ is used to indicate that
the System entry should be ticked.
140

Font Menu class
Showing a Font Menu object

When a Font Menu object is displayed on the screen using
SWI Toolbox_ShowObject it has the following behaviour:

Before the Font Menu is shown

When the client calls Toolbox_ShowObject, a FontMenu_AboutToBeShown
Toolbox event is raised (if the appropriate flags bit is set), allowing the client to
take any last minute action. Typically, a client will indicate which of the fonts
should be shown as the currently selected one, when it receives this event.

Selecting a font

The currently selected font is shown ticked in the Font Menu. The selected font can
be set using FontMenu_SetFont, and can be read using FontMenu_GetFont. Note
that the string passed to these methods is the font id, not the translated string.

Receiving a font selection

When the user makes a Font selection from the Font Menu, a
FontMenu_FontSelection Toolbox event is raised. This gives the font id of the font
which has been chosen from the Font Menu.

Show type Position

0 (default) 64 OS units to the left of the mouse pointer

1 (full spec) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu
141

Font Menu methods
Font Menu methods

The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Font Menu id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

FontMenu_SetFont 0

On entry

R0 = flags
R1 = Font Menu object id
R2 = 0
R3 = pointer to font id of font to select (0 means none)

On exit

R1-R9 preserved

Use

This method selects a font as being the currently selected one for this Font Menu,
and places a tick next to it. The special font id ‘SystemFont’ is used to indicate that
the System entry should be ticked.

C veneer

extern _kernel_oserror *fontmenu_set_font (unsigned int flags,
 ObjectId fontmenu,
 const char *font_id
);
142

Font Menu class
FontMenu_GetFont 1

On entry

R0 = flags
R1 = Font Menu object id
R2 = 1
R3 = pointer to buffer to hold font id
R4 = buffer size for font id

On exit

R4 = size of buffer required (if R3 was 0)
else buffer pointed at by R3 holds font id
R4 holds number of bytes written to buffer

Use

This method returns the font id for the font which was last specified in a
FontMenu_SetFont call, or was last chosen by a user mouse click (i.e. the one
which is ticked). The special font id ‘SystemFont’ is used to indicate that the
System entry was last chosen.

C veneer

extern _kernel_oserror *fontmenu_get_font (unsigned int flags,
 ObjectId fontmenu,
 char *buffer,
 int buff_size,
 int *nbytes
);
143

Font Menu events
Font Menu events

There are a number of Toolbox events which are generated by the Font Menu
module:

FontMenu_AboutToBeShown (0x82a40)

Block

+ 8 0x82a40
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying Menu Object

Use

This Toolbox event is raised when SWI Toolbox_ShowObject has been called for a
Font Menu object. It gives the application the opportunity to set the selected font
before the Menu actually appears on the screen.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 TopLeft pos;
} FontMenuAboutToBeShownEvent;

FontMenu_HasBeenHidden (0x82a41)

Block

+ 8 0x82a41

Use

This Toolbox Event is raised by the Toolbox when Toolbox_HideObject is called on
a Font Menu which has the appropriate bit set in its template flags word. It enables
a client application to clear up after a menu has been closed. It is also raised when
clicking outside a menu or hitting Escape.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} FontMenuHasBeenHiddenEvent;
144

Font Menu class
FontMenu_FontSelection (0x82a42)

Block

+ 8 0x82a42
+ 16... font id

Use

This Toolbox Event informs the client that a Font Menu selection has been made.

The special font id ‘SystemFont’ is used to indicate that the System entry was last
chosen.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 char font_id[216];
} FontMenuSelectionEvent;

Font Menu templates

The layout of a Font Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

ticked_font 4 StringReference
145

Font Menu Wimp event handling
Font Menu Wimp event handling

The Font Menu class responds to certain Wimp events and takes the actions as
described below:

Wimp event Action

Menu Selection The font id corresponding to the menu selection is
sent back to the client via a FontMenu_FontSelection
event.

If Adjust is held down, then the currently open Menu is
re-opened in the same place.

User Msg Message_HelpRequest (while the pointer is over a
Font Menu object) A reply is sent on the application’s
behalf.
146

9 Iconbar icon class

bjects of the Iconbar icon class are used to display an application icon on the

Iconbar.

User interface

An Iconbar object is normally used to show that an application is running, by
placing an icon on the RISC OS Iconbar.

An Iconbar object can either be a sprite icon or a text&sprite icon. It does not
appear on the Iconbar until the application has called Toolbox_ShowObject or if
the auto-show bit has been set in its flags word. When the Toolbox places the icon
on the Iconbar, it positions the icon in a Style Guide compliant manner, including
placement of the text in a text&sprite icon. The bounding box used for the icon is
taken from the sprite used for that icon, also taking into consideration the text
used, if the iconbar object is text&sprite. If the application supports many icons on
the Iconbar this can be achieved by creating many Iconbar objects.

The Toolbox supports handling of a Menu click over the icon, Select and Adjust
clicks.

O

Iconbar icon

Iconbar icon’s menu
147

Application Program Interface
Application Program Interface

Attributes

An Iconbar icon object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attributes Description

flags Bit Meaning

0 when set, generate an
Iconbar_SelectAboutToBeShown event before
the object which has been associated with a
Select click is shown

1 when set, generate an
Iconbar_AdjustAboutToBeShown event before
the object which has been associated with an
Adjust click is shown

2 when set, show the select_show object as a
transient
(i.e. with the semantics of Wimp_CreateMenu)

3 when set, show the adjust_show object as a
transient
(i.e. with the semantics of Wimp_CreateMenu)

4 reserved

5 when set, generate an Iconbar_Clicked (or
client-specified) event when Select is clicked

6 when set, generate an Iconbar_Clicked (or
client-specified) event when Adjust is clicked

position a negative integer giving the position of the icon on
the Iconbar (as specified in SWI Wimp_CreateIcon)

priority gives priority of this icon on the Iconbar (as specified
in SWI Wimp_CreateIcon)

sprite name the name of the sprite to use for this Iconbar icon

max sprite name the maximum length of sprite name to be used

text an optional string which will be used for a Text&Sprite
Iconbar icon (i.e. the text that will appear underneath
the icon on the Iconbar)

max text length if the Iconbar icon has text, then this is a Text&Sprite
Iconbar icon, and this field gives the maximum length
of a text string which will be used for it
148

Iconbar icon class
Manipulating an Iconbar icon object

Creating and deleting an Iconbar icon object

An Iconbar icon object is created using SWI Toolbox_CreateObject.

When an Iconbar Icon Object is created, the following attached objects (see
page 12) will be created (if specified):

● menu

● select show

● adjust show.

See the attributes table above for an explanation of what these objects are.

An Iconbar object is deleted using SWI Toolbox_DeleteObject. If it has any
attached objects (see above), these are also deleted, unless the non-recursive bit
is set for this SWI.

menu the name of the template to use to create a Menu
object for this Iconbar icon

select event the Toolbox Event code to be raised when the user
clicks Select on the Iconbar icon
(if 0 then Iconbar_Clicked is raised)

adjust event the Toolbox event code to be raised when the user
clicks Adjust on the Iconbar icon
(if 0 then Iconbar_Clicked is raised)

select show the name of a template to use to show an object when
the user clicks Select on the Iconbar icon

adjust show the name of a template to use to show an object when
the user clicks Adjust on the Iconbar icon

help message the message to respond to a help request with,
instead of the default

max help the maximum length of help message to be used

Attributes Description
149

Application Program Interface
Showing an Iconbar icon object

When a Iconbar icon object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

If the Iconbar icon’s position is any other value than -3 or -4, then R3 should just
be 0.

An Iconbar icon is hidden by using SWI Toolbox_HideObject.

The Iconbar icon’s position and priority

An Iconbar icon is created with a position and a priority. These are integer values
as specified in SWI Wimp_CreateIcon. Note that these values are fixed at
create-time, but are only used when the Iconbar icon is ‘shown’, either by explicitly
calling Toolbox_ShowObject, or by setting the auto-show bit in the object
template’s flags.

The semantics of position and priority are as documented in Wimp_CreateIcon.
Applications will mostly just use a position of -1 for the right of the iconbar.

Note that positions of -3 and -4 cannot be used in conjunction with the
auto-show bit. Such an Iconbar icon must be explicitly shown using
Toolbox_ShowObject to allow the client to pass the Wimp handle of the icon to
whose left/right this icon should be placed.

An Iconbar icon’s position and priority cannot be changed at run-time.

The Iconbar icon’s menu

Each Iconbar object can optionally have attached to it a Menu object. The Iconbar
object holds the object id of this Menu object.

Whenever the user of the application presses the Menu mouse button over an
Iconbar icon, the Iconbar class module opens its attached Menu object, by making
a SWI Toolbox_ShowObject passing the attached Menu’s id.

If the application wishes to perform some operations on the Menu before it is
opened (ticking some entries for example), then by setting the appropriate bit in
the Menu’s flags word, the application can request that a special Toolbox event
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown. The

Show type Position

0 (default) display on the Iconbar in a place specified by the
object’s template’s position and priority fields.

1 (full spec) R3 + 0 icon handle of icon to show icon to the left
(-3) or right (-4) of its position.
150

Iconbar icon class
precise details of this Toolbox event are described on page 199. On receipt of such
a Toolbox event, the client application is expected to make any changes it wants to
the Menu object, and then return to its SWI Wimp_Poll loop.

When an Iconbar icon is created, if the client has specified the name of a Menu
template for that Iconbar icon, then a Menu object is created from that template,
and the id of that Menu is held in the Iconbar object. This id will be used to show
the Menu when the user presses the Menu button over the Iconbar icon.

In most cases a Menu is attached to the Iconbar icon at resource editing time by
entering the name of the template to use for this Iconbar icon’s Menu. If the
application wishes to dynamically attach and detach the Menu for a given Iconbar
icon, then this can be done using the Iconbar_SetMenu method described on
page 153.

The id of the Menu attached to an Iconbar icon can be read by using the
Iconbar_GetMenu method.

Select and Adjust click events

The client application can specify a Toolbox event to be raised when the user clicks
Select and/or one to be raised when the user clicks Adjust on the Iconbar icon.

This event will only be raised if the appropriate flags bits have been set for Select
and Adjust clicks.

Normally this is specified in the application’s resource file, but it can be set and
read using the Iconbar_SetEvent/Iconbar_GetEvent methods.

Help messages

Each Iconbar object can optionally have attached to it a Help Message.

Whenever the Wimp delivers a HelpRequest message to the client application for
this Iconbar icon, the attached Help Message is sent back automatically by the
Toolbox.

In most cases a help message is attached to the Iconbar object at resource editing
time. An Iconbar icon’s Help Message can be set dynamically using the
Iconbar_SetHelpMessage method described on page 158.

The text of the Help Message can be read using the Iconbar_GetHelpMessage
method.
151

Iconbar icon methods
Iconbar icon methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being an Iconbar object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Iconbar_GetIconHandle 0

On entry

R0 = flags
R1 = Iconbar object id
R2 = 0

On exit

R0 = Wimp icon handle for this Iconbar object

Use

This method returns the handle of the underlying Wimp icon used to implement
this Iconbar object.

C veneer

extern _kernel_oserror *iconbar_get_icon_handle (unsigned int flags,
 ObjectId iconbar,
 int *icon_handle
);
152

Iconbar icon class
Iconbar_SetMenu 1

On entry

R0 = flags
R1 = Iconbar object id
R2 = 1
R3 = menu id

On exit

R1-R9 preserved

Use

This method is used to set the menu which will be displayed when the Menu
button is pressed over this Iconbar object. The Toolbox handles opening the menu
for you.

If R3 is 0, then the menu for this Iconbar object is detached.

C veneer

extern _kernel_oserror *iconbar_set_menu (unsigned int flags,
 ObjectId iconbar,
 ObjectId menu_id
);

Iconbar_GetMenu 2

On entry

R0 = flags
R1 = Iconbar object id
R2 = 2

On exit

R0 = Menu id

Use

This method is used to get the id of the menu which will be displayed when the
Menu button is pressed over this Iconbar object.

C veneer

extern _kernel_oserror *iconbar_get_menu (unsigned int flags,
 ObjectId iconbar,
 ObjectId *menu_id
);
153

Iconbar icon methods
Iconbar_SetEvent 3

On entry

R0 = flags
bit 0 set means raise the event code specified in R3 when Select is clicked
bit 1 set means raise the event code specified in R4 when Adjust is clicked

R1 = Iconbar object id
R2 = 3
R3 = Toolbox Event code to raise for Select
R4 = Toolbox Event code to raise for Adjust

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user clicks Select
and/or Adjust on the Iconbar icon.

If R3 or R4 is 0, then an IconBar_Clicked Toolbox event will be raised instead.

C veneer

extern _kernel_oserror *iconbar_set_event (unsigned int flags,
 ObjectId iconbar,
 int select_event,
 int adjust_event
);
154

Iconbar icon class
Iconbar_GetEvent 4

On entry

R0 = flags
bit 0 set means return the event code which will be raised

when Select is clicked
bit 1 set means return the event code which will be raised

when Adjust is clicked
R1 = Iconbar object id
R2 = 4

On exit

R0 = Toolbox event code raised when Select is clicked on the Iconbar icon
R1 = Toolbox event code raised when Adjust is clicked on the Iconbar icon

Use

This method reads the Toolbox Event to be raised when the user clicks Select or
Adjust on the Iconbar icon.

C veneer

extern _kernel_oserror *iconbar_get_event (unsigned int flags,
 ObjectId iconbar,
 int *select_event,
 int *adjust_event
);
155

Iconbar icon methods
Iconbar_SetShow 5

On entry

R0 = flags
bit 0 set means show the object whose id is given in R3

when Select is clicked
bit 1 set means show the object whose id is given in R4

when Adjust is clicked
R1 = Iconbar object id
R2 = 5
R3 = id of object to show for Select
R4 = id of object to show for Adjust

On exit

R1-R9 preserved

Use

This method specifies an object to be shown when the user clicks Select and/or
Adjust on the Iconbar icon.

If R3 or R4 is 0, then no object will be shown.

C veneer

extern _kernel_oserror *iconbar_set_show (unsigned int flags,
 ObjectId iconbar,
 ObjectId select,
 ObjectId adjust
);
156

Iconbar icon class
Iconbar_GetShow 6

On entry

R0 = flags
bit 0 set means return the id of the object which will be

shown when Select is clicked
bit 1 set means return the id of the object which will be

shown when Adjust is clicked
R1 = Iconbar object id
R2 = 6

On exit

R0 = id of object which will be shown when Select is clicked on the Iconbar icon.
R1 = id of object which will be shown when Adjust is clicked on the Iconbar icon

Use

This method reads the ids of the objects to be shown when the user clicks Select or
Adjust on the Iconbar icon.

C veneer

extern _kernel_oserror *iconbar_get_show (unsigned int flags,
 ObjectId iconbar,
 ObjectId *select,
 ObjectId *adjust
);
157

Iconbar icon methods
Iconbar_SetHelpMessage 7

On entry

R0 = flags
R1 = Iconbar object id
R2 = 7
R3 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help
Request message is received for this Iconbar object. The Toolbox handles the reply
message for you.

If R3 is 0, then the Help Message for this Iconbar object is detached.

C veneer

extern _kernel_oserror *iconbar_set_help_message (unsigned int flags,
 ObjectId iconbar,
 const char *message_text
);
158

Iconbar icon class
Iconbar_GetHelpMessage 8

On entry

R0 = flags
R1 = Iconbar object id
R2 = 8
R3 = pointer to buffer (or 0)
R4 = size of buffer to hold message text

On exit

R4 = holds size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Iconbar object.

C veneer

extern _kernel_oserror *iconbar_get_help_message (unsigned int flags,
 ObjectId iconbar,
 char *buffer,
 int buff_size,
 int *nbytes
);
159

Iconbar icon methods
Iconbar_SetText 9

On entry

R0 = flags
R1 = Iconbar object id
R2 = 9
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in a text&sprite Iconbar object. If the
text is longer than the maximum size specified when the Iconbar icon was created,
then an error is returned.

C veneer

extern _kernel_oserror *iconbar_set_text (unsigned int flags,
 ObjectId iconbar,
 const char *text
);
160

Iconbar icon class
Iconbar_GetText 10

On entry

R0 = flags
R1 = Iconbar object id
R2 = 10
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains icon’s text
R4 holds number of bytes written to buffer

Use

This method is used for a text&sprite Iconbar object. It returns the text string
displayed for that object.

C veneer

extern _kernel_oserror *iconbar_get_text (unsigned int flags,
 ObjectId iconbar,
 char *buffer,
 int buff_size,
 int *nbytes
);
161

Iconbar icon methods
Iconbar_SetSprite 11

On entry

R0 = flags
R1 = Iconbar object id
R2 = 11
R3 = pointer to name of sprite to use

On exit

R1-R9 preserved

Use

This method sets the sprite which is to be used in the Iconbar object.

C veneer

extern _kernel_oserror *iconbar_set_sprite (unsigned int flags,
 ObjectId iconbar,
 const char *sprite_name
);
162

Iconbar icon class
Iconbar_GetSprite 12

On entry

R0 = flags
R1 = Iconbar object id
R2 = 12
R3 = pointer to buffer to return the sprite name in (or 0)
R4 = size of buffer

On exit

R4 = holds size of buffer required for sprite name (if R3 was 0)
else Buffer pointed at by R3 holds sprite name
R4 holds number of bytes written to buffer

Use

This method returns the name of the sprite used for the Iconbar object.

C veneer

extern _kernel_oserror *iconbar_get_sprite (unsigned int flags,
 ObjectId iconbar,
 char *buffer,
 int buff_len,
 int *nbytes
);
163

Iconbar icon events
Iconbar icon events

Iconbar_Clicked (0x82900)

Block

+ 8 0x82900
+ 12 flags

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was clicked
bit 1 reserved
bit 2 set means Select was clicked

Use

This Toolbox event is raised when the user clicks Select or Adjust on an Iconbar
object, and the client application has not associated any other Toolbox event with
this event.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} IconbarClickedEvent;

Iconbar_SelectAboutToBeShown (0x82901)

Block

+ 8 0x82901
+ 16 object id of the object which will be shown

(note that the ‘self’ field in the id block will be for the Iconbar object).

Use

This Toolbox event is raised just before Toolbox_ShowObject is called for the
object to be shown on a Select click. Note that on receipt of this event, the client
could call Iconbar_SetShow to give the object id of a different object to be shown.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 ObjectId id;
} IconbarAboutToBeShownEvent;
164

Iconbar icon class
Iconbar_AdjustAboutToBeShown (0x82902)

Block

+ 8 0x82902
+ 16 object id of the object which will be shown

(note that the ‘self’ field in the id block will be for the Iconbar object).

Use

This Toolbox event is raised just before Toolbox_ShowObject is called for the
object to be shown on a Adjust click. Note that on receipt of this event, the client
could call Iconbar_SetShow to give the object id of a different object to be shown.

Note: This event and the Iconbar_SelectAboutToBeShown event both share the
same typedef.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 ObjectId id;
} IconbarAboutToBeShownEvent;

Iconbar icon templates

The layout of an Iconbar icon template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

position 4 word

priority 4 word

sprite_name 4 StringReference

max_sprite_name 4 word

text 4 MsgReference

max_text_len 4 word

menu 4 StringReference

select_event 4 word
165

Iconbar icon Wimp event handling
Iconbar icon Wimp event handling

Certain Wimp events for an Iconbar icon are fielded by the Iconbar class, and either
acted upon for the client, or result in a Toolbox event being raised. Such events are
listed below:

adjust_event 4 word

select_show 4 StringReference

adjust_show 4 StringReference

help_message 4 MsgReference

max_help 4 word

Wimp event Action

Mouse Click If the Menu button has been pressed, and there is a
Menu object attached to this Iconbar icon, then the
Menu is shown using Toolbox_ShowObject.

If the Select or Adjust buttons have been pressed and
this Iconbar icon has a Toolbox event associated with
this, then that Toolbox event is raised, and any attached
object is also shown using Toolbox_ShowObject.

User Msg Message_HelpRequest (for this Iconbar icon)
If a help message is attached to this Iconbar icon, then a
reply is sent on the application’s behalf.

Field Size in bytes Type
166

10 Menu class

menu allows the user to select an item from a list of choices using the mouse

pointer.

User interface

A menu should appear on the screen either when the user clicks the Menu mouse
button, or clicks on a Pop-up menu button. The menu will disappear again when
the user clicks outside the menu or presses Escape (or the client application hides
it or the user opens another menu).

When the user clicks on a menu entry the client application will typically perform
some task. The menu will then disappear, unless the selection was made using the
Adjust button in which case it will persist on the screen.

● A menu has a title bar with black (Wimp colour 7) text on a grey (Wimp colour
2) background.

● Menu entries which contain text are black (7) on a white (0) background; a
menu entry may alternatively contain a sprite.

● Menu entries may optionally be separated by a dotted line, to group related
items.

● A menu entry may lead to further menus, or a dialogue box, in which case a
submenu arrow is displayed at the righthand edge of the entry. When a menu
entry is unavailable it is displayed as ‘shaded’ (i.e. its text is displayed in light
grey).

A

167

Application Program Interface
Application Program Interface

When a Menu object is created, the Toolbox deals with ensuring that the colours
used for the Menu are Style Guide compliant. Each menu entry is set with a height
of 44 OS units (or 68 if it has a dotted line separator), and the width of the menu is
calculated from details of its entries on the application's behalf.

The Menu module deals with keeping the menu tree displayed when a selection is
made with Adjust.

Attributes

Menu attributes

A Menu object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attribute Description

flags word Bit Meaning

0 when set, this bit indicates that an event
should be raised when SWI
Toolbox_ShowObject is called for this Menu.

1 when set, this bit indicates that an event
should be raised when the Menu has been
removed from the screen.

menu title gives a text string which will appear in the menu's title
bar

(0 means no title, an empty string means no titlebar)

max title length gives the maximum length in bytes of title text which
will be used for this Menu.

help message when a HelpRequest message is received on this
menu, then this text message is sent in a HelpReply
message. Note that this help message is only sent if
the menu entry for which the request was received has
not got a help message of its own.

max help length gives the maximum length in bytes of help text which
will be used for this Menu.

show event this is a Toolbox event code which will be raised when
SWI Toolbox_ShowObject is called for this menu.

If its value is -1, then the default
Menu_AboutToBeShown event is raised. An event is
only raised if the appropriate bit is set in the menu's
flags word.
168

Menu class
Menu entry attributes

A Menu also has a list of ‘entries’. Each entry has its own component id which
uniquely identifies it within this menu. An entry has the following attributes:

hide event this is a Toolbox event code which will be raised when
this menu has been removed from the screen (either
as a result of an explicit call to SWI
Toolbox_HideObject or because the Wimp has
removed the menu).

If its value is -1, then the default
Menu_HasBeenHidden event is raised. An event is
only raised if the appropriate bit is set in the menu's
flags word.

Attribute Description

flags Bit Meaning

0 when set, this entry is ticked.

1 when set, this entry has a dotted line
immediately after it.

2-7 must be 0.

8 when set, this entry is faded.

9 when set, this entry is a sprite (default is a text
menu entry).

10 when set, this entry has a submenu (ie a
submenu arrow appears next to the entry).

11 when set, an event (either Menu_SubMenu or
client-specified) is raised when the user
traverses this entry's submenu arrow with the
mouse pointer (if bit 10 is set).

12 when set, if there is an object to be shown when
this entry is selected, then it will be shown with
Wimp_CreateMenu semantics. The default is to
show persistently.

component id identifies this entry uniquely within this menu.
-1 and -2 are invalid component ids

Attribute Description
169

Application Program Interface
text depending on whether this is a text or sprite entry (as
indicated by bit 9 of the flags word), this is either:

● a text string which will appear in the menu entry

● the name of the sprite which will appear in the
Menu entry

max length gives the maximum length in bytes of entry text or
sprite name

click show the name of the template for an object to show, when
the user clicks on this entry.

0 means there is no object to be shown

submenu show the name of the template for an object to show, when
the user moves the pointer over the submenu arrow (if
the entry has a submenu).

0 means there is no object to be shown

submenu event a Toolbox event code which will be raised when the
user moves the pointer over the submenu arrow (if the
entry has a submenu and bit 11 of the flags word is
set)

if its value is 0 then the default Menu_Submenu event
is raised

click event a Toolbox event code which will be raised when the
user clicks on this entry

if its value is 0 then the default Menu_Selection event
is raised

help message when a HelpRequest message is received on this entry
of this menu then this text string is sent in a
HelpReply message

0 means that the help message for the menu will be
sent (if such exists)

max help length gives the maximum length in bytes of the entry’s help
message

Attribute Description
170

Menu class
Manipulating a Menu object

Since there can only be one Menu visible on the screen at any one time, it is usual
for the client application to mark Menu templates as ‘shared’ so that only one copy
will exist in memory. The application receives a Menu_AboutToBeShown Toolbox
event just before the Menu is shown, to allow it to set any attributes like ticks and
fades, which may differ depending on where the Menu is being shown; for example,
in a multi-document editor a single menu can be maintained for all document
Windows; when the Toolbox receives a Menu button click event from the Wimp, it
will show the Menu associated with the Window over which the mouse click
occurred; when the application receives the Menu_AboutToBeShown Toolbox
event, it can tick and fade entries in the Menu depending on the state of the
document Window.

Another alternative for supporting multi-document editors is to create a Menu
object for each Window object. In this case it will not be necessary to use the
Menu_AboutToBeShown Toolbox event to make last minute changes to the menu,
since these can be made on a per-window basis as the changes occur. Whether this
method is used, or the above ‘shared’ scheme is really one of personal taste, and
memory usage.

It is possible to associate a client handle with a Menu using the
Toolbox_SetClientHandle method, but normally an application will simply wish to
use the client handle of the object to which a Menu is attached (via the parent_id
or the ancestor_id in the id block).

Creating and deleting a menu

A Menu object is created using SWI Toolbox_CreateObject.

When a Menu object is created, the following attached objects (see page 12) are
also created for each menu entry for which they are defined:

● submenu show

● click show.

The Menu entry attributes table on page 169 describes these objects.

Attached objects are also created when a menu entry is added to the Menu, if they
are referenced by the menu entry (and deleted when the menu entry is removed).

A Menu object is deleted using SWI Toolbox_DeleteObject. If it has any attached
objects these are also deleted, unless the non-recursive bit is set for this SWI.

Note: Menus must not be mutually recursive (i.e. in a menu hierarchy, a menu
entry may not have, as a submenu, a menu further up the hierarchy). The menu
module does not check for such a case, so it is the client application’s
responsibility to check for correctness.
171

Application Program Interface
Showing a menu

When a menu is displayed on the screen using SWI Toolbox_ShowObject it has the
following behaviour:

The client application should not need to make this call, since it is made
automatically by the Window and Iconbar modules for objects which have a Menu
attached to them.The Window module will display the menu in its default place
when the Menu button is clicked, or in the case of a pop-up menu directly to the
right of the pop-up icon; the Iconbar module displays the menu with its base 96 OS
units from the bottom of the screen, and 64 OS units to the right of the mouse
pointer.

Adding and removing menu entries

Normally the set of entries in a Menu will be specified in the application’s resource
file. If, however, the application wishes to add and remove Menu entries
dynamically at run-time, this is done using the Menu_AddEntry and
Menu_RemoveEntry methods.

Changing a Menu entry

A given Menu entry can either contain text or a sprite. Normally these will be fixed
when the menu is created, but they can be set and read dynamically using the
Menu_SetEntryText, Menu_GetEntryText, Menu_SetEntrySprite, and
Menu_GetEntrySprite methods.

Ticking or fading a Menu entry

Each Menu entry can be optionally ‘ticked’ (i.e. have a tick displayed to the left of
it), and/or ‘faded’ (i.e. displayed in light grey, and unselectable).

A given Menu entry can be ticked/unticked, faded/unfaded using the
Menu_SetTick/Menu_SetFade methods.

Show type Position

0 (default) 64 OS units to the left of the mouse pointer

1 (full spec) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu

2 (topleft) R3 + 0 gives x coordinate of top-left corner of
Menu
R3 + 4 gives y coordinate of top-left corner of
Menu
172

Menu class
The client can determine the state of a particular entry using the
Menu_GetTick/Menu_GetFade methods.

Attaching a submenu dynamically

Normally an application’s Menu structure is fully specified statically in its resource
file, but occasionally an application may wish to build a submenu at run-time, and
attach it at a particular point in the Menu tree.

This is achieved by creating the submenu object, and using the
Menu_SetSubMenuShow method already mentioned (and detailed on page 183).

Dealing with Menu hits

Each Menu entry can have a specified Toolbox event which will be raised when a
menu selection is made on that entry (i.e. the Wimp has returned a Menu Selection
event to the application).

Normally this Toolbox event is specified in the client application’s resource file,
but it can be read and set dynamically using the Menu_SetClickEvent and
Menu_GetClickEvent methods.

The client can also specify the name of a template of an object which should be
shown when the menu hit happens. The main use for this is to supply the name of
the template of a persistent dialogue box, on a Menu entry with an ellipsis (...). The
object is only shown after the ‘Menu hit event’ has been delivered to the client. The
show type value passed in R2 to Toolbox_ShowObject will be 0 (default place).

It is possible to specify at run-time the object id of an object which should be
shown when a Menu hit happens, using the Menu_SetClickShow method (and the
object id can be read using the Menu_GetClickShow method).

If neither of the above is specified, then the Toolbox raises the Menu_Selection
Toolbox event, as described on page 200. This Toolbox event reports which entry
was selected.

Dealing with Adjust clicks on a Menu

When the user of the client application clicks Adjust on a Menu entry or on a
Gadget in a dialogue box which has been opened from a Menu, it is conventional
for the Menu tree to remain on the screen.

The Toolbox handles this automatically on behalf of the application, so the client
does not have to look for Adjust clicks; the client’s code just responds to the
Toolbox events raised by the user’s interaction with the Menu.
173

Application Program Interface
Note that the Toolbox ‘re-shows’ the Menu when the application next calls SWI
Wimp_Poll, after the Menu selection, so any ticking/fading etc of Menu entries,
must be done in response to the Toolbox event which was raised when a menu
selection was made.

Dealing with traversal of a submenu arrow

Each Menu entry can have a specified Toolbox event which will be raised when the
user moves the mouse pointer over the submenu arrow, which is displayed on all
Menu entries which have a submenu.

Normally this Toolbox event is specified in the client application’s resource file,
but it can be read and set dynamically using the Menu_SetSubMenuEvent and
Menu_GetSubMenuEvent methods.

The client can also specify the name of a template of an object which should be
shown when the user moves the mouse pointer over the submenu arrow. The main
use for this is to supply the name of the template of a transient dialogue box or a
submenu. The object is only shown after the Menu_SubMenu event has been
delivered to the client.

It is possible to specify at run-time the object id of an object which should be
shown when the user moves the pointer over the submenu arrow, using the
Menu_SetSubMenuShow method (and the object id can be read using the
Menu_GetSubMenuShow method).

If neither of the above is specified, then the Toolbox raises the Menu_SubMenu
Toolbox event. This Toolbox event reports the entry over which the mouse pointer
has moved.

Interactive help on Menus

Each Menu has an optional Help Message associated with it. When the client
application receives a HelpRequest for the Menu, the Toolbox replies
automatically with this Help Message.

Normally the Menu’s Help Message will be specified in the application’s resource
file, however the client can set and read the message dynamically using the
Menu_SetHelpMessage/Menu_GetHelpMessage methods.

Each Menu entry can also have a Help Message. If no such message is specified,
then the Toolbox will return the Menu’s Help Message instead. Normally, again, an
entry’s Help Message will have been specified in the resource file, but it can be
read and set using the Menu_SetEntryHelpMessage and
Menu_GetEntryHelpMessage methods (described on page 193).
174

Menu class
Writable menu entries

Writable menu entries as seen in older applications are not supported by the
Toolbox as these are not Style Guide compliant. Instead you should use small
dialogues. For example:

Menu methods

The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Menu id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Menu_SetTick 0

On entry

R0 = flags
R1 = Menu object id
R2 = 0
R3 = component id of entry
175

Menu methods
R4 = value
0 means ‘untick’
non-zero means ‘tick’

On exit

R1-R9 preserved

Use

This method affects the tick state of a Menu entry.

C veneer

extern _kernel_oserror *menu_set_tick (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int tick
);

Menu_GetTick 1

On entry

R0 = flags
R1 = Menu object id
R2 = 0
R3 = component id of entry

On exit

R0 = tick state
non-zero means ticked
0 means unticked

Use

This method returns the tick state of a Menu entry.

C veneer

extern _kernel_oserror *menu_get_tick (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int *ticked
);
176

Menu class
Menu_SetFade 2

On entry

R0 = flags
R1 = Menu object id
R2 = 2
R3 = component id of entry
R4 = value

0 means unfade
non-zero means fade

On exit

R1-R9 preserved

Use

This method affects the fade state of a Menu entry.

C veneer

extern _kernel_oserror *menu_set_fade (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int fade
);
177

Menu methods
Menu_GetFade 3

On entry

R0 = flags
R1 = Menu object id
R2 = 3
R3 = component id of entry

On exit

R0 = fade state
0 means unfaded
non-zero means faded

Use

This method returns the fade state of a Menu entry.

C veneer

extern _kernel_oserror *menu_get_fade (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int *faded
);
178

Menu class
Menu_SetEntryText 4

On entry

R0 = flags
R1 = Menu object id
R2 = 4
R3 = component id of entry
R4 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the named text Menu entry.

An error is returned if the entry's text buffer is not large enough to hold the
supplied text.

An error is returned if this SWI is called on an entry which is a sprite.

C veneer

extern _kernel_oserror *menu_set_entry_text (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 const char *text
);
179

Menu methods
Menu_GetEntryText 5

On entry

R0 = flags
R1 = Menu object id
R2 = 5
R3 = component id of entry
R4 = pointer to buffer to return the text in (or 0)
R5 = size of buffer

On exit

R5 = the size of buffer required to hold the text (if R4 was 0)
else Buffer pointed to by R4 contains entry text
R5 holds number of bytes written to buffer

Use

This method is used for a text Menu entry. It returns the text string displayed for
that entry.

C veneer

extern _kernel_oserror *menu_get_entry_text (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *buffer,
 int buff_size,
 int *nbytes
);
180

Menu class
Menu_SetEntrySprite 6

On entry

R0 = flags
R1 = Menu object id
R2 = 6
R3 = component id of entry
R4 = pointer to name of sprite to use

On exit

R1-R9 preserved

Use

This method sets the sprite which is to be used in the named sprite Menu entry.

An error is returned if the entry's sprite name buffer is not large enough to hold the
supplied sprite name.

An error is returned if this SWI is called on a text entry.

C veneer

extern _kernel_oserror *menu_set_entry_sprite (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 const char *sprite_name
);
181

Menu methods
Menu_GetEntrySprite 7

On entry

R0 = flags
R1 = Menu object id
R2 = 7
R3 = component id of entry
R4 = pointer to buffer to return the sprite name in (or 0)
R5 = size of buffer

On exit

R5 = the size of buffer required to hold the sprite name (if R4 was 0)
else Buffer pointed to by R4 contains sprite name
R5 holds number of bytes written to buffer

Use

This method is used for a sprite Menu entry. It returns the name of the sprite
displayed for that entry.

C veneer

extern _kernel_oserror *menu_get_entry_sprite (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *buffer,
 int buff_size,
 int *nbytes
);
182

Menu class
Menu_SetSubMenuShow 8

On entry

R0 = flags
R1 = Menu object id
R2 = 8
R3 = component id of entry where submenu should be attached
R4 = object id of the submenu (or 0)

On exit

R1-R9 preserved

Use

This method allows the client to specify the object id of an object to show when the
user moves the pointer over the submenu arrow.

If R4 is 0, then no object should be shown.

Calling this SWI also causes the submenu arrow to be shown or hidden as
appropriate.

C veneer

extern _kernel_oserror *menu_set_sub_menu_show (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 ObjectId sub_menu
);
183

Menu methods
Menu_GetSubMenuShow 9

On entry

R0 = flags
R1 = Menu object id
R2 = 9
R3 = component id

On exit

R0 = id of object to be shown

Use

This method returns the object id of the object which will be shown when the user
moves the pointer over the submenu arrow.

C veneer

extern _kernel_oserror *menu_get_sub_menu_show (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 ObjectId *sub_menu
);
184

Menu class
Menu_SetSubMenuEvent 10

On entry

R0 = flags
R1 = Menu object id
R2 = 10
R3 = component id of entry
R4 = Toolbox event code to raise

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user moves the
mouse over this entry’s submenu arrow.

If R4 is 0, then a Menu_SubMenu Toolbox event will be raised instead.

Calling this SWI also causes the submenu arrow to be shown or hidden as
appropriate.

C veneer

extern _kernel_oserror *menu_set_sub_menu_event (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int toolbox_event
);
185

Menu methods
Menu_GetSubMenuEvent 11

On entry

R0 = flags
R1 = Menu object id
R2 = 11
R3 = component id of entry

On exit

R4 = Toolbox event code

Use

This method reads the Toolbox event to be raised when the user moves the mouse
over this entry’s submenu arrow.

If no event has been specified, then 0 is returned.

C veneer

extern _kernel_oserror *menu_get_sub_menu_event (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int *toolbox_event
);
186

Menu class
Menu_SetClickShow 12

On entry

R0 = flags
R1 = Menu object id
R2 = 12
R3 = component id of entry
R4 = object id to show
R5 = show flags: bit 0

if clear show persistently
if set show transiently

On exit

R1-R9 preserved

Use

This method allows the client to specify the object id of an object to show when the
user selects this Menu entry. By setting bit 0 of R5 it is possible to control whether
the show is persistent or not.

If R4 is 0, then no object should be shown.

C veneer

extern _kernel_oserror *menu_set_click_show (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 ObjectId object,
 int show_flags
);
187

Menu methods
Menu_GetClickShow 13

On entry

R0 = flags
R1 = Menu object id
R2 = 13
R3 = component id

On exit

R0 = id of object to be shown
R1 = show flags

Use

This method returns the object id of the object which will be shown when the user
selects this Menu entry. If bit 0 of R1 is set on exit, it means that the object will be
shown transiently.

If no object has been specified, then 0 is returned in R0.

C veneer

extern _kernel_oserror *menu_get_click_show (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 ObjectId *object,
 int *show_flags
);
188

Menu class
Menu_SetClickEvent 14

On entry

R0 = flags
R1 = Menu object id
R2 = 14
R3 = component id of entry
R4 = Toolbox event code to raise

On exit

R1-R9 preserved

Use

This method specifies a Toolbox event to be raised when the user selects the given
Menu entry.

If R4 is 0, then a Menu_Selection Toolbox event will be raised instead.

C veneer

extern _kernel_oserror *menu_set_click_event (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int toolbox_event
);
189

Menu methods
Menu_GetClickEvent 15

On entry

R0 = flags
R1 = Menu object id
R2 = 15
R3 = component id of entry

On exit

R4 = Toolbox event code

Use

This method reads the Toolbox event to be raised when the user selects the given
Menu entry.

If no event has been specified, then 0 is returned.

C veneer

extern _kernel_oserror *menu_get_click_event (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 int *toolbox_event
);
190

Menu class
Menu_SetHelpMessage 16

On entry

R0 = flags
R1 = Menu object id
R2 = 16
R3 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help
Request message is received for this Menu object. The Toolbox handles the reply
message for you.

If R3 is 0, then the Help Message for this Menu is detached.

C veneer

extern _kernel_oserror *menu_set_help_message (unsigned int flags,
 ObjectId menu,
 const char *help_message
);
191

Menu methods
Menu_GetHelpMessage 17

On entry

R1 = Menu object id
R2 = 17
R3 = pointer to buffer
R4 = size of buffer to hold message text

On exit

R4 = size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Menu object.

C veneer

extern _kernel_oserror *menu_get_help_message (unsigned int flags,
 ObjectId menu,
 char *buffer,
 int buff_size,
 int *nbytes
);
192

Menu class
Menu_SetEntryHelpMessage 18

On entry

R0 = flags
R1 = Menu object id
R2 = 18
R3 = component id of entry
R4 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help
Request message is received for this Menu entry. The Toolbox handles the reply
message for you.

If R4 is 0, then the Help Message for this Menu entry is detached.

C veneer

extern _kernel_oserror *menu_set_entry_help_message (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 const char *help_message
);
193

Menu methods
Menu_GetEntryHelpMessage 19

On entry

R0 = flags
R1 = Menu object id
R2 = 19
R3 = component id of entry
R4 = pointer to buffer
R5 = size of buffer to hold message text

On exit

R5 = size of buffer required for message text (if R4 was 0)
else Buffer pointed at by R4 holds message text
R5 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Menu object.

C veneer

extern _kernel_oserror *menu_get_entry_help_message (unsigned int flags,
 ObjectId menu,
 ComponentId entry,
 char *buffer,
 int buff_size,
 int *nbytes
);
194

Menu class
Menu_AddEntry 20

On entry

R0 = flags (bit 0 set means add the entry before the specified entry)
R1 = Menu object id
R2 = 20
R3 = component id of entry after/before which to add this entry

(or -1 to mean at the beginning, -2 to mean at the end)
R4 = pointer to buffer containing a description of the new entry

On exit

R0 = component id of added entry
R1-R9 preserved

Use

This method adds a new Menu entry at the specified place in the Menu. The
description of the Menu entry should have a format as specified under the Menu
Templates section.

By default the entry is added after the specified entry whose id is passed in R3, but
the client can specify that it is added before that entry, by setting bit 0 of the flags
word.

If the component id in the template of the Menu entry was specified as -1, then the
Toolbox uses the lowest numbered component id available for this Menu.

C veneer

extern _kernel_oserror *menu_add_entry (unsigned int flags,
 ObjectId menu,
 ComponentId at_entry,
 const char *entry_description,
 ComponentId *new_entry
);
195

Menu methods
Menu_RemoveEntry 21

On entry

R0 = flags
R1 = Menu object id
R2 = 21
R3 = component id of the entry

On exit

R1-R9 preserved

Use

This method removes a Menu entry

C veneer

extern _kernel_oserror *menu_remove_entry (unsigned int flags,
 ObjectId menu,
 ComponentId entry
);

Menu_GetHeight 22

On entry

R0 = flags
R1 = Menu object id
R2 = 22

On exit

R0 = height of menu work area in OS Units
R1-R9 preserved

Use

This method returns the height of the work area of the given Menu (in OS Units). It
takes into account whether items in the Menu have dashed line separators. This
can be used to accurately position the Menu in a call to Toolbox_ShowObject.

C veneer

extern _kernel_oserror *menu_get_height (unsigned int flags,
 ObjectId menu,
 int *height
);
196

Menu class
Menu_GetWidth 23

On entry

R0 = flags
R1 = Menu object id
R2 = 23

On exit

R0 = width of menu work area in OS Units
R1-R9 preserved

Use

This method returns the width of the work area of the given Menu (in OS Units).

C veneer

extern _kernel_oserror *menu_get_width (unsigned int flags,
 ObjectId menu,
 int *width
);

Menu_SetTitle 24

On entry

R0 = flags
R1 = Menu object id
R2 = 24
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Menu.
Note that this has no immediate effect if the Menu is currently being displayed.

C veneer

extern _kernel_oserror *menu_set_title (unsigned int flags,
 ObjectId menu,
 const char *title
);
197

Menu methods
Menu_GetTitle 25

On entry

R0 = flags
R1 = Menu object id
R2 = 25
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = the size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Menu’s title bar.

C veneer

extern _kernel_oserror *menu_get_title (unsigned int flags,
 ObjectId menu,
 char *buffer,
 int buff_size,
 int *nbytes
);
198

Menu class
Menu events

Menu_AboutToBeShown (0x828c0)

Block

+ 8 0x828c0 (or client specified event – see Menu Templates on page 201)
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value as passed in R2 to ToolBox_ShowObject
+ 20... block as passed in R3 to ToolBox_ShowObject

Use

This Toolbox event is raised due to a call to SWI Toolbox_ShowObject on a Menu
object which has bit 0 of its flags word set. It gives the application the opportunity
to tick, fade or change the text/sprite of any Menu entries before the Menu actually
appears on the screen.

This is useful where a shared Menu is being used by many Window objects, each of
which has a state which is reflected in the Menu state.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 TopLeft pos;
} MenuAboutToBeShownEvent;

Menu_HasBeenHidden (0x828c1)

Block

+ 8 0x828c1 (or client specified event – see Menu Templates on page 201)

Use

This Toolbox event is raised by the Toolbox when Toolbox_HideObject is called on
a Menu which has the appropriate bit set in its template flags word. It enables a
client application to clear up after a menu has been closed. It is also raised when
clicking outside a menu or hitting Escape.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} MenuHasBeenHiddenEvent;
199

Menu events
Menu_SubMenu (0x828c2)

Block

+ 8 0x828c2
+ 16 x coordinate where the submenu will be shown
+ 20 y coordinate where the submenu will be shown

Use

This Toolbox event is raised when the user moves the mouse over a Menu entry’s
submenu arrow, and the client application has not associated any other Toolbox
event with this event. The event is only delivered if the appropriate bit is set in the
menu entry’s flags word.

This Toolbox event is raised by the Menu class.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 TopLeft pos;
} MenuSubMenuEvent;

Menu_Selection (0x828c3)

Block:

+ 8 0x828c3

Use

This Toolbox event is raised when the user makes a selection on a Menu object,
and the client application has not associated any other Toolbox event with this
event.

This Toolbox event is raised by the Menu class.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} MenuSelectionEvent;
200

Menu class
Menu Templates

The layout of a Menu template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

The current version for Menu templates is 102.

For more details on relocation, see appendix Resource File Formats on page 505.

Followed by a list of menu entries, where each entry is:

Field Size in bytes Type

flags 4 word

title 4 MsgReference

max_title 4 word

help_message 4 MsgReference

max_help 4 word

show_event 4 word

hide_event 4 word

num_entries 4 word

Field Size in bytes Type

flags 4 word

component_id 4 word

text 4 MsgReference or StringReference

max_text 4 word

click_show 4 StringReference

submenu_show 4 StringReference

submenu_event 4 word

click_event 4 word

help_message 4 MsgReference

max_entry_help 4 word
201

Menu Wimp event handling
Menu Wimp event handling

The Menu class responds to certain Wimp events and takes the actions as
described below:

Wimp event Action

Menu Selection If there is a click event associated with the given Menu
entry, then that Toolbox event is raised;

if there is an object to be shown for this entry then
show it;

if neither of the above then the Menu_Selection
Toolbox event is raised.

If Adjust is held down, then the currently open Menu is
re-opened in the same place.

Mouse Click (on a dialogue box attached to the Menu)
If Adjust is held down, then the currently open Menu is
re-opened in the same place.

User Msg Message_HelpRequest
(while the pointer is over a Menu object) If a help
message is attached to this Menu or Menu entry, then
a reply is sent on the application’s behalf.

Message_MenuWarning
If a submenu event is associated with the given Menu
entry, then this Toolbox event is raised;

if a submenu object has been specified for this
Menu entry, then it is shown by the Toolbox.

if neither of the above, then a Menu_SubMenu
Toolbox event is raised.

Message_MenusDeleted
The Menu which was being shown is marked as hidden
(as if Toolbox_HideObject had been called).
202

11 Print Dialogue box class

Print dialogue object is used to allow the user to set a number of print options

(e.g. number of pages, number of copies etc), and then to request that a

document be printed given these options.

User interface

When a Print dialogue is created, it has the following components:

● a set of buttons and writable fields giving a page range to print (optional)

● a number range giving the number of copies to print (optional)

● a radio group consisting of two buttons, indicating whether the printing is to
be done Upright or Sideways (optional).

● an action button Save which saves the current print options (optional)

● an action button Set Up... which brings up a dialogue box allowing further
print options to be set (optional)

● an action button Cancel which closes the dialogue box without printing

● a default action button Print which causes a print operation to take place
using these print options

● an option button Draft indicating that draft standard printing is to be used

● a number range giving a percentage scale factor to apply during printing
(optional).

Pressing Escape cancels the dialogue (as well as clicking on the Cancel button).

A

Print button

Draft button

number ranges

writable fields

radio groups
203

Application Program Interface
The title bar of the dialogue box displays the name of the currently selected printer
or ‘Unknown printer’ if there is no such printer.

Application Program Interface

All processing of the dialogue box is handled by the Print module, and the client is
informed of any user actions via Toolbox events (PrintDbox_Print,
PrintDbox_SetUp, PrintDbox_DialogueCompleted and PrintDbox_Save).
204

Print Dialogue box class
Attributes

A Print Dialogue object has the following attributes which are specified in its
object template and can be manipulated at run-time by the client application:

Attributes Description

flags word Bit Meaning

0 when set, this bit indicates that a
PrintDbox_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called for
this object.

1 when set, this bit indicates that a
PrintDbox_DialogueCompleted event should be
raised when the Print Dialogue object has been
removed from the screen.

2 when set, this bit indicates generate
PrintDbox_SetUpAboutToBeShown event before
the underlying SetUp object is shown

3 when set, dialogue box has the All/From/To Page
Range options

4 when set, dialogue box has the Copies writable
field

5 when set, dialogue box has the Scale writable field

6 when set, dialogue box has the Orientation options
(i.e. Upright and Sideways)

7 when set, dialogue box has Save action button

8 when set, dialogue box has Set Up ... action button

9 when set, dialogue box has Draft option button

10 when set, dialogue box has From/to set from
All/From/to

11 when set, dialogue box has Sideways (and not
Upright) selected

12 when set, dialogue box has Draft selected

from initial value to put in the From writable field

to initial value to put in the to writable field

copies initial value to put in the Copies number range

scale initial value to put in the Scale number range

further options name of the template for a Window object to be displayed
when Setup... is clicked
205

Application Program Interface
Manipulating a Print Dialogue object

Creating and deleting a Print Dialogue object

A Print Dialogue object is created using SWI Toolbox_CreateObject.

When a Print Dialogue object is created, the following attached object (see
page 12) will be created (if specified):

● further options.

A Print Dialogue object is deleted using SWI Toolbox_DeleteObject. If it has any
attached objects (see above), these are also deleted, unless the non-recursive bit
is set for this SWI.

The setting of the non-recursive delete bit means that the SetUp dialogue box will
not be deleted.

Showing a Print Dialogue object

When a Print Dialogue object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

window name of the template for an alternative window to use
instead of the default one (0 means use default)

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate

Attributes Description
206

Print Dialogue box class
Before the Print Dialogue box is shown

When the client (or the Toolbox) calls Toolbox_ShowObject on a Print Dialogue
object, a PrintDbox_AboutToBeShown Toolbox event is raised before the dialogue
box becomes visible on the screen (if the appropriate flags bit is set).

This allows the client to set up the contents of the dialogue box appropriately.

Getting and setting printing options

A Print dialogue box contains many fields which are either options or writable
fields. These are:

● page range

● number of copies

● scale factor

● orientation

● draft.

Each of these components can be read and set dynamically using the following
methods:

PrintDbox_SetPageRangePrintDbox_GetPageRange
PrintDbox_SetCopiesPrintDbox_GetCopies
PrintDbox_SetScalePrintDbox_GetScale
PrintDbox_SetOrientationPrintDbox_GetOrientation
PrintDbox_SetDraftPrintDbox_GetDraft

Responding to action button clicks

When the user clicks a particular action button (or presses Return or Escape), the
client receives one of the following Toolbox events:

● PrintDbox_Save if Save has been clicked.

● PrintDbox_Print if Print has been clicked or Return has been pressed.

● PrintDbox_SetUp if Set Up... has been clicked and there is no specified
Window to be shown.

Getting the Print Dialogue’s title

The string appearing in the Print Dialogue’s title bar is the currently selected
printer (or ‘unknown printer’ if there is no such printer). This string can be read
using the PrintDbox_GetTitle method.

If the Print Dialogue is persistent, and the currently selected Printer is changed,
then the Title Bar will change to reflect this.
207

Print Dialogue Methods
Getting the id of the underlying Window object

The object id of the Window used to implement a Print Dialogue can be obtained
using the PrintDbox_GetWindowID method.

The SetUp Window

It is possible to specify the name of a template to be used for showing an object
when the SetUp... button is pressed. This object is shown in its default place
persistently.

Print Dialogue Methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a Print Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

PrintDbox_GetWindowID 0

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 0

On exit

R0 = Window object id for this Print object

Use

This method returns the id of the underlying Window object used to implement
this Print object.

C veneer

extern _kernel_oserror *printdbox_get_window_id (unsigned int flags,
 ObjectId printdbox,
 ObjectId *window
);
208

Print Dialogue box class
PrintDbox_SetPageRange 1

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 1
R3 = start of page range
R4 = end of page range

On exit

R1-R9 preserved

Use

This method is used to set the page range for a Print Dialogue.
A ‘start’ value of -1 means ‘All’.

C veneer

extern _kernel_oserror *printdbox_set_page_range (unsigned int flags,
 ObjectId printdbox,
 int start,
 int end
);

PrintDbox_GetPageRange 2

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 2

On exit

R0 = start of page range (a ‘start’ value of -1 means ‘All’)
R1 = end of page range

Use

This method is used to return the page range for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_page_range (unsigned int flags,
 ObjectId printdbox,
 int *start,
 int *end
);
209

Print Dialogue Methods
PrintDbox_SetCopies 3

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 3
R3 = number of copies

On exit

R1-R9 preserved

Use

This method is used to set the number of copies field for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_set_copies (unsigned int flags,
 ObjectId printdbox,
 int copies
);

PrintDbox_GetCopies 4

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 4

On exit

R0 = number of copies to be printed

Use

This method returns the value of the Copies field for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_copies (unsigned int flags,
 ObjectId printdbox,
 int *copies
);
210

Print Dialogue box class
PrintDbox_SetScale 5

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 5
R3 = percentage value to scale by

On exit

R1-R9 preserved

Use

This method is used to set the scale factor for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_set_scale (unsigned int flags,
 ObjectId printdbox,
 int scale_factor
);

PrintDbox_GetScale 6

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 6

On exit

R0 = percentage scale factor

Use

This method returns the value of the scale factor for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_scale (unsigned int flags,
 ObjectId printdbox,
 int *scale_factor
);
211

Print Dialogue Methods
PrintDbox_SetOrientation 7

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 7
R3 = non-zero means Sideways, 0 means Upright

On exit

R1-R9 preserved

Use

This method is used to set the orientation for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_set_orientation (unsigned int flags,
 ObjectId printdbox,
 int orientation
);

PrintDbox_GetOrientation 8

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 8

On exit

R0 = orientation non-zero means Sideways, 0 means Upright

Use

This method returns the orientation for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_orientation (unsigned int flags,
 ObjectId printdbox,
 int *orientation
);
212

Print Dialogue box class
PrintDbox_GetTitle 9

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 9
R3 = pointer to buffer to hold title string
R4 = size of buffer to hold title string

On exit

R4 = size of buffer required to hold title string (if R3 was 0)
else buffer pointed at by R3 holds title string
R4 holds number of bytes written to buffer

Use

This method returns the current string used in a Print object’s title bar.

C veneer

extern _kernel_oserror *printdbox_get_title (unsigned int flags,
 ObjectId printdbox,
 char *buffer,
 int buff_size,
 int *nbytes
);
213

Print Dialogue Methods
PrintDbox_SetDraft 10

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 10
R3 = non-zero means Draft, 0 means ‘non-draft’

On exit

R1-R9 preserved

Use

This method is used to set whether draft printing is used for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_set_draft (unsigned int flags,
 ObjectId printdbox,
 int draft
);

PrintDbox_GetDraft 11

On entry

R0 = flags
R1 = Print Dbox object id
R2 = 11

On exit

R0 = draft non-zero means Draft, 0 means ‘non-draft’

Use

This method returns whether draft printing is used for a Print Dialogue.

C veneer

extern _kernel_oserror *printdbox_get_draft (unsigned int flags,
 ObjectId printdbox,
 int *draft
);
214

Print Dialogue box class
Print Dialogue events

The Print module generates the following Toolbox events:

PrintDbox_AboutToBeShown (0x82b00)

Block

+ 8 0x82b00
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Print module is going to show its
underlying Window object.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} PrintDboxAboutToBeShownEvent;
215

Print Dialogue events
PrintDbox_DialogueCompleted (0x82b01)

Block

+ 8 0x82b01
+ 12 flags

Use

This Toolbox event is raised after the Print object has been hidden, either by a
Cancel click, or after a successful print, or by the user clicking outside the dialogue
box (if it is transient) or pressing Escape. It allows the client to tidy up its own state
associated with this dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} PrintDboxDialogueCompletedEvent;
216

Print Dialogue box class
PrintDbox_SetUpAboutToBeShown (0x82b02)

Block

+ 8 0x82b02
+ 16 object id of the object about to be shown

(note that the ‘self’ id in the id block will be for the Print Dialogue object,
not the object which will be shown)

+ 20 value which will be passed in R2 to ToolBox_ShowObject
+ 24... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Print module is going to show its
underlying Window object.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 ObjectId object_id;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} PrintDboxSetUpAboutToBeShownEvent;
217

Print Dialogue events
PrintDbox_Save (0x82b03)

Block

+ 8 0x82b03
+ 12 flags

bit 0 set means print Sideways (default is Upright)
bit 1 set means print Draft (default is non-draft)

+ 16 page range start (-1 means All)
+ 20 page range end
+ 24 number of copies
+ 28 value to scale by (a percentage)

Use

This Toolbox event is raised when the user clicks on the Save button. The client
should save any options associated with this Print Dialogue (usually in a
document which is being edited).

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int start_page;
 int finish_page;
 int copies;
 int scale_factor;
} PrintDboxSaveEvent;

PrintDbox_SetUp (0x82b04)

Block

+ 8 0x82b04

Use

This Toolbox event is raised when the user clicks on the Set Up... button, if there is
no dialogue box associated with this button.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} PrintDboxSetUpEvent;
218

Print Dialogue box class
PrintDbox_Print (0x82b05)

Block

+ 8 0x82b05
+ 12 flags

bit 0 set means print Sideways (default is Upright)
bit 1 set means print Draft (default is non-draft)

+ 16 page range start (-1 means All)
+ 20 page range end
+ 24 number of copies
+ 28 value to scale by (a percentage)

Use

This Toolbox event is raised when the user clicks on the Print button or presses
Return.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int start_page;
 int finish_page;
 int copies;
 int scale_factor;
} PrintDboxPrintEvent;
219

Print Dialogue templates
Print Dialogue templates

The layout of a Print template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Underlying window template

The Window object used to implement a Print dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82b000.

Field Size in bytes Type

flags 4 word

from 4 word

to 4 word

copies 4 word

scale 4 word

further_options 4 StringReference

window 4 StringReference

Component id Details

0 action button (Print) this should be marked as
the ‘default’ action button

1 action button (Save) this should be marked as a
‘local’ action button

2 action button (Cancel) this should be marked as
the ‘cancel’ action button

3 radio button (From/To) this is selected to allow
page ranges to be printed

4 radio button (All) selected for all page print

5 & 6 writable field (From)
writable field (To)

these are used by the user
to enter a page range
220

Print Dialogue box class
7 number range (Copies) these are used by the user
to enter the number of
copies

8 number range (Scale) these are used by the user
to specify a scale

9 radio button (Upright) selected for portrait

10 radio button (Sideways) selected for landscape

11 option button (Draft) selected for draft

12 action button (SetUp...) this is used to bring up a
Window of further options

13 label (To)

14 label (Copies)

15 label (Scale)

16 label (%)

Component id Details
221

Print Dialogue Wimp event handling
Print Dialogue Wimp event handling

Wimp event Action

Mouse Click on Print button then raise PrintDbox_Print Toolbox
event

on Cancel button then raise
PrintDbox_DialogueCompleted Toolbox event

on Save button then raise PrintDbox_Save Toolbox
event

on Setup... then raise a
PrintDbox_SetUpAboutToBeShown,
then show the specified Window object, or raise a
PrintDbox_SetUp Toolbox event if there is no such
Window

on All (pages) and All is off then
set All on
set From off
and shade the writable fields

on From and From is off then
set From on
set All to off
and unshade the writable fields

on Copies or Scale up/down arrows then
increment/decrement values

on Upright then set Upright on and Sideways off

on Sideways then set Sideways on and Upright off

on Draft then toggle state of option button

Key Pressed if key is Return raise PrintDbox_Print Toolbox event

if key is Escape act as if Cancel has been clicked

User Message Window_HasBeenHidden Toolbox event
hide the dialogue box, and raise a
PrintDbox_DialogueCompleted Toolbox event

Message_HelpRequest
return help message to sender
222

12 Prog Info Dialogue box class

Prog Info dialogue object is used to display information about the client

application in a dialogue box.

User interface

A Prog Info Dialogue has the following information held in its dialogue box:

● the name of the application (taken from the message whose tag is
‘_TaskName’)

● the purpose of the application

● the author of the application

● the licence type of the application (optional)

● the version of the application.

All of the above are display field gadgets.

The last of these fields can be set dynamically by the client at run-time.

This gives the simplest of Prog Info Dialogue boxes. If the client wishes to use
further fields, or wishes to customise the dialogue box, then there is a facility for
including the name of a different template to use rather than the standard Prog
Info one.

A

name

purpose

author

licence type

version
223

Application Program Interface
Application Program Interface

Attributes

A Prog Info object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Manipulating a Prog Info object

Creating and deleting a Prog Info object

A Prog Info object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A Prog Info object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Prog Info
objects.

Attributes Description

flags word Bit Meaning

0 when set, this bit indicates that a
ProgInfo_AboutTobeShown event should be
raised when SWI Toolbox_ShowObject is called
for this object.

1 when set, this bit indicates that a
ProgInfo_DialogueCompleted event should be
raised when the ProgInfo object has been
removed from the screen.

2 when set, include a licence type field in the
dialogue box

title alternative title bar string to ‘About this program’
(0 means use default title)

max title length this gives the maximum length in bytes of title text
which will be used for this Prog Info dialogue’s title bar

purpose a string giving the purpose of this application

author a string giving the author of this application

licence type an integer giving the licence type of the application

version a string giving version information for this application

window the name of an alternative window template to use
instead of the default one (0 means use default)
224

Prog Info Dialogue box class
Showing a Prog Info object

When a Prog Info object is displayed on the screen using SWI Toolbox_ShowObject
it has the following behaviour:

Changing the version string

Most of the fields in a Prog Info object will remain unchanged at run-time.

The client may wish to set and read the version string field at run-time. This is done
using the ProgInfo_SetVersion/ProgInfo_GetVersion methods.

Setting the licence type

If the client wishes to set and read the licence type displayed in the Prog Info
dialogue box, then it can use the ProgInfo_SetLicenceType and
ProgInfo_GetLicenceType methods (described on page 229).

Licence types are one of:

● public domain

● single user

● single machine

● site

● network

● authority.

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
225

Prog Info methods
Prog Info methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a Prog Info Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

ProgInfo_GetWindowID 0

On entry

R0 = flags
R1 = Prog Info object id
R2 = 0

On exit

R0 = Window object id for this Prog Info object

Use

This method returns the id of the underlying Window object used to implement
this Prog Info object.

C veneer

extern _kernel_oserror *proginfo_get_window_id (unsigned int flags,
 ObjectId proginfo,
 ObjectId *window
);
226

Prog Info Dialogue box class
ProgInfo_SetVersion 1

On entry

R0 = flags
R1 = Prog Info object id
R2 = 1
R3 = pointer to buffer holding version string (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the version string used in the Prog Info Dialogue’s Window.

C veneer

extern _kernel_oserror *proginfo_set_version (unsigned int flags,
 ObjectId proginfo,
 const char *version_string
);
227

Prog Info methods
ProgInfo_GetVersion 2

On entry

R0 = flags
R1 = Prog Info object id
R2 = 2
R3 = pointer to buffer to hold version string
R4 = size of buffer to hold version string

On exit

R4 = size of buffer required to hold version string (if R3 was 0)
else buffer pointed at by R3 holds version string
R4 holds number of bytes written to buffer

Use

This method returns the current version string used in a Prog Info object.

C veneer

extern _kernel_oserror *proginfo_get_version (unsigned int flags,
 ObjectId proginfo,
 char *buffer,
 int buff_size,
 int *nbytes
);
228

Prog Info Dialogue box class
ProgInfo_SetLicenceType 3

On entry

R0 = flags
R1 = Prog Info object id
R2 = 3
R3 = licence type

0  public domain
1  single user
2  single machine
3  site
4  network
5  authority

On exit

R1-R9 preserved

Use

This method sets the licence type used in the Prog Info Dialogue’s Window.

C veneer

extern _kernel_oserror *proginfo_set_licence_type (unsigned int flags,
 ObjectId proginfo,
 int licence_type
);
229

Prog Info methods
ProgInfo_GetLicenceType 4

On entry

R0 = flags
R1 = Prog Info object id
R2 = 4

On exit

R0 = licence type of application
0  public domain
1  single user
2  single machine
3  site
4  network
5  authority

Use

This method returns the current licence type used in a Prog Info object.

C veneer

extern _kernel_oserror *proginfo_get_licence_type (unsigned int flags,
 ObjectId proginfo,
 int *licence_type
);
230

Prog Info Dialogue box class
ProgInfo_SetTitle 5

On entry

R0 = flags
R1 = Prog Info object id
R2 = 5
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Prog Info
dialogue.

C veneer

extern _kernel_oserror *proginfo_set_title (unsigned int flags,
 ObjectId proginfo,
 const char *title
);

ProgInfo_GetTitle 6

On entry

R0 = flags
R1 = Prog Info object id
R2 = 6
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Prog Info dialogue’s title bar.
231

Prog Info events
C veneer

extern _kernel_oserror *proginfo_get_title (unsigned int flags,
 ObjectId proginfo,
 char *buffer,
 int buff_size,
 int *nbytes
);

Prog Info events

The Prog Info module generates the following Toolbox events:

ProgInfo_AboutToBeShown (0x82b40)

Block

+ 8 0x82b40
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Prog Info module is going to show its
underlying Window object.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} ProgInfoAboutToBeShownEvent;
232

Prog Info Dialogue box class
ProgInfo_DialogueCompleted (0x82b41)

Block

+ 8 0x82b41
+ 12 flags

(none yet defined)

Use

This Toolbox event is raised after the Prog Info object has been hidden, either by
the user clicking outside the dialogue box or pressing Escape. It allows the client
to tidy up its own state associated with this dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} ProgInfoDialogueCompletedEvent;

Prog Info templates

The layout of a Prog Info template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference

max-title 4 word

purpose 4 MsgReference

author 4 MsgReference

licence_type 4 word

version 4 MsgReference

window 4 StringReference
233

Prog Info Wimp event handling
Underlying window template

The Window object used to implement a Prog Info dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82b400.

Prog Info Wimp event handling

Component id Details

0 display field (Name of Application)

1 display field (Purpose)

2 display field (Author)

3 display field (Licence Type)

4 display field (Version)

5 label (name)

6 label (purpose)

7 label (author)

8 label (licence)

9 label (version)

Wimp event Action

Open Window request show the dialogue box

Key Click if Escape then cancel dialogue

User Message Message_MenusDeleted
hide the dialogue box
234

13 Quit Dialogue box class

Quit Dialogue box is used by the client application when the user attempts to

quit the application or shut down the computer whilst there is still unsaved

data.

User interface

A Quit Dialogue object is used to warn the user of quitting without saving unsaved
data.

The dialogue box which appears on the screen has a number of components:

● a title bar (by default containing the name of the application, i.e. the message
whose tag is ‘_TaskName’)

● a message stating (by default) that there is unsaved data

● two action buttons:

● a Cancel button (default action button)

● a Quit button.

The user sees the following behaviour:

● if they click on Quit, the application quits

● if they click on Cancel (or press Return or Escape), the application returns to
normal operation.

A

title bar

Cancel buttonQuit button

message
235

Application Program Interface
Application Program Interface

When a Quit object is created, it has a number of optional components:

● an alternative title bar string instead of the client’s name

● an alternative message to use in the dialogue box

● the name of an alternative template to use for the underlying Window object.

If the dialogue box is opened as a transient dialogue box, then it closes when the
user clicks outside the box.

Just before the Quit dialogue box is shown on the screen, the client is delivered a
Quit_AboutToBeShown Toolbox event (if enabled by the appropriate bit in the
flags).

Once the dialogue box is displayed on the screen, the Quit module handles events
for it, and raises a number of Toolbox events to indicate what choice the user has
made. These are Quit_DialogueCompleted, Quit_Cancel and Quit_Quit
(respectively).

Attributes

A Quit object has the following attributes which are specified in its object template
and can be manipulated at run-time by the client application:

Attributes Description

flags word Bit Meaning

0 when set, this bit indicates that a
Quit_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
Quit_DialogueCompleted event should be raised
when the Quit object has been removed from the
screen.

title alternative title to use instead of client’s name
(0 means default title)

max title length this gives the maximum length in bytes of title text
which will be used for this object

message the string to use as the message in the Quit dialogue
box
(0 means default message)
236

Quit Dialogue box class
Manipulating a Quit object

Creating and deleting a Quit object

A Quit object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A Quit object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Quit
objects.

Showing a Quit object

When a Quit object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

max message maximum length of string used in dialogue’s message
field

 window alternative window template to use instead of the
default one

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate

Attributes Description
237

Quit methods
Changing the Quit Dialogue’s message

When a Quit Dialogue object is created it has a default message warning the user
that he has unsaved data which will be lost if he quits the application.

This can be set and read dynamically using the Quit_SetMessage and
Quit_GetMessage methods.

Getting the id of the underlying window for a Quit Dialogue

The Window object id of the Window object used to implement the Quit Dialogue
can be obtained by using the Quit_GetWindowID method.

Quit methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word (which is zero unless otherwise stated)
R1 being a Quit Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Quit_GetWindowID 0

On entry

R0 = flags
R1 = Quit object id
R2 = 0

On exit

R0 = Window object id for this Quit object

Use

This method returns the id of the underlying Window object used to implement
this Quit object.

C veneer

extern _kernel_oserror *quit_get_window_id (unsigned int flags,
 ObjectId quit,
 ObjectId *window
);
238

Quit Dialogue box class
Quit_SetMessage 1

On entry

R0 = flags
R1 = Quit object id
R2 = 1
R3 = pointer to buffer holding new message (Ctrl-terminated)

On exit

R1-R9 preserved

Use

This method sets the message used in the Quit Dialogue’s Window.

C veneer

extern _kernel_oserror *quit_set_message (unsigned int flags,
 ObjectId quit,
 const char *message
);
239

Quit methods
Quit_GetMessage 2

On entry

R0 = flags
R1 = Quit object id
R2 = 2
R3 = pointer to buffer to hold message
R4 = size of buffer to hold message

On exit

R4 = size of buffer required to hold message (if R3 was 0)
else buffer pointed at by R3 holds message
R4 holds number of bytes written to buffer

Use

This method returns the current message used in a Quit object.

C veneer

extern _kernel_oserror *quit_get_message (unsigned int flags,
 ObjectId quit,
 char *buffer,
 int buff_size,
 int *nbytes
);
240

Quit Dialogue box class
Quit_SetTitle 3

On entry

R0 = flags
R1 = Quit object id
R2 = 3
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Quit
dialogue.

C veneer

extern _kernel_oserror *quit_set_title (unsigned int flags,
 ObjectId quit,
 const char *title
);
241

Quit methods
Quit_GetTitle 4

On entry

R0 = flags
R1 = Quit object id
R2 = 4
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Quit dialogue’s title bar.

C veneer

extern _kernel_oserror *quit_get_title (unsigned int flags,
 ObjectId quit,
 char *buffer,
 int buff_size,
 int *nbytes
);
242

Quit Dialogue box class
Quit events

The Quit module generates the following Toolbox events:

Quit_AboutToBeShown (0x82a90)

Block

+ 8 0x82a90
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Quit module is going to show its
underlying Window object.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;

} QuitAboutToBeShownEvent;
243

Quit events
Quit_Quit (0x82a91)

Block

+ 8 0x82a91

Use

This Toolbox event is raised when the user clicks on the Quit Button.

C data type

typedef struct
{
 ToolboxEventHeader hdr;

} QuitQuitEvent;

Quit_DialogueCompleted (0x82a92)

Block

+ 8 0x82a92
+ 12 flags

(none yet defined)

Use

This Toolbox event is raised after the Quit object has been hidden, either by a
Cancel click, or a Quit click, or by the user clicking outside the dialogue box (if it
was opened transiently) or pressing Escape. It allows the client to tidy up its own
state associated with this dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;

} QuitDialogueCompletedEvent;
244

Quit Dialogue box class
Quit_Cancel (0x82a93)

Block

+ 8 0x82a93

Use

This Toolbox event is raised when the user clicks on the Cancel button or presses
Return or Escape.

C data type

typedef struct
{
 ToolboxEventHeader hdr;

} QuitCancelEvent;

Quit templates

The layout of a Quit template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

title 4 MsgReference

max_title 4 word

message 4 MsgReference

max_message 4 word

window 4 StringReference
245

Quit Wimp event handling
Underlying window template

The Window object used to implement a Quit Dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets

Component Ids are derived by adding 0x82a900:

Quit Wimp event handling

Component id Details

0 button

1 action button (Quit)

2 action button (Cancel) must be marked as default
and Cancel action button

Wimp event Action

Mouse Click on Quit button raise Quit_Quit and
Quit_DialogueCompleted (if enabled) Toolbox event

on Cancel button raise Quit_Cancel and
Quit_DialogueCompleted (if enabled) Toolbox event

Key Pressed if key is Return raise Quit_Cancel Toolbox event

if key is Escape act as if Cancel had been pressed
246

14 SaveAs Dialogue box class

bjects of the Save As Dialogue class are used to display a standard (or

customised) Save As dialogue box, and to handle the drag of the ‘file icon’ to

its destination, and to request the client application to do the save operation.
Most of the Wimp message protocol is hidden from the client.

User interface

A Save As Dialogue object is used to allow the user to drag an icon representing a
document from a dialogue box to another application or to a directory display.

When a Save As Dialogue object is created, it has a number of components:

It is possible to specify the following:

● a default filename to use in the Save As dialogue box

● a default filetype to use in the Save As dialogue box

● a string to use in the dialogue box’s title bar, instead of ‘Save as’.

● the name of a Window template to use instead of the Save As module’s
internal Window template.

The default Save As dialogue box, has a draggable sprite to represent the data to
be saved, a writable field giving the name to save the data under, a Save (default)
action button, a Cancel action button, and an option button saying whether the
whole data or just a selection should be saved. If the client wishes to customise
the dialogue box, then the above components must be present in that dialogue
box, and must have the same component ids.

O

default filename

default filetype

Cancel button Save button

Selection button
(optional)

title bar string
247

Application Program Interface
If the dialogue box is opened as a transient dialogue box, then it closes when the
user clicks outside the box.

The user can interact with the Save As dialogue box in the following ways:

● clicking Cancel or pressing Escape will close the dialogue box, and cancel the
Save.

● clicking Save (or pressing Return) will save the data in a file whose name is
given by the contents of the Writable Field (if it is a full pathname).

● dragging the sprite to its destination will save the data to that destination,
with the ‘leaf’ part of its name.

When the Selection option button is clicked on, then the filename will change to
the string ‘Selection’.

Application Program Interface

Once the Save As dialogue box is on display, the Save As module handles much of
the messaging protocols associated with saving to another application or to a
directory display. The client no longer deals in the normal Wimp protocols for data
transfer, but instead responds to Toolbox events raised by the Save As module. In
fact in the very simplest of cases, the client does no more than just provide a
pointer to the data to be saved, and leaves the rest up to the Save As module.
248

SaveAs Dialogue box class
Attributes

A Save As object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Manipulating a SaveAs object

Creating and deleting a SaveAs object

A SaveAs object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A SaveAs object is deleted using SWI Toolbox_DeleteObject.

Attributes Description

flags Bit Meaning

0 when set, this bit indicates that a
SaveAs_AboutToBeShown event should be
raised when SWI Toolbox_ShowObject is called
for this object.

1 when set, this bit indicates that a
SaveAs_DialogueCompleted event should be
raised when the Save As object has been
removed from the screen.

2 when set, do not include the Selection option
button in the dialogue box. This is used by
clients where there is no concept of a current
selection.

3 when set, handle the SaveAs operation entirely
in the SaveAs module, from the supplied buffer

4 when set, client is willing to support RAM
transfers

filename a message string which gives the default filename to use
in the writable field

filetype an integer giving the RISC OS type of the file being saved

title a string to use for the Save As dialogue box title bar,
instead of ‘Save as’ (0 means use the default string)

max title length this gives the maximum length in bytes of title text
which will be used for this object

window an alternative window template to use instead of the
default one (null implies default)
249

Application Program Interface
The setting of the non-recursive delete bit does not have a meaning for SaveAs
objects.

Showing a SaveAs object

When a SaveAs object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Setting the SaveAs Dialogue box’s filename and filetype

When a SaveAs Dialogue object is created, it is given the filename from its
template to use in its writable field, and a filetype which will be used to look up
and use a sprite (from the Wimp sprite pool) whose name is file_HHH, where
HHH is a 3-digit hex representation of the filetype. If such a sprite does not exist
then a sprite called file_xxx is used instead. For saving directories and
applications the filetype values 0x1000 and 0x2000 should be used. In the latter
case, the standard ‘App’ sprite is used.

Both of these attributes can be set and read dynamically using the
SaveAs_SetFileName/SaveAs_GetFileName and SaveAs_SetFileType/
SaveAs_GetFileType methods.

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
250

SaveAs Dialogue box class
Summary of how to save data from a Toolbox client

There are essentially three sorts of application:

● Type 1 – an application which will allow the Toolbox to do data saving entirely
on its behalf.

● Type 2 – an application which needs to do the data saving itself, but is not
willing to support RAM transfers.

● Type 3 – an application which needs to do the data saving itself, and is willing
to support RAM transfers.

Let us look at how a client should react to each Toolbox event which it will receive.
Notice that these are the only events which the client needs to watch for to achieve
the SaveAs operation; there is no need to watch for user drags and window events,
and no need to watch for Message_RAMFetch events. The following is some
pseudo-C showing how a client might process Toolbox events delivered to it:

Type 1

switch(toolbox_event_code)
{
 case SaveAs_AboutToBeShown:
 /* call SaveAs_SetFileSize, SaveAs_SetFileName, SaveAs_SetFileType
 and SaveAs_SelectionAvailable if necessary.
 Also call SaveAs_SetDataAddress to tell the Toolbox
 the address and size of data to be saved.
 */
 break;

 case SaveAs_SaveCompleted:
 /* maybe mark a document as ‘unmodified’ */
 break;

 case SaveAs_DialogueCompleted:
 /* do any tidying up
 maybe delete the SaveAs object if desired
 */
 break;

 default:
 break;
}

Type 2

switch(toolbox_event_code)
{
 case SaveAs_AboutToBeShown:
 /* call SaveAs_SetFileSize, SaveAs_SetFileName, SaveAs_SetFileType
 and SaveAs_SelectionAvailable if necessary
 */
 break;
251

Application Program Interface
 case SaveAs_SaveToFile:
 /* save the data to the given filename
 and call SaveAs_FileSaveCompleted
 */
 break;

 case SaveAs_SaveCompleted:
 /* maybe mark a document as ‘unmodified’ */
 break;

 case SaveAs_DialogueCompleted:
 /* do any tidying up
 maybe delete the SaveAs object if desired
 */
 break;

 default:
 break;
}

Type 3

switch(toolbox_event_code)
{
 case SaveAs_AboutToBeShown:
 /* SaveAs_SetFileSize, call SaveAs_SetFileName, SaveAs_SetFileType
 and SaveAs_SelectionAvailable if necessary
 */
 break;

 case SaveAs_SaveToFile:
 /* save the data to the given filename
 and call SaveAs_FileSaveCompleted
 */
 break;

 case SaveAs_FillBuffer:
 /* if (address of buffer == 0)
 allocate a buffer for RAM transfer
 if (more data to go)
 {
 fill buffer with data
 call SaveAs_BufferFilled
 }
 */
 break;

 case SaveAs_SaveCompleted:
 /* maybe mark a document as ‘unmodified’ */
 break;

 case SaveAs_DialogueCompleted:
 /* do any tidying up
 maybe delete the SaveAs object if desired
 */
 break;
252

SaveAs Dialogue box class
 default:
 break;
}

Setting the File Size for the SaveAs Dialogue

In the file transfer protocol under RISC OS, the sender of a file must specify an
estimated size in bytes of the file being saved. This should be set using the
SaveAs_SetFileSize method, and can be read using the SaveAs_GetFileSize
method. This value will be used in the initial Message_DataSave message which
will be sent by the SaveAs module when the file icon is dragged to its destination.

Enabling/disabling the Selection option button

In the dialogue box used to implement the SaveAs Dialogue object, there is an
option button which is used to show whether the Save operation is to be done on
the whole file or just a selection. Handling this button is done entirely by the
SaveAs module. It is, however, the responsibility of the client to either enable or
disable this option button, depending on whether there is a selection currently in
existence. This will cause the button to appear greyed out when no selection exists.

The SaveAs module provides the method SaveAs_SelectionAvailable for this use.
The client should typically use this method in response to the
SaveAs_AboutToBeShown Toolbox event.

Before the SaveAs Dialogue box is shown

Once a SaveAs dialogue has been started by using Toolbox_ShowObject on a
SaveAs Dialogue object, a SaveAs dialogue box will appear on the screen. By
setting an appropriate bit in the SaveAs Dialogue object’s flags word, the client will
be sent a SaveAs_AboutToBeShown Toolbox event before the dialogue box
appears. This allows the client to set any relevant state like a different filename, or
filetype etc.

Cancelling the dialogue

If the user clicks on the Cancel button or presses Escape (or clicks outside the
SaveAs dialogue box if it was transient), then the SaveAs module delivers a
SaveAs_DialogueCompleted Toolbox event to the client application (if enabled).
This allows the client to update any of its data structures and to clean up any state
associated with this dialogue.

Saving handled entirely by the SaveAs module

If the client is able to supply the data to be saved in a contiguous block of memory
(i.e. client type 1), then by setting bit 3 in the SaveAs object’s flags word, the client
can request that the SaveAs module handles the entire Save operation itself. To do
253

Application Program Interface
this, the client must supply the address of the data (and its size), using the
SaveAs_SetDataAddress method. Typically the client will do this when it receives
the SaveAs_AboutToBeShown Toolbox event.

The SaveAs module will then conduct the rest of the dialogue. If it receives a
Message_RAMFetch message from the receiver, it will do a RAM transfer on behalf
of the client; otherwise it will do a scrap transfer (or save directly to file if the
destination is a filing system). All of this is transparent to the client if bit 3 is set in
the SaveAs object’s flags word.

Saving to a file

If bit 3 of the SaveAs object’s flags word is not set (thus indicating that the Toolbox
cannot do a save operation on the client’s behalf), then when the SaveAs module
wants the application to save to a file, it will deliver a SaveAs_SaveToFile Toolbox
event. On receipt of this event, the client (type 2 always and type 3 when necessary)
should save its data into the file whose name is given in the event block. The client
should then use the SaveAs_FileSaveCompleted method to inform the SaveAs
module whether the Save was successful or not. This must be done before the next
call to SWI Wimp_Poll, since the SaveAs module will assume this.

The SaveAs_SaveToFile event will be delivered if

● the user clicks on Save

● a Wimp$Scrap transfer is being used

● the user has dragged the file icon onto a directory display.

Saving via RAM transfer

If bit 3 of the SaveAs object’s flags word is not set (thus indicating that the Toolbox
cannot do a save operation on the client’s behalf), then the client (type 3 only) may
wish to help support RAM transfers if they are requested by the receiving task. This
is indicated by setting bit 4 of the SaveAs object’s flags word.

The client must supply a buffer, into which it places data ready for transmission to
the receiving task.

The SaveAs module will deal with all subsequent RAMFetch requests, and will call
SWI Wimp_TransferBlock to do the data transfer, and will reply to the receiver using
Message_RAMTransmit.

The client will receive SaveAs_FillBuffer Toolbox events when the buffer has been
transmitted, and on receipt of such events should fill the buffer and call the
SaveAs_BufferFilled method. If the field in the SaveAs_FillBuffer event giving the
address of the buffer is 0, then the client has not yet supplied a buffer, and they
should allocate one. Each SaveAs_FillBuffer Toolbox event contains an indication
254

SaveAs Dialogue box class
of how many bytes have been transmitted so far during the transfer. As soon as the
number of bytes which the client writes into the buffer is less than the size of the
buffer, the SaveAs module assumes that the transfer is complete.

Successful completion of a Save operation

When a Save operation has been successfully completed (i.e. the data has been
saved), the SaveAs module will send a SaveAs_SaveCompleted Toolbox event to
the client, and will hide the SaveAs object, unless the user has clicked Adjust on
the Save button.

One field in the event block passed back to the client is a one-word indication of
whether the destination was a ‘safe’ place (like a filing system) or ‘unsafe’ (like
another application). The client may choose to use this value to decide whether to
mark the data as ‘un-modified’, if the client is an editor.

If the original save operation was started by the user dragging the file icon from the
SaveAs dialogue box, then the SaveAs_SaveCompleted event block also contains
the Wimp message reference number of the Message_DataSave sent by the SaveAs
module, to allow the client to use in conjunction with any Message_DataSaved
replies.

Completion of the SaveAs dialogue

When the SaveAs module has hidden its dialogue box at the end of a dialogue, it
delivers a SaveAs_DialogueCompleted Toolbox event to the client, with an
indication of whether a successful save occurred during the dialogue.

Error handling

Any errors referring to the SaveAs dialogue box itself will be reported to the user by
the SaveAs module. For example, if there is only a leafname in the writable field,
and the user clicks on Save, then the SaveAs module will display an error box
saying ‘To save, drag the icon to a directory display’.

The SaveAs module will also report any errors which occur while it is carrying out a
Save operation.

The client should report (via SWI Wimp_ReportError), any errors which occur if it is
requested to save to a given filename.
255

Save As methods
Save As methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a Save As Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

SaveAs_GetWindowID 0

On entry

R0 = flags
R1 = Save As object id
R2 = 0

On exit

R0 = Window object id for this Save As object

Use

This method returns the id of the underlying Window object used to implement
this Save As object.

C veneer

extern _kernel_oserror *saveas_get_window_id (unsigned int flags,
 ObjectId saveas,
 ObjectId *window
);
256

SaveAs Dialogue box class
SaveAs_SetTitle 1

On entry

R0 = flags
R1 = Save As object id
R2 = 1
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Save As
dialogue.

C veneer

extern _kernel_oserror *saveas_set_title (unsigned int flags,
 ObjectId saveas,
 const char *title
);
257

Save As methods
SaveAs_GetTitle 2

On entry

R0 = flags
R1 = Save As object id
R2 = 2
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Save As dialogue’s title bar.

C veneer

extern _kernel_oserror *saveas_get_title (unsigned int flags,
 ObjectId saveas,
 char *buffer,
 int buff_size,
 int *nbytes
);
258

SaveAs Dialogue box class
SaveAs_SetFileName 3

On entry

R0 = flags
R1 = Save As object id
R2 = 3
R3 = pointer to filename to use in writable field

On exit

R1-R9 preserved

Use

This method sets the filename which is to be used in the Save As object’s writable
field.

C veneer

extern _kernel_oserror *saveas_set_file_name (unsigned int flags,
 ObjectId saveas,
 const char *file_name
);
259

Save As methods
SaveAs_GetFileName 4

On entry

R0 = flags
R1 = Save As object id
R2 = 4
R3 = pointer to buffer to return the filename in (or 0) R4 =size of buffer

On exit

R4 = size of buffer required to hold the filename (if R3 was 0)
else Buffer pointed to by R3 contains filename
R4 holds number of bytes written to buffer

Use

This method returns the filename displayed in this Save As object’s writable field.

C veneer

extern _kernel_oserror *saveas_get_file_name (unsigned int flags,
 ObjectId saveas,
 char *buffer,
 int buff_size,
 int *nbytes
);
260

SaveAs Dialogue box class
SaveAs_SetFileType 5

On entry

R0 = flags
R1 = Save As object id
R2 = 5
R3 = filetype

On exit

R1-R9 preserved

Use

This method is used to set the filetype for this Save As object, and hence the sprite
which will be displayed in the dialogue box.

C veneer

extern _kernel_oserror *saveas_set_file_type (unsigned int flags,
 ObjectId saveas,
 int file_type
);

SaveAs_GetFileType 6

On entry

R0 = flags
R1 = Save As object id
R2 = 6

On exit

R0 = filetype

Use

This method is used to get the filetype of this Save As object.

C veneer

extern _kernel_oserror *saveas_get_file_type (unsigned int flags,
 ObjectId saveas,
 int *file_type
);
261

Save As methods
SaveAs_SetFileSize 7

On entry

R0 = flags
R1 = Save As object id
R2 = 7
R3 = file size in bytes

On exit

R1-R9 preserved

Use

This method is used to set the estimated file size in bytes for this Save As Dialogue.
This will be used in a Message_DataSave message when the file icon is dragged to
its destination.

C veneer

extern _kernel_oserror *saveas_set_file_size (unsigned int flags,
 ObjectId saveas,
 int file_size
);

SaveAs_GetFileSize 8

On entry

R0 = flags
R1 = Save As object id
R2 = 8

On exit

R0 = file size

Use

This method is used to get the file size of this Save As object.

C veneer

extern _kernel_oserror *saveas_get_file_size (unsigned int flags,
 ObjectId saveas,
 int *file_size
);
262

SaveAs Dialogue box class
SaveAs_SelectionAvailable 9

On entry

R0 = flags
R1 = Save As object id
R2 = 9
R3 = non-zero means selection is available, otherwise it is not available

On exit

R1-R9 preserved

Use

This method is used to indicate to the Save As module whether there is a current
selection in existence. If there is a selection, then the Selection option button will
be enabled (i.e. the user can click on it), if not the Selection option button will be
greyed out.

If the Save As object has no Selection option button then an error is returned.

C veneer

extern _kernel_oserror *saveas_selection_available (unsigned int flags,
 ObjectId saveas,
 int selection
);
263

Save As methods
SaveAs_SetDataAddress 10

On entry

R0 = flags
R1 = Save As object id
R2 = 10
R3 = address of contiguous block of data which is to be saved
R4 = size of data
R5 = address of contiguous block of data, which is the current selection
R6 = size of selection

On exit

R1-R9 preserved

Use

This method indicates to the Save As module the address of a contiguous block of
memory containing the data to be saved. It is used if the client wishes the entire
Save operation to be carried out by the Save As module. It is typically called in
response to a SaveAs_SaveAboutToBeShown Toolbox event. If there is a current
selection, then its address and size should also be passed to this method.

Note: This method is only suitable for Type 1 clients.

C veneer

extern _kernel_oserror *saveas_set_data_address (unsigned int flags,
 ObjectId saveas,
 void *data,
 int data_size,
 void *selection,
 int selection_size
);
264

SaveAs Dialogue box class
SaveAs_BufferFilled 11

On entry

R0 = flags
R1 = Save As object id
R2 = 11
R3 = address of buffer which has been filled
R4 = number of bytes written into buffer

On exit

R1-R9 preserved

Use

This method is used to respond to a SaveAs_FillBuffer Toolbox event; it confirms
that the requested buffer fill has taken place, and states the number of bytes
written to the buffer.

C veneer

extern _kernel_oserror *saveas_buffer_filled (unsigned int flags,
 ObjectId saveas,
 void *buffer,
 int bytes_written
);
265

Save As methods
SaveAs_FileSaveCompleted 12

On entry

R0 = flags bit 0 set means that the save was successful
R1 = Save As object id
R2 = 12
R3 = filename where the client tried to save the data

On exit

R1-R9 preserved

Use

This method is used by the client to report whether an attempt to save the data to
file as a result of a SaveAs_SaveToFile Toolbox event was successful or not.

If this SWI is called with bit 0 of R0 clear, then it will return an error.

Note: This method is only suitable for Type 2 and Type 3 clients.

C veneer

extern _kernel_oserror *saveas_file_save_completed (unsigned int flags,
 ObjectId saveas,
 const char *filename
);
266

SaveAs Dialogue box class
Save As events

The Save As module generates the following Toolbox events:

SaveAs_AboutToBeShown (0x82bc0)

Block

+ 8 0x82bc0
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Save As module is going to show its
underlying Window object, to enable the client to set its filename and filetype
appropriately.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} SaveAsAboutToBeShownEvent;
267

Save As events
SaveAs_DialogueCompleted (0x82bc1)

Block

+ 8 0x82bc1
+ 12 flags

bit 0 set means that a successful save was done during this dialogue

Use

This Toolbox event is raised after the Save As object has been hidden, either by a
Cancel click, or after a successful save, or by the user clicking outside the dialogue
box or pressing Escape. It allows the client to tidy up its own state associated with
this dialogue.

Note that if the dialogue was cancelled, a successful save may still have been done,
for example if the user clicked Adjust on Save, and then cancelled the dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} SaveAsDialogueCompletedEvent;

SaveAs_SaveToFile (0x82bc2)

Block

+ 8 0x82bc2
+ 12 flags bit 0 set means save only the current selection
+ 16... nul-terminated filename to which the data should be saved

Use

This Toolbox event is raised by the Save As module to request that the client
should save its data to the given filename. If bit 0 of the flags word is set, then only
the current selection should be saved.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 char filename [212];
} SaveAsSaveToFileEvent;
268

SaveAs Dialogue box class
SaveAs_FillBuffer (0x82bc3)

Block

+ 8 0x82bc3
+ 12 flags

bit 0 set means a selection is being saved
+ 16 size of buffer being used
+ 20 address of buffer
+ 24 number of bytes already transmitted

Use

This Toolbox event is raised by the Save As module to request that the client
should fill the given buffer (which is the one which the client will have allocated).

If the address returned by this event is 0, then the client application needs to do
one of the following:

● reserve memory for buffering and return its address using SWI BufferFilled

● maintain a pointer to the current location in the data to be transferred.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int size;
 char *address;
 int no_bytes;
} SaveAsFillBufferEvent;
269

Save As templates
SaveAs_SaveCompleted (0x82bc4)

Block

+ 8 0x82bc4
+ 12 flags

bit 0 set means a selection was saved
bit 1 set means the destination was safe (e.g. a filing system)

+ 16 Wimp message number of original Message_DataSave
(or 0 if the save operation was not started via a drag)

+ 20... if bit 1 is set in the flags word (i.e. safe save), then this field indicates the
full pathname of the place where the save was done.

Use

This Toolbox event is raised when the Save is successfully completed. Bit 0 of the
flags word indicates whether just a selection was saved; bit 1 means that the Save
was to a place where the data is safe (e.g. it is in a real file, on a filing system).

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int wimp_message_no;
 char filename [208];
} SaveAsSaveCompletedEvent;

Save As templates

The layout of a Save As template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

filename 4 MsgReference

filetype 4 word

title 4 MsgReference

max_title 4 word

window 4 StringReference
270

SaveAs Dialogue box class
Underlying Window template

The Window object used to implement a Save As dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template.

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82bc00.

Save As Wimp event handling

Component id Details

0 draggable (file icon) must be sprite only

1 writable field (filename)

2 action button (Cancel) must be marked as a
Cancel action button

3 action button (Save) must be marked as the
Default action button

4 (if required) option button (Selection)

Wimp event Action

Mouse Click if this is a drag event on the file icon, then set up an
appropriate Wimp drag box

ActionButton_Selected on the Save button then start save operation

on the Cancel button then hide the dialogue box, and
raise a SaveAs_DialogueCompleted Toolbox event

Draggable_DragEnded
(Toolbox event)

start save operation to the destination of the drag (i.e.
send a Message_DataSave to the destination
window/icon pair.

Key Pressed if dialogue box has the input focus, and the key pressed
is Return, then the Save Button is activated, and a save
operation is started

if key is Escape act as if Cancel had been pressed.
271

Save As Wimp event handling
User Message

User Message
Recorded

Message_DataSaveAck
if (a SaveAs dialogue is in progress)
{
 if (the save can be done entirely
 by the SaveAs module)
 {
 do the save
 send Message_DataLoad to destination
 }
 else
 {
 raise a SaveAs_SaveToFile Toolbox event
 }
}

Message_DataLoadAck
if (a SaveAs dialogue is in progress)
{
 raise a SaveAs_SaveCompleted Toolbox event
 If (not an Adjust click on OK)
 (
 hide the dialogue box
 raise a SaveAs_DialogueCompleted
 Toolbox event
)
}

Message_RAMFetch
if (a SaveAs dialogue is in progress)
{
 transfer current buffer contents
 send Message_RAMTransmit to destination
 if (save cannot be done entirely by the Toolbox
 module)
 raise SaveAs_FillBuffer Toolbox event
}

Message_MenusDeleted
If (a SaveAs dialogue is in progress)
{
 raise a SaveAs_DialogueCompleted Toolbox event
}

Wimp event Action
272

15 Scale Dialogue box class

Scale Dialogue object is used to present the user with a dialogue box from

which he can set the scale factors for a view on a document. This scale is given

as a percentage of the original size of the document.

User interface

The Scale class provides a dialogue box from which a scale factor can be chosen:

The default Scale dialogue box has the following attributes:

● a title bar string

● a writable number range with up/down arrows and a percentage sign to the
right of the up/down arrows

● four ‘standard’ size action buttons with the values: 33%, 80%, 100%, 120% as
their text plus an optional Scale to Fit action button

● a Cancel action button

● a Scale action button.

The user can:

● type an integral value in the writable field between its lower and upper bounds
or use the up/down arrows to adjust the value currently in the field

● use one of the standard size action buttons to set the scale factor. Clicking on
these buttons only causes a value to be inserted in the writable field; it does
not apply the scale factors

● click outside the dialogue box (if it is transient) or click on Cancel, to cancel
the dialogue

A

title bar string

number range

Cancel button Scale button

local action buttons
273

Application Program Interface
● click on Scale or press Return to apply the scale factors

● if there is a Scale to Fit button, then clicking on it will have
application-defined behaviour (e.g. Scale to Fit window).

Application Program Interface

When a Scale object is created it has the following components:

● an optional Scale To Fit button.

● an alternative title to use instead of the default.

● alternative bounds and step size for the writable field.

● an optional list of different standard size action buttons where each gives a
percentage value to insert into the Writable Field. These will be positioned
appropriately by the Scale module in place of the default standard size
buttons. When a Scale object is shown, the client will be delivered a
Scale_DialogueAboutToBeShown Toolbox event (if enabled), just before the
dialogue box becomes visible on the screen.

When the Scale dialogue is showing, the Scale module deals with all relevant
Wimp events and reports user actions back to the client via Toolbox events. If there
are any standard size action buttons in the dialogue box, then the Scale module
deals with clicks on them, and inserts the correct percentage value into the
writable field.

The client is guaranteed to receive a Scale_DialogueCompleted Toolbox event
when the dialogue is over (i.e. the user has clicked on Cancel, or clicked outside
the dialogue box (if it were transient), or clicked on Scale, or on Scale To Fit).
274

Scale Dialogue box class
Attributes

A Scale object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Manipulating a Scale object

Creating and deleting a Scale object

A Scale object is created using SWI Toolbox_CreateObject.

When this object is created it has no attached objects (see page 12).

A Scale object is deleted using SWI Toolbox_DeleteObject.

The setting of the non-recursive delete bit does not have a meaning for Scale
objects.

Attributes Description

flags Bit Meaning

0 when set, this bit indicates that a
Scale_AboutToBeShown event should be raised
when SWI Toolbox_ShowObject is called for this
object.

1 when set, this bit indicates that a
Scale_DialogueCompleted event should be
raised when the Scale object has been removed
from the screen.

2 when set, dialogue box has a Scale To Fit button

min val alternative minimum value for the writable field

max val alternative maximum value for the writable field

step size alternative step size for up/down arrows

Scale title alternative title for the dialogue rather than ‘Scale View’
(0 means use default)

max title length this gives the maximum length in bytes of title text
which will be used for this object

window the name of an alternative window template to use
instead of the default one (0 means use default)

std1 value value of first std scale button

std2 value value of second std scale button

std3 value value of third std scale button

std4 value value of fourth std scale button
275

Application Program Interface
Showing a Scale object

When a Scale object is displayed on the screen using SWI Toolbox_ShowObject it
has the following behaviour:

Before the Scale Dialogue box is shown

When SWI Toolbox_ShowObject is called on a Scale object, the Scale Class raises a
Scale_AboutToBeShown Toolbox event (if enabled), just before it shows the
underlying Window object which implements this dialogue. This will allow the
client to set an initial suitable value in the Scale dialogue’s Writable Field.

Applying a Scale factor

When the user clicks on the Scale button, or on the Scale To Fit button if it is
present, the Scale module delivers a Scale_ApplyFactor to the client, giving the
percentage factor to apply. A special value of 0xffffffff is delivered if the Scale To Fit
button is clicked.

Cancelling a Scale dialogue

If the user clicks on the Cancel Button (or clicks outside the Scale dialogue box),
then the Scale module delivers a Scale_DialogueCompleted Toolbox event to the
client application. This allows the client to update any of its data structures and to
clean up any state associated with this dialogue.

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
276

Scale Dialogue box class
Completion of a Scale dialogue

When the Scale module has hidden its dialogue box at the end of a dialogue, it
delivers a Scale_DialogueCompleted Toolbox event to the client (if enabled), with
an indication of whether a scale factor was reported to the client during the
dialogue.

Reading and setting the writable field

Normally a client will only need to respond to the Scale_ApplyFactor Toolbox
event in order to allow the user to set scale factors. If, however, the client wishes to
read the current value in the writable field, or to set it explicitly (to a suitable start
value when the dialogue box is first shown), then it can use the
Scale_SetValue/Scale_GetValue methods.

Reading and setting the bounds of the writable field and step size

Normally a client will specify the bounds and step size of the writable field in the
template description for the Scale object.

These can however be read and set dynamically using the Scale_SetBounds/
Scale_getBounds and Scale_GetStepSize/Scale_SetStepSize methods.
277

Scale methods
Scale methods

The following methods are all invoked by calling SWI Toolbox_ObjectMiscOp with:

R0 holding a flags word
R1 being a Scale Dialogue object id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Scale_GetWindowID 0

On entry

R0 = flags
R1 = Scale object id
R2 = 0

On exit

R0 = Window object id for this Scale object

Use

This method returns the id of the underlying Window object used to implement
this Scale object.

C veneer

extern _kernel_oserror *scale_get_window_id (unsigned int flags,
 ObjectId scale,
 ObjectId *window
);
278

Scale Dialogue box class
Scale_SetValue 1

On entry

R0 = flags
R1 = Scale object id
R2 = 1
R3 = value

On exit

R1-R9 preserved

Use

This method is used to set the value displayed in the writable field for this Scale
object.

C veneer

extern _kernel_oserror *scale_set_value (unsigned int flags,
 ObjectId scale,
 int value
);

Scale_GetValue 2

On entry

R0 = flags
R1 = Scale object id
R2 = 2

On exit

R0 = value

Use

This method returns the value in the writable field of this Scale object.

C veneer

extern _kernel_oserror *scale_get_value (unsigned int flags,
 ObjectId scale,
 int *value
);
279

Scale methods
Scale_SetBounds 3

On entry

R0 = flags
bit 0 set means set the lower bound to the given value
bit 1 set means set the upper bound to the given value
bit 2 set means set step size

R1 = Scale object id
R2 = 3
R3 = value of the lower bound
R4 = value of the upper bound
R5 = step size

On exit

R1-R9 preserved

Use

This method sets the lower and upper bounds and step size of the writable field in
the Scale object.

C veneer

extern _kernel_oserror *scale_set_bounds (unsigned int flags,
 ObjectId scale,
 int lower_bound,
 int upper_bound,
 int step_size
);
280

Scale Dialogue box class
Scale_GetBounds 4

On entry

R0 = flags
bit 0 set means return the lower bound
bit 1 set means return the upper bound
bit 2 set means return step size

R1 = Scale object id
R2 = 4

On exit

R0 = value of the lower bound
R1 = value of the upper bound
R2 = value of the step size

Use

This method returns either the lower and upper bounds and step size of the
writable field in the Scale object.

C veneer

extern _kernel_oserror *scale_get_bounds (unsigned int flags,
 ObjectId scale,
 int *lower_bound,
 int *upper_bound,
 int *step_size
);
281

Scale methods
Scale_SetTitle 5

On entry

R0 = flags
R1 = Scale object id
R2 = 5
R3 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text which is to be used in the title bar of the given Scale
dialogue.

C veneer

extern _kernel_oserror *scale_set_title (unsigned int flags,
 ObjectId scale,
 const char *title
);
282

Scale Dialogue box class
Scale_GetTitle 6

On entry

R0 = flags
R1 = Scale object id
R2 = 6
R3 = pointer to buffer to return the text in (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required to hold the text (if R3 was 0)
else Buffer pointed to by R3 contains title text
R4 holds number of bytes written to buffer

Use

This method returns the text string used in a Scale dialogue’s title bar.

C veneer

extern _kernel_oserror *scale_get_title (unsigned int flags,
 ObjectId scale,
 char *buffer,
 int buff_size,
 int *nbytes
);
283

Scale events
Scale events

The Scale module generates the following Toolbox events:

Scale_AboutToBeShown (0x82c00)

Block

+ 8 0x82c00
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value which will be passed in R2 to ToolBox_ShowObject
+ 20... block which will be passed in R3 to ToolBox_ShowObject for the

underlying dialogue box

Use

This Toolbox event is raised just before the Scale module is going to show its
underlying Window object, to enable the client to set its initial value appropriately.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft pos;
 WindowShowObjectBlock full;
 } info;
} ScaleAboutToBeShownEvent;
284

Scale Dialogue box class
Scale_DialogueCompleted (0x82c01)

Block

+ 8 0x82c01
+ 12 flags

Use

This Toolbox event is raised after the Scale object has been hidden, either by a
Cancel click, or by a click on Scale or Scale To Fit, or by the user clicking outside
the dialogue box (if it is transient). It allows the client to tidy up its own state
associated with this dialogue.

Note that if the dialogue was cancelled, a scale factor may still have been applied,
for example if the user clicked Adjust on Scale, and then cancelled the dialogue.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} ScaleDialogueCompletedEvent;

Scale_ApplyFactor (0x82c02)

Block

+ 8 0x82c02
+ 16 unsigned integer scale factor to apply

Use

This Toolbox event is raised when the user clicks on the Scale button or the Scale
To Fit button (if present), or presses Return.

The scale factor to apply is a percentage; 0xffffffff means Scale To Fit.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 unsigned int factor;
} ScaleApplyFactorEvent;
285

Scale templates
Scale templates

The layout of a Scale template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation).

For more details on relocation, see appendix Resource File Formats on page 505.

Underlying window template

The Window object used to implement a Scale dialogue, has the following
characteristics. These must be reproduced if the Window is replaced by a
client-specified alternative Window template:

Title bar must be indirected.

Gadgets

Component ids are derived by adding to 0x82c000.

Field Size in bytes Type

flags 4 word

min_val 4 word

max_val 4 word

step_size 4 word

title 4 MsgReference

max_title 4 word

window 4 StringReference

std1_value 4 word

std2_value 4 word

std3_value 4 word

std4_value 4 word

Component id Details

0 number range (Scale) must have adjuster arrows,
and be writable

1-4 action buttons
(standard scale factors)

these should have the text
33%, 80%, 100% and 120%

5 action button (Cancel) this must be marked as a
Cancel action button

6 action button (Scale) this must be marked as the
default action button
286

Scale Dialogue box class
Scale Wimp event handling

7 label (%)

8 label (Scale)

9 action button (Scale to fit)

Wimp event Action

Mouse Click on Scale or Scale to Fit buttons, then deliver a
Scale_ApplyFactor Toolbox event

on a standard size button then enter its value
into the Writable Field

on Cancel button then hide the dialogue box,
and deliver a Scale_DialogueCompleted
Toolbox event.

Key Pressed if key is Return then act as if Scale button had
been clicked

if key is Escape then act as if Cancel button had
been clicked.

User Message
User Message Recorded

Message_MenusDeleted
deliver a Scale_DialogueCompleted Toolbox
event.

Component id Details
287

288

16 Window class

bjects of the Window class are used by the client application to display its

document windows, dialogue boxes etc.

User interface

A Window is essentially an extension of a Wimp window (in fact part of the Window
object definition is a Wimp window definition):

Many Wimp events which are delivered to this Window are dealt with automatically
by the Toolbox, based on the attributes of the Window. In this chapter we give
further details of exactly what a Window consists of, and the semantics attached to
Wimp events for a Window.

The client application is always able to get the Wimp window handle of the
underlying Wimp window used to implement this Window object, and can perform
all the usual Wimp SWIs on that window (within reason, e.g. deleting an icon
belonging to a gadget may have undesirable effects).

O

Back icon Close icon Title bar Toggle size icon

Slider

Scroll bar

Scroll arrow

Adjust size icon
289

Application Program Interface
Application Program Interface

Attributes

A Window object has the following attributes which are specified in its object
template and can be manipulated at run-time by the client application:

Attribute Description

flags word Bit Meaning

0 when set, generate a
Window_AboutToBeShown event before
showing the underlying Wimp window

1 when set, automatically open this
Window when a Wimp
OpenWindowRequest is received
(when set the client will not see the
underlying Wimp requests)

2 when set, automatically close this
Window when a Wimp
CloseWindowRequest is received
(when set the client will not see the
underlying Wimp requests)

3 when set, generate a
Window_HasBeenHidden Event after
hiding the underlying Wimp window

4 when set, indicates that this template is
of a toolbar (see Toolbars on page 324)

help message when a HelpRequest is received for this
Window, then this text is sent in a HelpReply
message. Note that this Help message is only
sent if the gadget (see later) for which the
request was received has not got a Help
message of its own, or if the pointer is not over
any gadget.

max help maximum length in bytes of help message

pointer shape this gives the name of a sprite to use as the
pointer shape, when a Pointer Entering
Window event is received for this Window (0
means do not change the pointer shape).

max pointer shape maximum length in bytes of sprite name
290

Window class
pointer x hot
pointer y hot

the x and y coordinates of the pointer’s hot
spot. These are relative pixels from the top left
corner of the sprite.

menu the name of the template to use to create a
Menu object for this Window

num keyboard shortcuts the number of keyboard short-cuts which are
associated with this Window

keyboard shortcuts the pointer to the list of keyboard short-cuts
for this Window

num gadgets the number of gadgets which are to appear in
this Window

gadgets the pointer to the list of gadgets for this
Window.

default focus the Component Id of the gadget which is given
input focus when the window is shown.

If this field is -1 then no gadget will be given
input focus

if -2 then window will be given input focus
(but no caret) allowing keyboard short-cuts to
work without having any writables

window 88-byte structure is the standard block which
is passed to Wimp_CreateWindow. The
window is shown to contain no icons, since
these are implemented by gadgets.

internal_bl the window template to be used for this
toolbar. Anchored to the bottom left corner
inside the window. ✝

internal_tl the window template to be used for this
toolbar. Anchored to the top left corner inside
the window. ✝

external_bl the window template to be used for this
toolbar. Anchored to the bottom left corner
outside the window. ✝

external_tl the window template to be used for this
toolbar. Anchored to the top left corner
outside the window. ✝

Attribute Description
291

Application Program Interface
✝ these templates must have the Toolbar bit set.

Keyboard short-cut

The attributes of a Keyboard short-cut are as follows:

Note that because keyboard short-cuts work on Wimp key codes, certain key
combinations (such as Shift-Ctrl-P) will require the client to provide extra code.

Gadget

All gadgets have a common header, followed immediately by a body which is
gadget-specific. The header is described on page 328, and the gadget-specific
bodies are described in their own sections.

Manipulating a Window object

Creating and deleting a Window object

A Window object is created using SWI Toolbox_CreateObject.

When a Window object is created, the following attached objects (see page 12) will
be created (if specified):

● menu

● key show (for each keyboard short-cut)

show_event the event code to be raised when the window
is shown.

hide_event the event code to be raised after the window
has been hidden.

Attributes Description

flags word Bit Meaning

0 when set, show attached object as ‘transient’

wimp key code the key code returned by the Wimp in a Key Pressed
event block, for this keyboard short-cut

key event this is the Toolbox event to be raised when the Wimp
delivers a Key Pressed event with this Wimp key code.

0 means deliver no event

key show the name of the template for an object to create and
show when the Wimp delivers a Key Pressed event
with this Wimp key code.

0 means show no object

Attribute Description
292

Window class
● Toolbars.

See the attributes table above for an explanation of what these objects are.

There are also attached objects which are associated with gadgets in a Window
(see later):

● click show (for an action button)

● menu (for a Pop-up menu).

These attached objects are also created when such a gadget is added to the
Window, and deleted when the gadget is removed.

A Window object is deleted using SWI Toolbox_DeleteObject. If it has any attached
objects (see above), these are also deleted, unless the non-recursive bit is set for
this SWI.

Showing a Window

When a Window object is displayed on the screen using SWI Toolbox_ShowObject
it has the following behaviour:

The Window’s menu

Each Window object can optionally have attached to it a Menu object. The Window
object holds the unique id of this Menu object.

Show type Position

0 (default) the underlying window is shown at the last place shown
on the screen, or the coordinates given in its template, if
it has not already been shown

1 (full spec) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
R3 + 8 visible area maximum x coordinate
R3 + 12 visible area maximum y coordinate
R3 + 16 scroll x offset relative to work area
R3 + 20 scroll y offset relative to work area
R3 + 24 Wimp window handle of window to open
behind

-1 means top of stack
-2 means bottom of stack
-3 means the window behind the Wimp’s

backwindow

2 (topleft) R3 + 0 visible area minimum x coordinate
R3 + 4 visible area minimum y coordinate
293

Application Program Interface
When a Window is created, if the client has specified the name of a Menu template
for that Window, then a Menu object is created from that template, and the id of
that Menu is held in the Window object. This id will be used to show the Menu
when the user presses the Menu button over the Window.

Whenever the user of the application presses the Menu mouse button over a
Window, the Window class module opens its attached Menu object, by making a
SWI Toolbox_ShowObject passing the attached Menu’s id.

If the application wishes to perform some operations on the Menu before it is
opened (ticking some entries for example), then by setting the appropriate bit in
the Menu’s flags word, the application can request that a special Toolbox event
(Menu_AboutToBeShown) is delivered to it before the Menu is actually shown. The
precise details of this Toolbox event are described in Menu events on page 199. On
receipt of such a Toolbox event, the client application is expected to make any
changes it wants to the Menu object, and then return to its SWI Wimp_Poll loop.

In most cases a Menu is attached to the Window at resource editing time by
entering the name of the template to use for this Window’s Menu. If the application
wishes dynamically to attach and detach the menu for a given Window (maybe
based on a mode of operation which is defined by the application, e.g. display
mode or editing mode), then this can be done using the Window_SetMenu method
described on page 300.

The id of the Menu attached to a Window can be read by using the
Window_GetMenu method.

Window_SetMenu can only be used when a menu is not already being shown for
this Window.

Gadgets in a window

A Window object can optionally contain a number of gadgets. Typically this is used
to create dialogue boxes.

There are many kinds of gadget. The Toolbox provides facilities to allow the client
application to manipulate a particular gadget in a manner which is appropriate to
that gadget, rather than in ‘low-level’ terms like setting the state of a Wimp icon.
The set of gadgets is defined to fit in with the RISC OS Style Guide, and thus to
encourage a standard look and feel across dialogue boxes.

Gadgets are normally specified as part of a Window object template, but they can
be added to and removed from Window’s dynamically at run-time using the
Window_AddGadget and Window_RemoveGadget methods respectively.
294

Window class
Each gadget type defines its own set of methods, and many will have a number of
Toolbox events associated with them. This allows the application to receive
Toolbox events from user actions, rather than having to deal with mouse clicks and
drags on Wimp icons. Much of the low-level Wimp operations are handled
automatically by the Toolbox.

Gadgets are described in Gadgets on page 327.

Keyboard short-cuts

Each Window object can optionally define a set of mappings from Wimp key codes
to Toolbox events. This is particularly useful in allowing the client application to
respond identically to a keystroke or an equivalent menu hit, by giving both the
same Toolbox event. When a given keystroke is returned by the Wimp for the
Window object, the corresponding Toolbox event is raised.

Note that Shift-Ctrl-letter combinations are not allowed.

It is also possible to provide the name of a template for an object which will be
created and shown, when a particular keystroke happens. For example the client
may wish to display a dialogue box when F4 is pressed. If bit 0 of the keyboard
short-cut’s flags word is set, then the object is shown with the ‘Show with Wimp
CreateMenu semantics’ bit set in the R0 passed to Toolbox_ShowObject.

Sets of Keyboard short-cuts will normally be defined by the client application in its
resource file, but they can also be added and removed dynamically using the
Window_AddKeyboardShortcuts (page 305) and
Window_RemoveKeyboardShortcuts (page 306) methods, passing as an argument
an array of mappings.

Pointer shapes

Each Window object can optionally have a pointer shape defined, giving the name
of a sprite to use and its hot spot.

Whenever the Wimp pointer enters this Window, causing a PointerEnteringWindow
event, the Toolbox changes the pointer shape appropriately.

In most cases a pointer shape is attached to the Window at resource editing time
by entering the name of the sprite to be used, and the pointer's hot spot. If the
application wishes dynamically to change the pointer for a given Window (maybe
based on a mode of operation which is defined by the application, e.g. display
mode or editing mode), then this can be done using the Window_SetPointer
method described in Window_SetPointer 5 on page 301.

The name of the sprite used for the Window's pointer shape and its hot spot can be
read by using the Window_GetPointer method described in Window_GetPointer 6 on
page 302.
295

Application Program Interface
Help messages

Each Window object can optionally have attached to it a Help message.

Whenever the Wimp delivers a HelpRequest message to the client application for
this Window, the attached Help message is sent back automatically by the Toolbox.

In most cases a help message is attached to the Window at resource editing time.
A Window’s Help message can be set dynamically using the
Window_SetHelpMessage 7 described on page 303.

The text of the Help message can be read using the Window_GetHelpMessage
method.

Changing a window’s title

One of the attributes of a Window which is specified in the template for that
Window is the text which appears in its title bar.

A Window’s title can be changed dynamically at run-time using the
Window_SetTitle method.

The current title string can be read using the Window_GetTitle method.

Getting and setting a Window’s client handle

The client handle for a Window is set and read using SWI Toolbox_SetClientHandle
and SWI Toolbox_GetClientHandle respectively.

A typical use of this client handle would be to hold a pointer to a data structure
containing the state of a document which is being displayed in this Window in a
multi-document editor.
296

Window class
Window methods

The following methods are all invoked by calling SWI Toolbox_MiscOp with:

R0 holding a flags word
R1 being a Window id
R2 being the method code which distinguishes this method
R3-R9 potentially holding method-specific data

Window_GetWimpHandle 0

On entry

R0 = flags
R1 = Window object id
R2 = 0

On exit

R0 = Wimp window handle for this window

Use

This method returns the handle of the underlying Wimp window used to
implement this Window object.

C veneer

extern _kernel_oserror *window_get_wimp_handle (unsigned int flags,
 ObjectId window,
 int *window_handle
);
297

Window methods
Window_AddGadget 1

On entry

R0 = flags
R1 = Window object id
R2 = 1
R3 = pointer to description block for gadget

On exit

R0 = component id
R1-R9 preserved

Use

This method adds a gadget to the list of gadgets for this Window object. The format
of the description block depends on the type of gadget being added.

If the Window is currently open on the screen, then the gadget will immediately be
visible in the Window.

If the gadget’s component id is specified as -1, then the Toolbox wil allocate an
unused component id.

C veneer

extern _kernel_oserror *window_add_gadget (unsigned int flags,
 ObjectId window,
 const Gadget *gadget,
 ComponentId *gadget_component
);
298

Window class
Window_RemoveGadget 2

On entry

R0 = flags
R1 = Window object id
R2 = 2
R3 = component id

On exit

R1-R9 preserved

Use

This method removes a gadget from a Window object. If the Window is currently
displayed on the screen, then this removal results in a redraw of the Window by the
Toolbox.

C veneer

extern _kernel_oserror *window_remove_gadget (unsigned int flags,
 ObjectId window,
 ComponentId gadget
);
299

Window methods
Window_SetMenu 3

On entry

R0 = flags
R1 = Window object id
R2 = 3
R3 = menu object id

On exit

R1-R9 preserved

Use

This method is used to set the Menu which will be displayed when the Menu
button is pressed over this Window object. The Toolbox handles opening the Menu
for you.

If R3 is 0, then the Menu for this Window is detached.

C veneer

extern _kernel_oserror *window_set_menu (unsigned int flags,
 ObjectId window,
 ObjectId menu_id
);

Window_GetMenu 4

On entry

R0 = flags
R1 = Window object id
R2 = 4

On exit

R0 = Menu id

Use

This method is used to get the id of the Menu which will be displayed when the
Menu button is pressed over this Window object.

C veneer

extern _kernel_oserror *window_get_menu (unsigned int flags,
 ObjectId window,
 ObjectId *menu_id
);
300

Window class
Window_SetPointer 5

On entry

R0 = flags
R1 = Window object id
R2 = 5
R3 = pointer to name of sprite to use for pointer
R4 = x hot spot
R5 = y hot spot

On exit

R1-R9 preserved

Use

This method is used to set the Pointer shape which will be used when the pointer
enters this Window object. The Toolbox handles setting the Wimp Pointer shape
for you.

If R3 is 0, then the Pointer for this Window is detached.

C veneer

extern _kernel_oserror *window_set_pointer (unsigned int flags,
 ObjectId window,
 const char *sprite_name,
 int x_hot_spot,
 int y_hot_spot
);
301

Window methods
Window_GetPointer 6

On entry

R0 = flags
R1 = Window object id
R2 = 6
R3 = pointer to buffer
R4 = size of buffer to hold sprite name
R5 = x hot spot
R6 = y hot spot

On exit

R4 = size of buffer required for sprite name (if R3 was 0)
else buffer pointed at by R3 holds sprite name
R4 holds number of bytes written to buffer

Use

This method is used to get the name of the sprite which will be used when the
pointer enters this Window object, and to get the pointer’s hot spot.

C veneer

extern _kernel_oserror *window_get_pointer (unsigned int flags,
 ObjectId window,
 char *buffer,
 int buff_size,
 int *nbytes,
 int *x_hot_spot,
 int *y_hot_spot
);
302

Window class
Window_SetHelpMessage 7

On entry

R0 = flags
R1 = Window object id
R2 = 7
R3 = pointer to message text

On exit

R1-R9 preserved

Use

This method is used to set the help message which will be returned when a Help
Request message is received for this Window object. The Toolbox handles the reply
message for you.

If R3 is 0, then the Help Message for this Window is removed.

C veneer

extern _kernel_oserror *window_set_help_message (unsigned int flags,
 ObjectId window,
 const char *message_text
);
303

Window methods
Window_GetHelpMessage 8

On entry

R0 = flags
R1 = Window object id
R2 = 8
R3 = pointer to buffer
R4 = size of buffer to hold message text

On exit

R4 = size of buffer required for message text (if R3 was 0)
else Buffer pointed at by R3 holds message text
R4 holds number of bytes written to buffer

Use

This method is used to read the help message which will be returned when a Help
Request message is received for this Window object.

C veneer

extern _kernel_oserror *window_get_help_message (unsigned int flags,
 ObjectId window,
 char *buffer,
 int buff_len,
 int *nbytes
);
304

Window class
Window_AddKeyboardShortcuts 9

On entry

R0 = flags
R1 = Window object id
R2 = 9
R3 = number of short-cuts to add
R4 = pointer to memory block containing an array of description blocks for the

keyboard short-cuts. Each block is laid out in memory as described in
Window templates on page 319

On exit

R1-R9 preserved

Use

This method adds a number of keyboard short-cuts to the list of keyboard
short-cuts for this Window object. When a Key Pressed event is received for this
Window, the given Toolbox event is raised as the next Wimp event for the client
application.

If any of the keyboard short-cuts are already defined for this Window, then they are
replaced by the new short-cuts.

C veneer

extern _kernel_oserror *window_add_keyboard_shortcuts (unsigned int flags,
 ObjectId window,
 int no_shortcuts,
 const KeyboardShortcut *sc
);
305

Window methods
Window_RemoveKeyboardShortcuts 10

On entry

R0 = flags
R1 = Window object id
R2 = 10
R3 = -1 means remove all keyboard short-cuts

or R3 = number of short-cuts to remove
R4 = pointer to an array of key short-cuts to be removed

(number given in R3)

On exit

R1-R9 preserved

Use

This method removes a number of keyboard short-cuts which have been
associated with this Window using the Window_AddKeyboardShortcuts method.

C veneer

extern _kernel_oserror *window_remove_keyboard_shortcuts (unsigned int flags,
 ObjectId window,
 int no_remove,
 const KeyboardShortcut *sc
);
306

Window class
Window_SetTitle 11

On entry

R0 = flags
R1 = Window object id
R2 = 11
R3 = pointer to new text for title bar

On exit

R1-R9 preserved

Use

This method changes the text in a Window’s title bar. If the string is too long for the
title bar’s buffer, an error is returned.

C veneer

extern _kernel_oserror *window_set_title (unsigned int flags,
 ObjectId window,
 const char *title
);
307

Window methods
Window_GetTitle 12

On entry

R0 = flags
R1 = Window object id
R2 = 12
R3 = pointer to buffer to hold title text (or 0)
R4 = size of buffer

On exit

R4 = size of buffer required (if R3 was 0)
else Buffer pointed at by R3 holds title text
R4 holds number of bytes written to buffer

Use

This method returns the string currently used in a Window’s title bar.

C veneer

extern _kernel_oserror *window_get_title (unsigned int flags,
 ObjectId window,
 char *buffer,
 int buff_size,
 int *nbytes
);
308

Window class
Window_SetDefaultFocus 13

On entry

R0 = flags
R1 = Window object id
R2 = 13
R3 = component id

On exit

R1-R9 preserved

Use

This method sets the default focus component for a window. As with the template,
a value of -1 means no default focus, and -2 means put the focus in the window.

Note that this sets the default, i.e. only takes effect when next shown.

C veneer

extern _kernel_oserror *window_set_default_focus (unsigned int flags,
 ObjectId window,
 ComponentId focus
);

Window_GetDefaultFocus 14

On entry

R0 = flags
R1 = Window object id
R2 = 14

On exit

R0 = component id
R1-R9 preserved

Use

This method returns the default focus component of a window.

C veneer

extern _kernel_oserror *window_get_default_focus (unsigned int flags,
 ObjectId window,
 ComponentId *focus
);
309

Window methods
Window_SetExtent 15

On entry

R0 = flags
R1 = Window object id
R2 = 15
R3 = pointer to extent bounding box:

+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum x coordinate
+12maximum y coordinate

On exit

R1-R9 preserved

Use

This method changes the extent of the underlying Wimp window.

C veneer

extern _kernel_oserror *window_set_extent (unsigned int flags,
 ObjectId window,
 const BBox *extent
);
310

Window class
Window_GetExtent 16

On entry

R0 = flags
R1 = Window object id
R2 = 16
R3 = pointer to four word block to hold extent

On exit

R1-R9 preserved and block pointed to by R3 updated:
+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum x coordinate
+12 maximum y coordinate

Use

This method returns the extent of the underlying Wimp window.

C veneer

extern _kernel_oserror *window_get_extent (unsigned int flags,
 ObjectId window,
 BBox *extent
);
311

Window methods
Window_ForceRedraw 17

On entry

R0 = flags
R1 = Window object id
R2 = 17
R3 = pointer to area to redraw:

+0 minimum x coordinate
+4 minimum y coordinate
+8 maximum x coordinate
+12maximum y coordinate

On exit

R1-R9 preserved

Use

This method forces a redraw on the area of the window given by the work area
coordinates pointed to by R3.

C veneer

extern _kernel_oserror *window_force_redraw (unsigned int flags,
 ObjectId window,
 const BBox *redraw_box
);
312

Window class
Window_SetToolBars 18

On entry

R0 = mask
bit 0 set means set internal bl toolbar
bit 1 set means set internal tl toolbar
bit 2 set means set external bl toolbar
bit 3 set means set external tl toolbar

R3 = object id of internal bl toolbar
R4 = object id of internal tl toolbar
R5 = object id of external bl toolbar
R6 = object id of external tl toolbar

Use

This method sets the object ids of the toolbars that are attached to a particular
window object. If the object is showing then the new toolbars will be shown, and
any toolbars of the same type will be hidden (it is not possible to have more than
one toolbar of each type). The mask allows selective setting of toolbars.

Passing an Id of zero means that there is no toolbar of that type.

C veneer

extern _kernel_oserror *window_set_tool_bars (unsigned int flags,
 ObjectId window,
 ObjectId ibl,
 ObjectId itl,
 ObjectId ebl,
 ObjectId etl
);
313

Window methods
Window_GetToolBars 19

On entry

R0 = mask
bit 0 set means return internal bl toolbar
bit 1 set means return internal tl toolbar
bit 2 set means return external bl toolbar
bit 3 set means return external tl toolbar

On exit

R0 = object id of internal bl toolbar
R1 = object id of internal tl toolbar
R2 = object id of external bl toolbar
R3 = object id of external tl toolbar

Use

This method returns the object ids of the toolbars that are attached to a window
object. By setting the mask it is possible to control which ids are returned.

C veneer

extern _kernel_oserror *window_get_tool_bars (unsigned int flags,
 ObjectId window,
 ObjectId *ibl,
 ObjectId *itl,
 ObjectId *ebl,
 ObjectId *etl
);
314

Window class
Other SWIs

SWI Window_GetPointerInfo (0x82883)

On entry

R0 = flags

On exit

R0 = x position
R1 = y position
R2 = buttons

bit set
0 adjust
1 menu
2 select
8 not over a toolbox window

R3 = Window id, or Wimp window handle if bit 8 set in R2
R4 = component id, or icon handle if bit 8 of R2 set

Use

This SWI is analogous to Wimp_GetPointerInfo, but returns Object ids and
Component ids if the pointer is over a toolbox window.

C veneer

extern _kernel_oserror *window_get_pointer_info (unsigned int flags,
 int *x_pos,
 int *y_pos,
 int *buttons,
 ObjectId *window,
 ComponentId *component
);
315

Other SWIs
SWI Window_WimpToToolbox (0x82884)

On entry

R0 = flags
R1 = Wimp window handle
R2 = icon handle

On exit

R0 = toolbox object handle for window
R1 = component id

Use

This SWI returns the object handle and component id that contains the specified
icon.

If the Wimp handle is not known by the toolbox, then the returned object id is 0.

Note that this only applies to Window objects.

C veneer

extern _kernel_oserror *window_wimp_to_toolbox (unsigned int flags,
 int window_handle,
 int icon_handle,
 ObjectId *object,
 ComponentId *component
);
316

Window class
SWI Window_ExtractGadgetInfo (0x828be)

On entry

R0 = flags
R1 = pointer to an object template
R2 = component id to match

On exit

R0 = pointer to Gadget
R1 = size of gadget

Use

This SWI returns a pointer to a block of memory suitable for passing to
Window_AddGadget. It is typically used in conjunction with
Toolbox_TemplateLookup and intended to be used for dynamic windows such as
the Print dialogue box, or a task manager type application.

Note that the returned area should be copied as it cannot be guaranteed to persist
for the duration of the task.

See Implementing hotspots on page 57 for an example of using this SWI.

C veneer

extern _kernel_oserror *window_extract_gadget_info (unsigned int flags,
 const ObjectTemplateHeader *tmpl,
 ComponentId gadget,
 void **desc,
 int *size
);
317

Window events
Window events

The Window class generates the following Toolbox events:

Window_AboutToBeShown (0x82880)

Block

+ 8 0x82880
+ 12 flags (as passed in to Toolbox_ShowObject)
+ 16 value as passed in R2 to ToolBox_ShowObject
+ 20... block as passed in R3 to ToolBox_ShowObject

Use

This Toolbox event is raised by the Toolbox when Toolbox_ShowObject is called on
a Window which has the appropriate bit set in its template flags word. It enables a
client application to set any appropriate attributes of the Window, before it
appears on the screen.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int show_type;
 union
 {
 TopLeft top_left;
 WindowShowObjectBlock full_spec;
 } info;
} WindowAboutToBeShownEvent;
318

Window class
Window_HasBeenHidden (0x82890)

Block

+ 8 0x82890

Use

This Toolbox event is raised by the Toolbox when Toolbox_HideObject is called on
a Window which has the appropriate bit set in its template flags word. It enables a
client application to clear up after a window has been closed. It is also raised when
clicking a non-local action button or clicking outside a window that was opened
with 'CreateMenu' semantics.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} WindowHasBeenHiddenEvent;

Window templates

The layout of a Window template is shown below. Fields which have types
MsgReference and StringReference are those which will require relocation when
they are loaded from a resource file. If the template is being constructed in
memory, then these fields should be real pointers (i.e. they do not require
relocation). Note that the version in the object header should be 102.

For more details on relocation, see appendix Resource File Formats on page 505.

Field Size in bytes Type

flags 4 word

help_message 4 MsgReference

max_help 4 word

pointer_shape 4 StringReference

max_pointer_shape 4 word

pointer_x_hot 4 word

pointer_y_hot 4 word

menu 4 StringReference

num_keyboard_shortcuts 4 word

keyboard_shortcuts 4 ObjectOffset

num_gadgets 4 word

gadgets 4 ObjectOffset
319

Window templates
default_focus 4 word

show_event 4 word

internal_bl 4 StringReference

internal_tl 4 StringReference

external_bl 4 StringReference

external_tl 4 StringReference

hide_event 4 word

window 88 WimpWindow

data variable array of bytes

Field Size in bytes Type
320

Window class
A WimpWindow is an 88-byte structure with the following fields:

Keyboard short-cut

Field Size in bytes Type

vis_xmin 4 word

vis_ymin 4 word

vis_xmax 4 word

vis_ymax 4 word

scroll_x 4 word

scroll_y 4 word

behind 4 word

window_flags 4 word

title_fore 1 byte

title_back 1 byte

work_fore 1 byte

work_back 1 byte

scroll_outer 1 byte

scroll_inner 1 byte

title_inputfocus 1 byte

filler 1 byte (must be 0)

work_xmin 4 word

work_ymin 4 word

work_xmax 4 word

work_ymax 4 word

title_flags 4 word

button_type 4 word

sprite_area 4 SpriteAreaReference

min_width 2 half-word

min_height 2 half-word

title_text 4 MsgReference

title_validation 4 StringReference

title_buflen 4 word

num_icons 4 word (must be zero)

Field Size in bytes Type

flags 4 word

wimp_key_code 4 word
321

Window Wimp event handling
Gadget

Window Wimp event handling

Certain Wimp events for a Window are handled by the Window class, and either
acted upon for you, or result in the raising of a Toolbox event. Such events are
listed below:

key_event 4 word

key_show 4 StringReference

Field Size in bytes Type

flags 4 word

type/size 4 word

xmin 4 word

ymin 4 word

xmax 4 word

ymax 4 word

component_id 4 word

help_text 4 MsgReference

 max_help 4 word

data variable array of bytes

Wimp event Action

Open Window Request if the ‘auto-open’ bit is set for this Window
object, then Toolbox_ShowObject is called for
this Window

Close Window Request if the ‘auto-close’ bit is set for this Window
object, then Toolbox_HideObject is called for
this Window

Pointer Leaving Window if there is a pointer shape defined for this
Window, then the pointer is set back to its
default shape

Pointer Entering Window if there is a pointer shape defined for this
Window, then the pointer is set to that shape

Mouse Click if the Menu button has been pressed, and
there is a Menu object attached to this
Window, then the Menu is shown using
Toolbox_ShowObject

Field Size in bytes Type
322

Window class
Key Pressed if a keyboard short-cut for the given Wimp key
code is attached to this Window, then its
Toolbox event is raised as the next Wimp
event for the client application

User Msg Message_HelpRequest

if a help message is attached to this Window,
then a reply is sent on the application’s behalf

Wimp event Action
323

Toolbars
Toolbars

Toolbars are attachments to windows, and are used mainly as tool boxes and
status lines. They cannot exist purely by themselves. By using the toolbars
supplied by the Window module, applications will have a consistent mechanism
for displaying/accessing such functionality. It is not intended that they be used for
anything beyond this.

User interface

A toolbar is a restricted window object – it cannot have any window furniture (such
as a title bar), nor does it have an absolute position when shown on the screen. It
is anchored either to the bottom left or to the top left of the parent's visible area;
i.e. it does not move or scroll when the parent scrolls its work area.

A toolbar can be considered to be either internal (in which case its size will be
clipped when the parent resizes) or external (i.e. lying entirely outside the parent's
visible area). On moving a window with an external toolbar close to the extremities
of the screen, the bar will 'bounce' over the window until the window itself moves
off screen.

internal bottom left

internal top left

external bottom left

external top left
324

Window class
Toolbars are displayed in a definite order:

● external toolbars will always be displayed above internal ones

● top left toolbars will always be displayed above bottom left ones.

Usually, this will only be noticed when reducing the size of a window.

For example, when moving a window to the left of the screen, the external toolbar
will be displayed above any toolbar inside the window.

Use of toolbars

Application tool box

It is anticipated that the top left variety of toolbars will be used as application tool
boxes, i.e. they will consist of gadgets that are used to control the behaviour of the
application. The decision as to whether an internal or external one is used would
typically depend on the number of ‘tools’ that are required.

Status lines

Internal bottom left toolbars are usually for status lines. For example:

The data is loading, 50% complete

and external bottom left toolbars for toolboxes that require width (e.g. because
they contain a writable) but are unlikely to be as wide as the work area (in which
case they would leave an irregular work space).

Note that if a toolbar contains a non-local action button then clicking on it will
hide that toolbar.

Application program interface

Attributes

Toolbar object attributes are described in the window attributes section on
page 290.

Note that a toolbar should not have toolbars itself.
325

Toolbar methods
Manipulating a toolbar

Creating and deleting a toolbar object

Toolbar objects are created and deleted using the standard Toolbox_CreateObject
and Toolbox_DeleteObject methods.

Showing and Hiding

A toolbar can only be shown whilst its parent is showing. The only defined show
type is ShowAsDefault. This will make the window module show the toolbar in the
place appropriate for its type. It is possible to hide a toolbar without hiding its
parent. If a toolbar is hidden, then this is 'remembered' such that hiding then
showing the parent will result in the toolbar still being hidden.

When a toolbar object is displayed on the screen using SWI Toolbox_ShowObject it
behaves in the same way as shown in User interface on page 324.

Toolbar methods

Toolbars use the same methods as windows (see Window methods on page 297).
However, the behaviour of the following methods are undefined:

Window_SetTitle
Window_GetTitle
Window_SetToolBars
Window_GetToolBars
Window_AddKeyboardShortcuts
Window_RemoveKeyboardShortcuts

Getting and setting the toolbars associated with a window object are described in
Window_GetToolBars 19 on page 314 and Window_SetToolBars 18 on page 313.

Normally this would be done using ResEd.
326

Window class
Gadgets

Application Program Interface

Gadgets are not objects in their own right, but exist only as a component of a
Window object. Within that object they have unique component ids.

A gadget is essentially a part of a Window which provides functionality (for
example, a button or a slider), and is usually implemented using Wimp icons. The
use of icons is transparent to the client, who manipulates the gadgets using
higher-level, abstract methods which are appropriate to the particular gadget type.

Wherever a gadget is implemented as a set of Wimp icons, the client can access
these using low-level Wimp SWIs, but in the vast majority of cases this should not
prove necessary.

Some gadgets are 'Composite' in that they consist of gadgets themselves. These
are identifiable by the client as they have a NULL icon list. The client will receive
toolbox events on both the composite gadget and the gadgets that make them up,
but will generally only be interested in the former. Certain gadgets have methods
for accessing the component ids of the gadgets that make them up, e.g.
NumberRange_GetComponents.

Some gadgets support anti-aliased fonts in place of the system font (which may
itself be an outline font on RISC OS 3 (version 3.5) and later. When this is the case,
the Window module handles mode changes and losing fonts on the client's behalf.

The window module reserves all component ids greater than 0xffffff. Standard
dialogues use the range 0x800000 to 0xffffff, leaving 0 to 0x7fffff free for the client.

There are many kinds of gadget. The Toolbox provides facilities to allow the client
application to manipulate a particular gadget in a manner which is appropriate to
that gadget, rather than in ‘low-level’ terms like setting the state of a Wimp icon.
The set of gadgets is defined to fit in with the RISC OS Style Guide, and thus to
encourage a standard look and feel across dialogue boxes.

The available set of gadgets is currently:

Gadget See page

Action buttons 341

Adjuster arrows 350

Button gadget 351

Display fields 358

Draggable gadgets 361

Labels 369
327

Application Program Interface
Attributes

All gadgets have the following attributes which are specified in a window template,
and most can be manipulated at run-time by the client application:

Labelled boxes 370

Number ranges 371

Option buttons 379

Pop-up menus 386

Radio buttons 390

Sliders 399

String sets 407

Writable fields 416

Attribute Description

flags word Bit Meaning

30 when set, gadget is at the back, i.e. created first

31 when set, gadget is ‘faded’

type/size this holds the size of the gadget’s template (including
its header) in its top two bytes, and the type of the
gadget in its lower two bytes. The list of currently
known gadget types is given below.

xmin the minimum x coordinate of the gadget’s bounding
box (in window work area coordinates).

ymin the minimum y coordinate of the gadget’s bounding
box (in window work area coordinates).

xmax the maximum x coordinate of the gadget’s bounding
box (in window work area coordinates).

ymax the maximum y coordinate of the gadget’s bounding
box (in window work area coordinates).

component id this identifies the gadget uniquely within this Window

help message when a HelpRequest message is received for this
gadget, then this string is sent back in a HelpReply
message. If 0, then the help message for the Window
will be sent.

 max help maximum length in bytes of the gadget’s help
message.

Gadget See page
328

Window class
Note that for the gadgets listed below, the size is 'built in' to the Window module,
and so the size can be set to zero though gadgets.h defines gadget_Type which
includes the size.

The type of a gadget is one of:

Manipulating a Gadget

Each gadget type defines its own set of methods, and many will have a number of
Toolbox events associated with them. This allows the application to receive
Toolbox events from user actions, rather than having to deal with mouse clicks and
drags on Wimp icons. Most of the low-level Wimp operations are handled
automatically by the Toolbox.

Normally all of the gadgets in a particular Window object will be specified in the
template for that Window in the resource file, but the Toolbox provides two
methods for adding and removing gadgets from a Window object dynamically,
namely Window_AddGadget and Window_RemoveGadget.

All gadgets have standard attributes, which give the gadget’s component id in this
Window, the gadget’s bounding box, and the help message to be associated with
this gadget. These attributes are normally specified in the application’s resource
file; the Help messages can be changed and read using the methods
Gadget_SetHelpMessage/Gadget_GetHelpMessage. Sending back a help message
is automatically handled by the Toolbox.

Gadget type Type field

Action Button 128

Option Button 192

Labelled Box 256

Label 320

Radio Button 384

Display Field 448

Writable Field 512

Slider 576

Draggable 640

PopUp Menu 704

Adjuster Arrow 768

Number Range 832

String Set 896

Button 960
329

Application Program Interface
Each gadget has a flags word which defines the behaviour of that gadget; the exact
list of bit settings in this flags word depends on the type of gadget. The client can
read and set this word using the Gadget_GetFlags and Gadget_SetFlags methods.
The top 8 bits of this flags word are generic flags of relevance to all gadgets. The
other 24 bits are used to hold Gadget-specific flags. Currently the defined generic
flags are:

There is a gadget method which returns a list of Wimp icon numbers for the icons
used to implement the gadget. The details of this list and the way in which icon
numbers map to the individual components of the gadget are specific to each
gadget, and this mapping is documented below for each gadget type. The method
is called Gadget_GetIconList.

This is implementation specific and subject to change in future releases of the
window module:

Bit Meaning when set

30 Gadget is at the back, i.e. created first

31 Gadget is ‘faded’

Gadget type Number of icon
numbers returned

Icon list

action button 1 the icon for the action button

option button 2 the icon for the sprite
the icon for the text

labelled box 2 the icon for the label
the icon for the box

label 1 the icon for the label

radio button 2 the icon for the sprite
the icon for the text

display field 1 the icon for the display field

writable field 1 the icon for the writable field

slider 3 the icon for the ‘well’
the icon for the ‘background’
the icon for the ‘bar’

draggable 1 the icon for the draggable

pop-up menu 1 the icon for the PopUp’s button

adjuster arrow 1 the icon for the arrow

number range 0 composite

string set 0 composite

button 1
330

Window class
Composite gadgets have specific methods to get the component ids of their
constituent gadgets. In this way run time methods (e.g. the colour of a slider in a
number range) may be applied to the underlying gadgets. It is unlikely however
that this will be particularly useful and could in fact affect the behaviour of the
toolbox.
331

Generic gadget methods
Generic gadget methods

In all of the methods on gadgets

R0 is used as a flags word
R1 holds the object id of this gadget’s parent Window object
R2 holds the method code
R3 holds the component id for this gadget
R4-R9 potentially holding method-specific data

The following methods can be applied to all gadgets.

Gadget_GetFlags 64

On entry

R0 = 0
R1 = Window object id
R2 = 64
R3 = Gadget component id

On exit

R0 = flags settings for this gadget

Use

This method returns the flags word for the given gadget.

C veneer

extern _kernel_oserror *gadget_get_flags (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 unsigned int *flags_settings
);
332

Window class
Gadget_SetFlags 65

On entry

R1 = Window object id
R2 = 65
R3 = Gadget component id
R4 = new flags settings

On exit

R1-R9 preserved

Use

This method sets the flags word for the given gadget. The only flags that can
usefully be changed are the faded bits. Modifying other bits is undefined.

C veneer

extern _kernel_oserror *gadget_set_flags (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 unsigned int new_flags_settings
);
333

Generic gadget methods
Gadget_SetHelpMessage 66

On entry

R0 = flags
R1 = Window object id
R2 = 66
R3 = Gadget component id
R4 = pointer to help message text

On exit

R1-R9 preserved

Use

This method sets the help message which will be returned, when a help request is
received for this gadget.

C veneer

extern _kernel_oserror *gadget_set_help_message (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 const char *message_text
);
334

Window class
Gadget_GetHelpMessage 67

On entry

R0 = flags
R1 = Window object id
R2 = 67
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold help text (if R4 was 0)
else buffer pointed at by R4 holds help text
R5 gives number of bytes written to buffer

Use

This method returns the help message which will be returned, when a help request
is received for this gadget.

C veneer

extern _kernel_oserror *gadget_get_help_message (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 char *buffer,
 int buff_size,
 int *nbytes
);
335

Generic gadget methods
Gadget_GetIconList 68

On entry

R0 = flags
R1 = Window object id
R2 = 68
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold icon list (if R4 was 0)
else buffer pointed at by R4 holds list of Wimp icon numbers for this gadget
R5 holds number of bytes written to buffer

Use

This method returns a list of Wimp icon numbers (integers) for the icons used to
implement this gadget. For a composite gadget the size returned will be zero.

C veneer

extern _kernel_oserror *gadget_get_icon_list (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 int *buffer,
 int buff_size,
 int *nbytes
);

The client should not cache the results of this call, since these values may change
at a later date.
336

Window class
Gadget_SetFocus 69

On entry

R0 = flags

On exit

R1-R9 preserved

Use

This method sets the input focus to the given component of a window. Note that
such a component must be a writable field, or a composite gadget which includes
a writable field such as a number range.

C veneer

extern _kernel_oserror *gadget_set_focus (unsigned int flags,
 ObjectId window,
 ComponentId component
);

Gadget_GetType 70

On entry

R0 = 0
R1 = Window object id
R2 = 70
R3 = Gadget component id

On exit

R0 = type of this Gadget

Use

Usage:

This method returns the type of the given gadget.

C veneer

extern _kernel_oserror *gadget_get_type (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 int *type
);
337

Generic gadget methods
Gadget_MoveGadget 71

On entry

R0 = flags
R1 = Window object id
R2 = 71
R3 = Gadget component id
R4 = pointer to new bounding box

On exit

R1-R9 preserved

Use

This method moves an already created gadget within a window. Note that as a new
bounding box is given, it allows the gadget to be resized as well, though the exact
behaviour of this feature will depend on the gadget type.

C veneer

extern _kernel_oserror *gadget_move_gadget (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 const BBox *new_bbox
);
338

Window class
Gadget_GetBBox 72

On entry

R0 = flags
R1 = Window object id
R2 = 72
R3 = Gadget component id
R4 = pointer to 4 word buffer

On exit

R1-R9 preserved

Use

This method copies the bounding box of a gadget into the supplied buffer.

C veneer

extern _kernel_oserror *gadget_get_bbox (unsigned int flags,
 ObjectId window,
 ComponentId gadget,
 BBox *box
);
339

Gadget Wimp event handling
Gadget Wimp event handling

Wimp event Action

Mouse Click if Select or Adjust on an action button, option button or
radio button member, then if a Toolbox event is
associated with this event, it is raised. Otherwise the
appropriate default Toolbox event is raised.

if on a pop-up menu button, then the associated Menu
is shown.

if on a draggable then a
Draggable_Click/Draggable_DoubleClick is reported.

Key Pressed This depends on the type of gadget.

For a writable field, if the keystroke is a down or up
arrow, then the caret is placed in the next or previous
writable field (using the field’s ‘before’ and ‘after’
values).

If return is pressed, then the Default action button is
activated (if present).

User Message Message_HelpRequest

if a help message is attached to the gadget, then a reply
is sent on the application’s behalf.
340

Window class
Action buttons

An action button is normally used to invoke an operation which is available from a
dialogue box (e.g. a Cancel button or an OK button):

Such a gadget contains a text string, which is specified when the gadget is created.

The above attributes can be set and read using the methods

ActionButton_SetText / ActionButton_GetText

Whenever the user clicks the Select or Adjust buttons on an action button an
ActionButton_Selected event is raised with the flags word indicating which mouse
button was used. The client can supply an alternative Toolbox event code in the
template description for the action button, and can set and read this event code at
run-time using the ActionButton_SetEvent and ActionButton_GetEvent methods.

The client can also specify an object which is to be shown when the action button
is clicked on using the Select or Adjust buttons. The name of this object can be
given in the action button template or manipulated at run-time using the
ActionButton_SetClickShow and ActionButton_GetClickShow methods.

In a dialogue box, one action button can be chosen as the Default action button.
This button is displayed with a distinctive border, and is activated when Return is
pressed. An action button is marked as Default by setting a bit in the flags word for
the gadget.

One action button can also be marked as the Cancel action button, by setting a bit
in its flags word. This action button is also activated when its parent dialogue box
has the input focus, and the user presses Escape.

By default, when an action button is clicked using Select, its parent dialogue box is
closed. This behaviour can be over-ridden by setting a bit in the action button’s
flags word, to indicate that it is a ‘local’ button, whose effect is only to raise its
associated Toolbox event. This facility is generally used for buttons which only
have a local effect on the state of the dialogue box itself (e.g. a Try button in a font
selector).

action buttons
341

Action buttons
Clicking Adjust on an action button, raises its Toolbox event and keeps its parent
dialogue box open (if it is marked as a Cancel action button, then the contents of
any Gadgets are returned to how they were when the parent window was last
shown). The Toolbox does not do this for you.

Bits in the flags word for an action button have the following meaning:

Action button methods

ActionButton_SetText 128

On entry

R0 = flags
R1 = Window object id
R2 = 128
R3 = Gadget component id
R4 = pointer to text to appear in button

On exit

R1-R9 preserved

Use

This method sets the text which will be displayed in this action button.

C veneer

extern _kernel_oserror *actionbutton_set_text (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 const char *text
);

Bit Meaning

0 this is the Default action button

1 this is the Cancel action button

2 this is a local action button

3 if set, then the ‘click show’ object will be
shown transiently (i.e. with
Wimp_CreateMenu semantics – default is to
show persistently)
342

Window class
ActionButton_GetText 129

On entry

R0 = flags
R1 = Window object id
R2 = 129
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold text (if R4 was 0)
else buffer pointed at by R4 holds text
R5 holds number of bytes written to buffer

Use

This method returns the text which is currently displayed in this action button.

C veneer

extern _kernel_oserror *actionbutton_get_text (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 char *buffer,
 int buff_size,
 int *nbytes
);
343

Action buttons
ActionButton_SetEvent 130

On entry

R0 = flags
R1 = Window object id
R2 = 130
R3 = Gadget component id
R4 = Toolbox event code

On exit

R1-R9 preserved

Use

This method sets the Toolbox event code which will be raised when this action
button is clicked. The rest of the Toolbox event block remains the same as in
ActionButton_Selected.

C veneer

extern _kernel_oserror *actionbutton_set_event (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 int event
);
344

Window class
ActionButton_GetEvent 131

On entry

R0 = flags
R1 = Window object id
R2 = 131
R3 = Gadget component id

On exit

R0 holds Toolbox event code

Use

This method returns the Toolbox event code which will be raised when this action
button is clicked.

C veneer

extern _kernel_oserror *actionbutton_get_event (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 int *event
);
345

Action buttons
ActionButton_SetClickShow 132

On entry

R0 = flags
R1 = Window object id
R2 = 132
R3 = Gadget component id
R4 = object id of the object to show (or 0)
R5 = show flags

bit 0: if clear show persistently, if set show transiently
bit 1: if set show centred
bit 2: if set show at pointer

On exit

R1-R9 preserved

Use

This method allows the client to specify the object to show when the user clicks
Select or Adjust on the action button. By setting bit 0 of R5 it is possible to control
whether the show is persistent or not. Bits 1 and 2 of R5 can be used to control
where the object is shown.

If R4 is 0, then no object should be shown.

C veneer

extern _kernel_oserror *actionbutton_set_click_show (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 ObjectId object,
 unsigned int show_flags
);
346

Window class
ActionButton_GetClickShow 133

On entry

R0 = flags
R1 = Window object id
R2 = 133
R3 = Gadget component id

On exit

R0 = id of object to be shown
R1 = show flags

bit 0: if clear show persistently, if set show transiently
bit 1: if set show centred
bit 2: if set show at pointer

Use

This method returns the object id of the object which will be shown when the user
clicks Select or Adjust on the action button. If bit 0 of R1 is set on exit, it means
that the object will be shown transiently. If bit 1 of R1 is set, the object will be
shown centred and if bit 2 is set it will be shown at the pointer.

C veneer

extern _kernel_oserror *actionbutton_get_click_show (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 ObjectId *object,
 unsigned int * show_flags
);
347

Action buttons
ActionButton_SetFont 134

On entry

R0 = flags
R1 = Window object id
R2 = 134
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the action button use an anti-aliased font. If the font name is
NULL, then the button will use system font.

C veneer

extern _kernel_oserror *actionbutton_set_font (unsigned int flags,
 ObjectId window,
 ComponentId action_button,
 const char *font_name,
 unsigned int width,
 unsigned int height
);
348

Window class
Action button Toolbox events

ActionButton_Selected (0x82881)

Block

+ 8 0x82881
+ 12 flags

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was held down
bit 1 reserved
bit 2 set means Select was held down
If bits 0-2 are all 0, then Return was pressed on a default action
button, or Escape was pressed activating the cancel action button.

bits 3, 4 and 5 indicate what type of button it is:
bit 3 set means that this is a Default action button
bit 4 set means that this is a Cancel action button
bit 5 set means that this is a local action button (i.e its parent window

has not been closed)

Use

This Toolbox event is raised when the user clicks on an action button (or in the
case of a default action button presses Return), and the client has not specified
their own event to be associated with this button (by setting the event in the
template to non-zero).

The returned flags word indicates whether the action button is a default and/or a
cancel button, and also which mouse button was used to select the button.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} ActionButtonSelectedEvent;

Action button templates

Field Size in bytes Type

text 4 MsgReference

max_text_len 4 word

click_show 4 StringReference

event 4 word
349

Adjuster arrows
Adjuster arrows

An adjuster arrow gadget will be displayed as an up, down, left or right arrow icon,
and clicking on the arrow will raise an Adjuster_Clicked Toolbox event, with an
indication of whether the change is up or down:

The adjuster arrow’s flags word indicates whether the adjuster is an incrementor or
decrementor. There is also a bit to indicate whether this is part of an ‘up/down’ or
‘left/right’ pair.

Bits in the flags word for an adjuster arrow have the following meaning:

Adjuster arrows Toolbox events

Adjuster_Clicked (0x8288c)

Block

+ 8 0x8288c
+ 16 (0  down, 1  up)

Use

This Toolbox event is raised when the user clicks the mouse on an adjuster arrow
(Adjust clicks on a down arrow are reported as ‘up’, on an up arrow as ‘down’).

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int direction;
} AdjusterClickedEvent;

Adjuster arrow templates

There are no extra fields than those in the gadget header.

Bit Meaning

0 set  ‘increment’
clear  ‘decrement’

1 set  one of an ‘up/down’ pair
clear one of a ‘left/right’ pair

adjuster arrows
350

Window class
Button gadget

The Button gadget is similar to a Wimp icon. The main differences are that a
Button will always have indirected data and that not all icon flags are settable:

● A Button created as sprite only cannot be made into any sort of text Button.

● A Button created as text only cannot be made into a sprite only Button.

● A sprite only Button can only refer to sprites by name and these must be in the
Wimp sprite pool or the task’s sprite area.

Bits in the flags word for a Button gadget have the following meanings:

Button methods

Button_GetFlags 960

On entry

R0 = flags
R1 = Window object id
R2 = 960
R3 = Gadget component id

On exit

R0 = icon flags
R1-R9 preserved

Use

This method returns the flags of the given button gadget. The bits have the same
meaning as those of a Wimp Icon.

C veneer

extern _kernel_oserror *button_get_flags (unsigned int flags,
 ObjectId window,
 ComponentId button,
 int *icon_flags
);

Bit Meaning

0 Use the task's sprite area (requires the window to have client
sprite area) for sprite only buttons else use the Wimp sprite
pool

1 return menu clicks
351

Button gadget
Button_SetFlags 961

On entry

R0 = flags
R1 = Window object id
R2 = 961
R3 = Gadget component id
R4 = clear word
R5 = EOR word

On exit

R1-R9 preserved

Use

This method sets the flags of a button. The effect of the clear word and the EOR
word are analogous to those of Wimp_SetIconState, except that, as described
above, not all combinations are settable.

C veneer

extern _kernel_oserror *button_set_flags (unsigned int flags,
 ObjectId window,
 ComponentId button,
 int clear_word,
 int EOR_word
);
352

Window class
Button_SetValue 962

On entry

R0 = flags
R1 = Window object id
R2 = 962
R3 = Gadget component id
R4 = new value

On exit

R1-R9 preserved

Use

This method sets the value (i.e. text or sprite name) of a Button.

C veneer

extern _kernel_oserror *button_set_value (unsigned int flags,
 ObjectId window,
 ComponentId button,
 const char *value
);
353

Button gadget
Button_GetValue 963

On entry

R0 = flags
R1 = Window object id
R2 = 963
R3 = Gadget component id
R4 = pointer to buffer to hold string
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds string
R5 holds number of bytes written to buffer

Use

This method returns the value of a Button.

C veneer

extern _kernel_oserror *button_get_value (unsigned int flags,
 ObjectId window,
 ComponentId button,
 char *buffer,
 int buff_size,
 int *nbytes
);
354

Window class
Button_SetValidation 964

On entry

R0 = flags
R1 = Window object id
R2 = 964
R3 = Gadget component id
R4 = new value

On exit

R1-R9 preserved

Use

This method sets the validation string (e.g. sprite name) of a Button.

C veneer

extern _kernel_oserror *button_set_validation (unsigned int flags,
 ObjectId window,
 ComponentId button,
 const char *value
);
355

Button gadget
Button_GetValidation 965

On entry

R0 = flags
R1 = Window object id
R2 = 965
R3 = Gadget component id
R4 = pointer to buffer to hold string
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds string
R5 holds number of bytes written to buffer

Use

This method returns the validation string of a Button.

C veneer

extern _kernel_oserror *button_get_validation (unsigned int flags,
 ObjectId window,
 ComponentId button,
 char *buffer,
 int buff_size,
 int *nbytes
);
356

Window class
Button_SetFont 966

On entry

R0 = flags
R1 = Window object id
R2 = 966
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the Button use an anti-aliased font. If the font name is NULL,
then the Button will use system font.

C veneer

extern _kernel_oserror *button_set_font (unsigned int flags,
 ObjectId window,
 ComponentId button,
 const char *font_name,
 int width,
 int height
);

Button toolbox events

The button gadget does not have any toolbox events. All click or key presses are
returned as Wimp events but with the component and window id of the tasks
id block updated.

Button templates

Field Size in bytes Type

button_flags 4 Word

value 4 MsgReference

max_value 4 word

validation 4 StringReference

max_validation 4 word
357

Display fields
Display fields

A display field gadget is used to display information in a ‘read-only’ manner:

The display field has a ‘slabbed in’ boxed display area in which a text string is
displayed. The contents of the display area can be set and read using the
DisplayField_SetValue and DisplayField_GetValue methods.

Bits in the flags word for a Label have the following meaning:

Display field methods

DisplayField_SetValue 448

On entry

R0 = flags
R1 = Window object id
R2 = 448
R3 = Gadget component id
R4 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text string shown in a display field. The change is
immediately visible if the parent dialogue box is currently on the screen.

C veneer

extern _kernel_oserror *displayfield_set_value (unsigned int flags,
 ObjectId window,
 ComponentId display_field,
 const char *text
);

Bit Meaning

1-2 justification:

0  left-justified
1  right-justified
2  centred
358

Window class
DisplayField_GetValue 449

On entry

R0 = flags
R1 = Window object id
R2 = 449
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required else (if R4 was 0)
buffer pointed at by R4 contains text
R5 holds number of bytes written to buffer

Use

This method returns the text string shown in a display field.

C veneer

extern _kernel_oserror *displayfield_get_value (unsigned int flags,
 ObjectId window,
 ComponentId display_field,
 char *buffer,
 int buff_size,
 int *nbytes
);
359

Display fields
DisplayField_SetFont 450

On entry

R0 = flags
R1 = Window object id
R2 = 450
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the display field use an anti-aliased font. If the font name is
NULL, then the field will use system font.

C veneer

extern _kernel_oserror *displayfield_set_font (unsigned int flags,
 ObjectId window,
 ComponentId display_field,
 const char *font_name,
 int width,
 int height
);

Display field templates

Field Size in bytes Type

text 4 MsgReference

max_text_len 4 word
360

Window class
Draggable gadgets

A draggable gadget consists of a sprite, text or text&sprite which appears in a
dialogue box, and can be dragged using the mouse. When the drag occurs, if this is
a sprite or text&sprite draggable, then the Toolbox will use the standard CMOS bit
to decide whether to do a ‘solid’ drag or a ‘dotted line’ drag.

Solid dragging makes use of the DragAnObject module allowing both text and
sprite to be dragged (unlike DragASprite).

If it is a sprite draggable gadget, then the sprite used can be set and read
dynamically using the Draggable_SetSprite/Draggable_GetSprite methods.

If it is a text draggable gadget, then the text used can be set and read dynamically
using the Draggable_SetText/Draggable_GetText methods.

With a draggable of type click or doubleclick, a clicks or double click on the gadget
will be returned as a Wimp mouse click event, but the toolbox id block will be
updated to reflect the component and window (i.e. no special toolbox event is
returned).

When the user begins to drag a draggable, the client can choose to receive a
Draggable_DragStarted Toolbox event. When the drag ends, the client will always
receive a Draggable_DragEnded Toolbox event.

Bits in the flags word for a draggable have the following meaning:

Bit Meaning

0 warn of drag start using Draggable_DragStarted

1 draggable contains a sprite

2 draggable contains text

3-5 Draggable type:

0  drag only
1  click, drag, doubleclick
2  click selects, doubleclick, drag

6 deliver drag ended events as Toolbox id's rather than
Wimp windows (if possible)

7 dragged object has a drop shadow (if solid)

8 dragged object is not dithered (if solid)
361

Draggable gadgets
Draggable methods

Draggable_SetSprite 640

On entry

R0 = flags
R1 = Window object id
R2 = 640
R3 = Gadget component id
R4 = pointer to sprite name to use

On exit

R1-R9 preserved

Use

This method sets the name of the sprite which will be used for this draggable.

C veneer

extern _kernel_oserror *draggable_set_sprite (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 const char *sprite_name
);
362

Window class
Draggable_GetSprite 641

On entry

R0 = flags
R1 = Window object id
R2 = 641
R3 = Gadget component id
R4 = pointer to buffer (or 0)
R5 = size of buffer to hold sprite name

On exit

R5 = size of buffer required for message text (if R4 was 0)
else buffer pointed at by R4 holds sprite name
R5 holds number of bytes written to buffer

Use

This method returns the name of the sprite which is currently being used for this
draggable.

C veneer

extern _kernel_oserror *draggable_get_sprite (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 char *buffer,
 int buff_size,
 int *nbytes
);
363

Draggable gadgets
Draggable_SetText 642

On entry

R0 = flags
R1 = Window object id
R2 = 642
R3 = Gadget component id
R4 = pointer to text to use

On exit

R1-R9 preserved

Use

This method sets the text which will be displayed in this draggable.

C veneer

extern _kernel_oserror *draggable_set_text (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 const char *text
);
364

Window class
Draggable_GetText 643

On entry

R0 = flags
R1 = Window object id
R2 = 643
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 holds text
R5 holds number of bytes written to buffer

Use

This method returns the text which is currently being used for this draggable.

C veneer

extern _kernel_oserror *draggable_get_text (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 char *buffer,
 int buff_size,
 int *nbytes
);
365

Draggable gadgets
Draggable_SetState 644

On entry

R0 = flags
R1 = Window object id
R2 = 644
R3 = Gadget component id
R4 = state (0  deselected, 1  selected).

On exit

R1-R9 preserved

Use

This method sets the Draggable's state to either selected or deselected.

C veneer

extern _kernel_oserror *draggable_set_state (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 int state
);

Draggable_GetState 645

On entry

R0 = flags
R1 = Window object id
R2 = 645
R3 = Gadget component id

On exit

R0 = state

Use

This method returns the Draggables' state (0  deselected, 1  selected).

C veneer

extern _kernel_oserror *draggable_get_state (unsigned int flags,
 ObjectId window,
 ComponentId draggable,
 int *state
);
366

Window class
Draggable Toolbox events

Draggable_DragStarted (0x82887)

Block

+ 8 0x82887
+ 12 flags

bit 0 means Adjust is held down
bit 1 will be 0
bit 2 means Select is held down
bit 3 means Shift is held down
bit 4 means Ctrl is held down

Use

This Toolbox event is raised when the user starts a drag of a draggable gadget.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} DraggableDragStartedEvent;
367

Draggable gadgets
Draggable_DragEnded (0x82888)

Block

+ 8 0x82888
+ 12 flags:

bit 0 clear then:
+16 Wimp window handle of end of drag
+ 20 Wimp icon handle of end of drag
or bit 0 set:
+16 Window id of end of drag
+20 component id of end of drag

+24 destination x coordinate of mouse pointer
+28 destination y coordinate of mouse pointer

Use

This Toolbox event is raised when the user ends a drag of a draggable gadget. By
setting bit 6 when the draggable is created it is possible to receive events in terms
of window object ids and gadget component ids. If the drag ended over a
non-toolbox window (or bit 6 was zero) then Wimp handles are returned.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int window_handle;
 int icon_handle;
 int x;
 int y;
} DraggableDragEndedEvent;

Draggable templates

Field Size in bytes Type

text 4 MsgReference

max_text_len 4 word

sprite 4 StringReference

max_sprite_len 4 word
368

Window class
Labels

A label consists of some explanatory text which appears in a dialogue box. The
client application can choose whether the bounding box of the label is shown by a
visible box or not.

● a label contains text, which is unchangeable at run-time

● a label can be right-justified, left-justified, or centred, as indicated by its flags
word.

Bits in the flags word for a label have the following meaning:

Label templates

Bit Meaning

0 omit bounding box

1-2 justification:
0 left-justified
1  right-justified
2  centred

Field Size in bytes Type

label 4 MsgReference
369

Labelled boxes
Labelled boxes

A labelled box gadget is used for collecting together a set of related items:

The box has a label which can be either text or a sprite, and this label will appear at
the top left hand corner of the box (a bit in the flags word for the gadget indicates
whether text or a sprite is to be used). ResEd creates labelled boxes with bit 30 set
so that they are created behind other gadgets.

There are no Toolbox events or methods associated with a labelled box.

Bits in the flags word for a labelled box have the following meaning:

Labelled box templates

Bit Meaning

0 labelled box has a sprite label (default is text)

1 in the case of a sprite label, the icon is filled if this bit is
set, otherwise it is unfilled. This is because certain sprites
will sufficiently obscure the border, and may be masked so
should allow the tile sprite to show through.

Field Size in bytes Type

label 4 MsgReference or StringReference
370

Window class
Number ranges

A number range is a gadget used to display one of a range of possible integer or
fixed point values. The value is shown in a display area, which can either be
writable (in which case a writable field is used) or not writable (in which case a
display field is used). It is also possible to create a Number Range where there is
no display area.

The value which the client gives to a Number Range Gadget (and which it receives
back) is a signed integer, to which a ‘precision’ will be applied. The precision is
essentially the power of 10 by which the value should be divided, and the number
of places which will be shown after the decimal point. For example to get the value
3.42 displayed in a Number Range the client would pass the value 342 with a
precision of 2. Normally the precision of a Number Range is specified when the
Gadget is created, but it can be set and read at run-time using the
NumberRange_SetBounds and NumberRange_GetBounds methods. A Number
Range can be made to display merely integer values by specifying a precision of 0.
The maximum precision is 10, i.e. there can be up to ten digits after the decimal
point.

The value displayed in a number range gadget is set using the
NumberRange_SetValue method. The value passed is an integer which will be
divided by 10^precision and will have precision digits after the decimal point. The
value of a number range is read using the NumberRange_GetValue method; this
value is an integer which should be divided by 10^precision to get its real
equivalent. A number range has a lower and upper bound which constrains the
values to which it can be set; these bounds are in ‘integer’ terms (i.e. before the
precision has been applied). For example if a number range gadget has a precision
of 3, and the client wishes to have a lower bound of 1.000 and an upper bound of
4.999, then the lower and upper bounds of the gadget should be set to 1000 and
4999 respectively.

A number range can also be given a step size. The step size is expressed in integer
terms (i.e. before the precision is applied). For example if a number range gadget
has a precision of 2, then setting a step size of 5 will result in a ‘real’ step size of
0.05. The bounds and step size can be set and read using the
NumberRange_SetBounds and NumberRange_GetBounds methods.

A number range can also have a pair of adjuster arrows placed 8 OS Units to the
right of its display area (either the writable or display field). When the user clicks
on these arrows, the value of the number range is either decremented or
incremented by its step size, subject to its lower and upper bounds (and displayed
using its precision).
371

Number ranges
A number range can also have an associated slider. The slider is like a slider
gadget, except that it can only be positioned relative to the Number Range's
display area. The possible positionings are:

● a horizontal slider 8 OS Units to the right of the display area

● a horizontal slider 8 OS Units to the left of the display area.

When both a slider and adjusters are requested, then the adjusters appear at either
end of the slider, rather than the positioning outlined above.

If the Number Range is writable, then the underlying Writable Field is given a
validation string which will only permit input of numeric digits (0-9), the decimal
point character for the current territory (unless the precision field is 0) and where
applicable the minus sign. It also has ‘before’ and ‘after’ values which are used to
move the caret in the same way as described for Writable Fields. Another Writable
may reference the component id of a Number Range in its before and after fields.

Whenever the value changes in a number range gadget, the client is informed of
the change via an NumberRange_ValueChanged Toolbox event, if it has set the
appropriate bit in the gadget’s flags word.

Included in the definition of the number range is the length of the display field in
OS Units (display_length as shown in Number range templates on page 378). This is
ignored if there is no slider.

Bits in the flags word for a number range gadget have the following meanings:

Bit Meaning when set

0 inform client of value changes using
NumberRange_ValueChanged

2 writable (default is read-only display)

3 no display area

4 has adjuster arrows

5-7 slider type:
value meaning

0  no slider
1  slider to the right of the display area
2  slider to the left of the display area

8-9 justification:

0  left-justified
1  right-justified
2  centred

12-15 desktop colour of slider bar

16-19 desktop colour of slider background
372

Window class
Note: slider colours are in the same flag position as a Slider Gadget.

Number range methods

NumberRange_SetValue 832

On entry

R0 = flags
R1 = Window object id
R2 = 832
R3 = Gadget component id
R4 = new value

On exit

R1-R9 preserved

Use

This method sets the value displayed in the number range’s display area, subject to
its bound constraints. The value will be displayed taking into account its precision.

C veneer

extern _kernel_oserror *numberrange_set_value (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 int value
);
373

Number ranges
NumberRange_GetValue 833

On entry

R0 = flags
R1 = Window object id
R2 = 833
R3 = Gadget component id

On exit

R0 holds current value

Use

This method returns the value of the number range. Note that this is the integer
form of what is actually displayed in the display area (i.e. not taking ‘precision’ into
account).

C veneer

extern _kernel_oserror *numberrange_get_value (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 int *value
);
374

Window class
NumberRange_SetBounds 834

On entry

R0 = flags
bit 0 set means change the lower bound
bit 1 set means change the upper bound
bit 2 set means change the step size
bit 3 set means change the precision

R1 = Window object id
R2 = 834
R3 = Gadget component id
R4 = new lower bound
R5 = new upper bound
R6 = new step size
R7 = precision

On exit

R1-R9 preserved

Use

This method is used to set the lower and upper bounds, the step size and the
precision of the number range. Note that the bounds and step size are expressed in
terms of an integer before they are transformed using the precision value.

C veneer

extern _kernel_oserror *numberrange_set_bounds (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 int lower_bound,
 int upper_bound,
 int step_size,
 int precision
);
375

Number ranges
NumberRange_GetBounds 835

On entry

R0 = flags
bit 0 set means return the lower bound
bit 1 set means return the upper bound
bit 2 set means return the step size
bit 3 set means return the precision

R1 = Window object id
R2 = 835
R3 = Gadget component id

On exit

R0 = lower bound
R1 = upper bound
R2 = step size
R3 = precision

Use

This method returns the lower and upper bounds, the step size and the precision of
the number range, depending on the setting of the appropriate flags bits. Note that
the bounds and step size are expressed in terms of an integer before they are
transformed using the precision value.

C veneer

extern _kernel_oserror *numberrange_get_bounds (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 int *lower_bound,
 int *upper_bound,
 int *step_size,
 int *precision
);
376

Window class
NumberRange_GetComponents 836

On entry

R0 = flags
bit 0 set means return the numerical field
bit 1 set means return the left adjuster
bit 2 set means return the right adjuster
bit 3 set means return the slider

R1 = Window object id
R2 = 836
R3 = Gadget component id

On exit

R0 = numeric id
R1 = left adjuster id
R2 = right adjuster id
R3 = slider id

Use

This method returns the component ids of the gadgets that make up the number
range depending on which flag bits are set. Note that the numeric id will be the
component id of the Display Field or Writable, dependent on how the Gadget was
created.

C veneer

extern _kernel_oserror *numberrange_get_components (unsigned int flags,
 ObjectId window,
 ComponentId number_range,
 ComponentId *numeric_field,
 ComponentId *left_adjuster,
 ComponentId *right_adjuster,
 ComponentId *slider
);
377

Number ranges
Number range Toolbox events

NumberRange_ValueChanged (0x8288d)

Block

+ 8 0x8288d
+ 16 new value shown in display area

Use

This Toolbox event is raised when the value of the Number Range has changed.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int new_value;
} NumberRangeValueChangedEvent;

Number range templates

Field Size in bytes Type

lower_bound 4 word

upper_bound 4 word

step_size 4 word

initial_value 4 word

precision 4 word

before 4 word

after 4 word

display_length 4 word
378

Window class
Option buttons

An option button is used to indicate whether a particular option has been chosen
or not (e.g. case-sensitive in a Find dialogue box). It has two states – on and off:

Such a gadget is displayed with a standard option icon, together with a textual
label; the textual label can be read and set at run-time using the
OptionButton_SetLabel and OptionButton_GetLabel methods.

The on/off state of the option button can be set and read using the
OptionButton_SetState/OptionButton_GetState methods.

If bit zero of the flags is set, then whenever the state of the Option Button changes,
an OptionButton_StateChanged event is raised, with the flags word indicating
which mouse button was used. The client can supply an alternative Toolbox Event
code in the template description for the Option Button, and can set and read this
event code at run-time using the OptionButton_SetEvent and
OptionButton_GetEvent methods.

Bits in the flags word for Option Button have the following meaning:

Bit Meaning

0 generate a OptionButton_StateChanged when user clicks.

2 when set, this means that the Option Button is ‘On’ when
first created.
379

Option buttons
Option button methods

OptionButton_SetLabel 192

On entry

R0 = flags
R1 = Window object id
R2 = 192
R3 = Gadget component id
R4 = pointer to string giving label to use

On exit

R1-R9 preserved

Use

This method sets the label which will be used for this option button.

C veneer

extern _kernel_oserror *optionbutton_set_label (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 const char *label
);
380

Window class
OptionButton_GetLabel 193

On entry

R0 = flags
R1 = Window object id
R2 = 193
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold label (if R4 was 0)
else buffer pointed at by R4 holds label
R5 holds number of bytes written to buffer

Use

This method returns the label which is currently displayed for this option button.

C veneer

extern _kernel_oserror *optionbutton_get_label (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 char *buffer,
 int buff_size,
 int *nbytes
);
381

Option buttons
OptionButton_SetEvent 194

On entry

R0 = flags
R1 = Window object id
R2 = 194
R3 = Gadget component id
R4 = Toolbox event code

On exit

R1-R9 preserved

Use

This method sets the Toolbox event which will be raised when the state of this
option button changes. The rest of the Toolbox event block remains the same as in
OptionButton_StateChanged.

C veneer

extern _kernel_oserror *optionbutton_set_event (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 int event
);
382

Window class
OptionButton_GetEvent 195

On entry

R0 = flags
R1 = Window object id
R2 = 195
R3 = Gadget component id

On exit

R0 holds Toolbox event code.

Use

This method returns the Toolbox event which will be raised when this option
button’s state changes.

C veneer

extern _kernel_oserror *optionbutton_get_event (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 int *event
);

OptionButton_SetState 196

On entry

R0 = flags
R1 = Window object id
R2 = 196
R3 = Gadget component id
R4 = state (0  off, 1  on)

On exit

R1-R9 preserved

Use

This method sets the option button’s state to on or off.

C veneer

extern _kernel_oserror *optionbutton_set_state (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 int state
);
383

Option buttons
OptionButton_GetState 197

On entry

R0 = flags
R1 = Window object id
R2 = 197
R3 = Gadget component id

On exit

R0 = state

Use

This method returns the option button’s state (0  off, 1  on).

C veneer

extern _kernel_oserror *optionbutton_get_state (unsigned int flags,
 ObjectId window,
 ComponentId option_button,
 int *state
);
384

Window class
Option button Toolbox events

OptionButton_StateChanged (0x82882)

Block

+8 0x82882
+ 12 flags

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was held down
bit 1 reserved
bit 2 set means Select was held down

+ 16 new state (0  off, 1  on)

Use

This Toolbox event is raised when the state of an option button changes, and the
client has not specified an event to be associated with this change.

The returned flags word indicates which mouse button was used to select the
button.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int new_state;
} OptionButtonStateChangedEvent;

Option button templates

Field Size in bytes Type

flags 4 word

label 4 MsgReference

max_label_len 4 word

event 4 word
385

Pop-up menus
Pop-up menus

A pop-up menu gadget will be displayed as a ‘menu-arrow’ icon, and its associated
Menu object will be displayed when a mouse button is clicked over this icon:

The Menu to be displayed can be set and read dynamically at run-time using the
PopUp_SetMenu and PopUp_GetMenu methods. It can also be done with ResEd.

If the appropriate bit is set in the flags word, then a PopUp_AboutToBeShown
Toolbox event is delivered before the associated pop-up Menu is shown. This
allows the client to build a new Menu object and associate it with the pop-up using
PopUp_SetMenu.

Note that Menu ‘hits’ will be reported for the Menu object, and not for the pop-up
gadget. The Menu will have as its parent, the dialogue box in which the pop-up
exists, and the pop-up itself as the parent component. Note also that the
associated pop-up Menu may also have its flags word bit set which requests a
warning before it is shown; this event will be delivered after the
PopUp_AboutToBeShown event.

Bits in the flags word for a pop-up Menu have the following meaning:

Bit Meaning

0 warn using PopUp_AboutToBeShown before the
associated menu is shown.

pop-up menu icon

associated menu object
386

Window class
Pop-up menu methods

PopUp_SetMenu 704

On entry

R0 = flags
R1 = Window object id
R2 = 704
R3 = Gadget component id
R4 = object id of Menu to use

On exit

R1-R9 preserved

Use

This method sets the Menu object which will be shown when the pop-up button is
clicked on.

C veneer

extern _kernel_oserror *popup_set_menu (unsigned int flags,
 ObjectId window,
 ComponentId popup,
 ObjectId menu
);
387

Pop-up menus
PopUp_GetMenu 705

On entry

R0 = flags
R1 = Window object id
R2 = 705
R3 = Gadget component id

On exit

R0 = Menu object id

Use

This method returns the object id of the Menu which will be shown when the
pop-up button is clicked on.

C veneer

extern _kernel_oserror *popup_get_menu (unsigned int flags,
 ObjectId window,
 ComponentId popup,
 ObjectId *menu
);
388

Window class
Pop-up menu Toolbox events

PopUp_AboutToBeShown (0x8288b)

Block

+ 8 0x8288b
+ 16 object id of Menu object which will be shown

(note that the ‘self’ id and component fields will refer to the
parent Window’s object id and the PopUp’s component id respectively)

Use

This Toolbox event is raised when the user has clicked on a pop-up button. The
Menu is actually shown on the next call to Wimp_Poll.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 ObjectId menu_id;
}PopUpAboutToBeShownEvent;

Pop-up menu templates

Field Size in bytes Type

menu 4 StringReference
389

Radio buttons
Radio buttons

A radio button is used for making a single choice from a set of options, and a
number of radio buttons are normally used in a ‘group’. The group to which a radio
button belongs is determined by the radio button's ‘group number’.

A radio button is displayed as a standard radio icon, together with a text label. The
label for a radio button can be set and read using the RadioButton_SetLabel and
RadioButton_GetLabel methods.

A radio button has two states: ‘On’ and ‘Off’. Only one radio button in a group is in
the on state at any one time. When the user clicks on a radio button its state is set
to on.

Whenever the state of a radio button changes, a RadioButton_StateChanged event
is raised, with the flags word indicating which mouse button was used, if the
appropriate bit was set in the flags word for the radio button, requesting that a
RadioButton_StateChanged event is generated. The client can supply an
alternative Toolbox event code in the template description for the radio button,
and can set and read this event code at run-time using the RadioButton_SetEvent
and RadioButton_GetEvent methods.

Bits in the flags word for a radio button have the following meaning:

Bit Meaning

0 generate a RadioButton_StateChanged when user clicks

2 when set, means that the radio button is On when first
created
390

Window class
Radio button methods

RadioButton_SetLabel 384

On entry

R0 = flags
R1 = Window object id
R2 = 384
R3 = Gadget component id
R4 = pointer to string giving label to use

On exit

R1-R9 preserved

Use

This method sets the label which will be used for this radio button.

C veneer

extern _kernel_oserror *radiobutton_set_label (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 const char *label
);
391

Radio buttons
RadioButton_GetLabel 385

On entry

R0 = flags
R1 = Window object id
R2 = 385
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required to hold label (if R4 was 0)
else buffer pointed at by R4 holds label
R5 holds number of bytes written to buffer

Use

This method returns the label which is currently displayed for this radio button.

C veneer

extern _kernel_oserror *radiobutton_get_label (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 char *buffer,
 int buff_size,
 int *nbytes
);
392

Window class
RadioButton_SetEvent 386

On entry

R0 = flags
R1 = Window object id
R2 = 386
R3 = Gadget component id
R4 = Toolbox event code

On exit

R1-R9 preserved

Use

This method sets the Toolbox event which will be raised when the state of the radio
button changes. The rest of the Toolbox event block will be the same as for the
RadioButton_StateChanged Toolbox event.

C veneer

extern _kernel_oserror *radiobutton_set_event (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 int event
);
393

Radio buttons
RadioButton_GetEvent 387

On entry

R0 = flags
R1 = Window object id
R2 = 387
R3 = Gadget component id

On exit

R0 holds Toolbox event code

Use

This method returns the Toolbox event which will be raised when this radio
button's state changes.

C veneer

extern _kernel_oserror *radiobutton_get_event (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 int *event
);
394

Window class
RadioButton_SetState 388

On entry

R0 = flags
R1 = Window object id
R2 = 388
R3 = Gadget component id
R4 = state (0 Off, 1  On)

On exit

R1-R9 preserved

Use

This method sets the state of the radio button to On or Off. When a button which is
Off is set to On, the button which was previously On is set to Off. If by setting the
radio button to Off, this would result in no button being On in the group, then an
error is returned.

C veneer

extern _kernel_oserror *radiobutton_set_state (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 int state
);
395

Radio buttons
RadioButton_GetState 389

On entry

R0 = flags
R1 = Window object id
R2 = 389
R3 = Gadget component id

On exit

R0 = state (0  Off, 1  On)
R1 = component id of radio button which is On in the group

Use

This method returns the state of the given radio button.

The client can determine which radio button is On in a group by calling this
method for any one button in the group, since the component id of the On button
is also returned (in R1).

C veneer

extern _kernel_oserror *radiobutton_get_state (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 int *state,
 Component Id *selected
);
396

Window class
RadioButton_SetFont 390

On entry

R0 = flags
R1 = Window object id
R2 = 390
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the radio button use an anti-aliased font. If the font name is
NULL, then the button will use system font.

C veneer

extern _kernel_oserror *radiobutton_set_font (unsigned int flags,
 ObjectId window,
 ComponentId radio_button,
 const char *font_name,
 unsigned int width,
 unsigned int height
);
397

Radio buttons
Radio button Toolbox events

RadioButton_StateChanged (0x82883)

Block

+ 8 0x82883
+ 12 flags

bits 0, 1 and 2 show how the activation was done:
bit 0 set means Adjust was held down
bit 1 is reserved
bit 2 set means Select was held down

+16 state (0  Off, 1  On)
+20 component id of the radio button within the group which

was On before this state change

Use

This Toolbox event is raised when the state of a radio button changes, and the
client has not specified an event to be associated with this change.

The returned flags word indicates which mouse button was used to select the radio
button.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int state;
 ComponentId old_on_button;
} RadioButtonStateChangedEvent;

Radio button templates

Field Size in bytes Type

group_number 4 word

label 4 MsgReference

max_label_len 4 word

event 4 word
398

Window class
Sliders

A slider gadget is used to display a ‘bar’, which may be draggable by the user,
displayed in a ‘well’. Whether the slider is draggable or not is indicated by its flags
word:

By setting a bit in the slider’s flags word the client can request that all changes in
the slider’s value are returned as the bar is dragged. Alternatively it may request to
receive value changes only when the bar dragging stops (i.e. when the user releases
the mouse button). Such changes are reported via the Slider_ValueChanged
Toolbox event.

A slider is specified as either being ‘vertical’ or ‘horizontal’.

A slider has associated with it an initial value, a minimum value, a maximum value,
and a step size. If the slider is draggable (indicated by a flags bit), then when the
user drags the bar with the mouse, the bar moves a number of pixels
commensurate with the step size, and the bounding box of the slider.

The maximum and minimum values and the step size can be set and read
dynamically using the Slider_SetBound/Slider_GetBound methods.

A Slider also has associated with it, the colour used for its ‘bar’ – this is a Desktop
colour. This is normally specified in the resource file, but can be set and read
dynamically using the Slider_SetColour/Slider_GetColour methods.

The current value of the slider can be set and read using the
Slider_SetValue/Slider_GetValue methods.

Bits in the flags word for a slider have the following meaning:

Bit Meaning

0 if set then deliver value changes when user clicks/drags

1 if set then deliver value changes constantly whilst dragging
else just at start/end

3 if set means slider is vertical (default is horizontal)

4 if set then bar is draggable/clickable

12-15 the desktop colour of the bar

16-19 the desktop colour of the background
399

Sliders
Slider methods

Slider_SetValue 576

On entry

R0 = flags
R1 = Window object id
R2 = 576
R3 = Gadget component id
R4 = integer value

On exit

R1-R9 preserved

Use

This method sets the value of a slider. The slider’s bar is changed accordingly.

C veneer

extern _kernel_oserror *slider_set_value (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int value
);
400

Window class
Slider_GetValue 577

On entry

R0 = flags
R1 = Window object id
R2 = 577
R3 = Gadget component id

On exit

R0 = slider’s value

Use

This method returns the value of a slider.

C veneer

extern _kernel_oserror *slider_get_value (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int *value
);
401

Sliders
Slider_SetBounds 58

On entry

R0 = flags
bit 0 set means set lower bound
bit 1 set means set upper bound
bit 2 set means set step size

R1 = Window object id
R2 = 578
R3 = Gadget component id
R4 = lower bound
R5 = upper bound
R6 = step size

On exit

R1-R9 preserved

Use

This method sets the lower bound, upper bound and step size of a slider gadget.

C veneer

extern _kernel_oserror *slider_set_bounds(unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int lower_bound,
 int upper_bound,
 int step_size
);
402

Window class
Slider_GetBounds 579

On entry

R0 = flags
bit 0 set means return lower bound
bit 1 set means return upper bound
bit 2 set means return step size

R1 = Window object id
R2 = 579
R3 = Gadget component id

On exit

R0 = lower bound
R1 = upper bound
R2 = step size

Use

This method returns the lower bound, upper bound and step size of a slider gadget.

C veneer

extern _kernel_oserror *slider_get_bounds(unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int *lower_bound,
 int *upper_bound,
 int *step_size
);
403

Sliders
Slider_SetColour 580

On entry

R0 = flags
R1 = Window object id
R2 = 580
R3 = Gadget component id
R4 = Desktop colour value for bar
R5 = Desktop colour value for background

On exit

R1-R9 preserved

Use

This method sets the Desktop colour used in a slider.

C veneer

extern _kernel_oserror *slider_set_colour (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int bar_colour,
 int back_colour
);
404

Window class
Slider_GetColour 581

On entry

R0 = flags
R1 = Window object id
R2 = 581
R3 = Gadget component id

On exit

R0 = Desktop colour value for bar
R1 = Desktop colour value for background

Use

This method returns the Desktop colour used in a slider.

C veneer

extern _kernel_oserror *slider_get_colour (unsigned int flags,
 ObjectId window,
 ComponentId slider,
 int *bar_colour,
 int *back_colour
);
405

Sliders
Slider Toolbox events

Slider_ValueChanged (0x82886)

Block

+ 8 0x82886
+ 12 flags:

bits 0-2:
value description
0 means ‘start of drag or just click’
1 means ‘drag has ended’
2 means ‘drag still in progress’

+ 16 new value of slider.

Use

This Toolbox event is raised when the value of the slider has changed. This may be
due to an update caused by a user action (e.g. dragging the bar).

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 int new_value;
} SliderValueChangedEvent;

Slider templates

Field Size in bytes Type

lower_bound 4 word

upper_bound 4 word

step_size 4 word

initial_value 4 word
406

Window class
String sets

A string set is a gadget used to display one of an ordered set of text strings.

The string which is shown in the display area is known as the ‘selected string’. The
display area can be either writable (in which case a writable field is used) or not
writable (in which case a display field is used).

A string set has a pop-up Menu placed 8 OS Units to the right of the display area.
The client supplies a set of available strings, and the Toolbox will display the
selected string in the string set's display area. The Toolbox will build a Menu on the
client's behalf, and display it when the pop-up menu button is clicked. The
selected string will be shown as ticked in the Menu, and hits on the Menu will
result in the string corresponding to the Menu entry text becoming the selected
string.

If the string set is writable, then if the user enters a string which is not in the string
set, no entry would be shown as ticked in an associated pop-up Menu.

The set of available strings can be set at run-time using the StringSet_SetAvailable
method. The selected string is set and read using the StringSet_SetSelected and
StringSet_GetSelected methods.

Whenever the selected string changes in a string set gadget, the client is informed
of the change via a StringSet_ValueChanged Toolbox event, if it has set the
appropriate bit in the gadget’s flags word.

If a string set is writable, it can also have a set of allowable characters which the
user can type into the display area. This is identical to the ‘a’ directive used in a
Wimp icon’s validation string.

The set of allowable characters can be set at run-time using the
StringSet_SetAllowable method.

In the template description for a writable string set, the client specifies the
component ids of any writable fields which come before and after it. These are
used to move the caret between writable fields when the user presses the arrow
and tab keys. A special value of -1 indicates that there is no writable field before or
after this one.

Bits in the flags word for a string set gadget have the following meanings:

Bit Meaning

0 inform client of changes to the selected string using
StringSet_ValueChanged

1 writable (default is read-only display)

3 inform client just before showing the menu
407

String sets
String set methods

StringSet_SetAvailable 896

On entry

R0 = flags
R1 = Window object id
R2 = 896
R3 = Gadget component id
R4 = pointer to block of contiguous strings which are to be used as the

available set of strings

On exit

R1-R9 preserved

Use

This method is used to set the available set of strings in a string set, and a pop-up
menu will be built from them. Strings are separated using a comma (‘,’); a comma
must be escaped using the \ character, if the client wishes it to appear in the
display area. To get the '\' character itself, '\\' should be used.

Note that there is no StringSet_GetAvailable.

C veneer

extern _kernel_oserror *stringset_set_available (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 const char *strings
);

4 does not have any display field or writable

5-6 justification:

0  left-justified
1  right-justified
2  centred

Bit Meaning
408

Window class
StringSet_SetSelected 898

On entry

R0 = flags
bit 0set means index of string is supplied in R4

clear means the string itself is supplied
R1 = Window object id
R2 = 898
R3 = Gadget component id
R4 = pointer to string to be selected or R4 = index of string to be selected

On exit

R1-R9 preserved

Use

This method sets which string in the string set is selected. The string can either be
specified as a text string or as an index into the array of available strings
(depending on the setting of bit 0 in the flags word). The selected string is shown
in the string set’s display area, and will be ticked in the associated pop-up Menu.

C veneer

extern _kernel_oserror *stringset_set_selected (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 const char *string_to_select
);
409

String sets
StringSet_GetSelected 899

On entry

R0 = flags
bit 0 set means return index of selected string

clear means the string itself is returned
R1 = Window object id
R2 = 899
R3 = Gadget component id
R4 = index of selected string or R4 = pointer to buffer to hold selected string
R5 = size of buffer

On exit

R0 = index of selected string (if bit 0 of flags word was set)
else

if R4 was 0 then R5 holds size of buffer required
else

buffer pointed at by R4 holds selected string
R5 holds number of bytes written to buffer

Use

This method returns the currently selected string for this string set (i.e. the one
shown in the display area). This may be either an index into the set of available
strings or a buffer containing the string itself. If the selected string is not in the
available set (e.g. it has been typed into a writable string set), then the value -1 is
returned if an index is requested (by setting bit 0 of the flags word for this call).

C veneer

extern _kernel_oserror *stringset_get_selected (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 ...
);
410

Window class
StringSet_SetAllowable 900

On entry

R0 = flags
R1 = Window object id
R2 = 900
R3 = Gadget component id
R4 = pointer to string giving new set of allowable characters

On exit

R1-R9 preserved

Use

This method defines the set of allowable characters which can be typed into a
writable string set. The set is specified in the same way as a Wimp ‘a’ validation
string directive (without including the letter ‘a’).

C veneer

extern _kernel_oserror *stringset_set_allowable (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 const char *allowable
);
411

String sets
StringSet_GetComponents 902

On entry

R0 = flags
bit 0 set means return the alphanumerical field
bit 1 set means return the popup menu

R1 = Window object id
R2 = 902
R3 = Gadget component id

On exit

R0 = alphanumeric id
R1 = popup id

Use

This method returns the component ids of the gadgets that make up the string set
depending on which flag bits are set. Note that the alphanumeric id will be the
component id of the Display Field or Writable, dependent on how the Gadget was
created.

C veneer

extern _kernel_oserror *stringset_get_components (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 ComponentId *alphanumeric_field,
 ComponentId *popup_menu
);
412

Window class
StringSet_SetFont 903

On entry

R0 = flags
R1 = Window object id
R2 = 903
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the action button use an anti-aliased font. If the font name is
NULL, then the string set will use system font.

C veneer

extern _kernel_oserror *stringset_set_font (unsigned int flags,
 ObjectId window,
 ComponentId string_set,
 const char *font_name,
 unsigned int width,
 unsigned int height
);
413

String sets
String set Toolbox events

StringSet_ValueChanged (0x8288e)

Block

+ 8 0x8288e
+ 12 flags

if bit 0 is set, then the text string was too long to fit into the event block
+ 16... text string shown in string set’s display area (or null string if too long to fit)

Use

This Toolbox event is raised when the value of the string set has changed. If the text
string was too long to fit into the event block, then bit 0 of the flags word is set.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 char
string[sizeof(ToolboxEvent)-sizeof(ToolboxEventHeader)];
} StringSetValueChangedEvent;

StringSet_AboutToBeShown (0x8288f)

Block

+ 8 0x8288f

Use

This Toolbox event is raised just before the string set's menu is to be shown. This
allows the client to make changes to the string set just when it is used, rather than
continually.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
} StringSetAboutToBeShownEvent;
414

Window class
String set templates

Field Size in bytes Type

string_set 4 MsgReference

initial_selected_string 4 MsgReference

max_selected_string_len 4 word

allowable 4 MsgReference

max_allowable 4 word

before 4 word

after 4 word
415

Writable fields
Writable fields

The writable field has a boxed display area in which a text string is displayed and
can be edited by the user. The contents of the display area can be set and read
using the WritableField_SetValue and WritableField_GetValue methods. The user
can click the mouse in a writable field and enter its value from the keyboard:

Whenever the value in a writable field is changed, the client receives a
WritableField_ValueChanged Toolbox event, if it has set the appropriate bit in the
flags word. This will happen when the user presses a key whilst the caret is in it.

Note that it is possible to get different values from Writable_GetValue on
subsequent calls, without receiving a ValueChanged Event in between. This is
because the value represents what is actually visible in the gadget.

A writable field can also have a set of allowable characters which the user can type
into the display area. This is identical to the ‘a’ directive used in a Wimp icon’s
validation string.

The set of allowable characters can be set at run-time using the
WritableField_SetAllowable method. To allow all characters, this attribute should
be NULL.

In the template description for a writable field, the client specifies the
component ids of writable fields which come ‘before’ and ‘after’ it. These are used
to move the caret between writable fields when the user presses the arrow and tab
keys. A special value of -1 indicates that there is no writable field before or ‘after
this one. The exact semantics for the keys are as follows:

Bits in the flags word for a writable field have the following meaning:

up-arrow or shift-TAB  move the caret to the writable field before
the one which currently has the caret

down-arrow or TAB  move the caret to the writable field after the
one which currently has the caret

Bit Meaning

0 inform of value changes using WritableField_ValueChanged
416

Window class
Writable field methods

WritableField_SetValue 512

On entry

R0 = flags
R1 = Window object id
R2 = 512
R3 = Gadget component id
R4 = pointer to text string to use

On exit

R1-R9 preserved

Use

This method sets the text string shown in a writable field. The change is
immediately visible if the parent dialogue box is currently on the screen.

C veneer

extern _kernel_oserror *writablefield_set_value (unsigned int flags,
 ObjectId window,
 ComponentId writable,
 const char *text
);

2-3 justification:

0  left-justified
1  right-justified
2  centred

4 do not display text, use ‘-’ for each character (password
support)

Bit Meaning
417

Writable fields
WritableField_GetValue 513

On entry

R0 = flags
R1 = Window object id
R2 = 513
R3 = Gadget component id
R4 = pointer to buffer
R5 = size of buffer

On exit

R5 = size of buffer required (if R4 was 0)
else buffer pointed at by R4 contains text
R5 holds number of bytes written to buffer

Use

This method returns the text string shown in a writable field.

C veneer

extern _kernel_oserror *writablefield_get_value (unsigned int flags,
 ObjectId window,
 ComponentId writable,
 char *buffer,
 int buff_size,
 int *nbytes
);
418

Window class
WritableField_SetAllowable 514

On entry

R0 = flags
R1 = Window object id
R2 = 514
R3 = Gadget component id
R4 = pointer to string giving new set of allowable characters

On exit

R1-R9 preserved

Use

This method defines the set of allowable characters which can be typed into a
writable field. The set is specified in the same way as a Wimp ‘a’ validation string
directive (without including the letter ‘a’). If the string is NULL, then all characters
are allowable.

C veneer

extern _kernel_oserror *writablefield_set_allowable (unsigned int flags,
 ObjectId window,
 ComponentId writable,
 const char *allowed
);
419

Writable fields
WritableField_SetFont 516

On entry

R0 = flags
R1 = Window object id
R2 = 516
R3 = Gadget component id
R4 = pointer to font name to use
R5 = width in 16ths of a point
R6 = height in 16ths of a point

On exit

R1-R9 preserved

Use

This method makes the writable field use an anti-aliased font. If the font name is
NULL, then the field will use system font.

C veneer

extern _kernel_oserror *writablefield_set_font (unsigned int flags,
 ObjectId window,
 ComponentId writable_field,
 const char *font_name,
 int width,
 int height
);
420

Window class
Writable field Toolbox events

WritableField_ValueChanged (0x82885)

Block

+ 8 0x82885
+ 12 flags

if bit 0 is set, then the text string was too long to fit into the event block
+ 16... text string shown in writable field

Use

This Toolbox event is raised when the value of the writable field has changed. The
text string is copied into the event block, and is nul-terminated. If the text string
was too long to fit into the event block, then bit 0 of the flags word is set and a null
string is supplied.

C data type

typedef struct
{
 ToolboxEventHeader hdr;
 char
string[sizeof(ToolboxEvent)-sizeof(ToolboxEventHeader)];
} WritableFieldValueChangedEvent;

Writable field templates

Field Size in bytes Type

text 4 MsgReference

max_text_len 4 word

allowable 4 MsgReference

max_allowable_len 4 word

before 4 word

after 4 word
421

Writable fields
422

17 ResEd

esEd is the tool used to construct and edit Toolbox resource files. It provides

the following:

● A display of the object templates present in the resource file (called the
resource file display), each object template being represented by a named
icon. You can drag these icons to move and copy object templates between
resource file displays (and other co-operating applications).

● A selection of pre-defined object templates for you to drag into a resource file
display (this is the standard way to populate a resource file display with object
templates).

● A specialised editor to allow you to edit all the various classes of object
templates.

To use this chapter you should have a basic understanding of the Toolbox and
objects.

Overview

The process for creating, editing, and saving a resource file can be summarised as
follows:

1 Start ResEd.

2 Open a new resource file display.

3 Open an object prototypes display containing pre-defined object templates.

4 Drag the object templates you require from the object prototypes window into
the resource file display.

5 Double-click on an object template to open an editing window for it.

6 Edit the object templates.

7 Save the edited object templates into a resource file.

The following section, Creating and editing a Toolbox resource file, gives a detailed
description of the above process.

R

423

Creating and editing a Toolbox resource file

1 Start ResEd in a similar way to other RISC OS applications, by double-clicking
on its application icon. It loads and installs an icon on the iconbar.

2 Open a new resource file display by clicking Select on the ResEd iconbar icon
or choosing New from the ResEd menu. A new, untitled resource file display
will appear on the screen.

3 The object prototypes window allows you to drag any prototype object
template into the resource file display. To open the object prototypes window
click Adjust on the iconbar icon or choose Prototypes... from the ResEd menu.

4 Drag one or more object templates from the object prototypes window into the
resource file display.
424

ResEd
5 To edit a Window object template double-click on its icon in the resource file
display. An editing window will appear showing the object template in full:

6 When you have finished editing a window object template, close the editing
window using the close icon (some object templates are displayed for editing
in dialogue boxes, and you close these by clicking on the OK button):

7 When you have finished editing all the object templates you can save them
using the Save option from the resource file display menu. This leads to a Save
as dialogue box, which allows you to save some or all of your object templates.

double click on an
object template icon an editing window for that template is displayed
425

Starting ResEd
Starting ResEd

Start ResEd in a similar way to other RISC OS applications, by double-clicking on
its application icon. It loads and installs an icon on the iconbar. It may also be
loaded by double-clicking on a file of type Resource, in which case the file is
loaded and displayed.

Each resource file is displayed in its own resource file display. If you load a file
which is already loaded, that file’s window is raised to the top of the window stack.

Whenever a resource file is loaded, a corresponding Sprites file is sought in the
same directory. If one is found its sprites are loaded with *iconsprites and used
when displaying the resources in the resource file display. Sprite files may also be
loaded by dragging to the iconbar icon.

The iconbar icon

The iconbar icon responds to the mouse in the following ways:

● clicking Select on the icon opens an empty resource file display

● clicking Menu on the icon opens the ResEd Menu

● clicking Adjust on the icon opens the object prototypes window.

Empty resource files are opened with incrementally-unique names (Untitled1,
Untitled2 etc). Each one is opened in a slightly different position to the last.

The object prototypes window contains prototype object templates of each class.
You can drag these into the resource file display in order to populate it with object
templates. The object prototypes window is fully described in The object prototypes
window on page 427.

The iconbar menu

Clicking Menu on the iconbar icon displays the following menu:

Info displays an Info dialogue box.

New opens an empty, untitled resource file display.

Prototypes... opens the object prototypes window (described on page 427).

Quit exits the program.
426

ResEd
The object prototypes window

Resource file displays may be populated with object templates by dragging them
in from the object prototypes window. The templates are named after the classes
they represent. You can copy them into your resource file display by drag and drop,
rename them as desired, and then view and edit them by double-clicking on their
icons.

The following object templates are available:

Colour DboxColour menuDCS DboxFile Info Dbox

Font DboxFont menuIconbar iconMenu

Print DboxProg Info DboxQuit DboxSave As Dbox

Scale DboxToolbarWindow

To open or raise the object prototypes window, choose Prototypes... from the
iconbar menu or click Adjust on the iconbar icon. The object prototypes window is
very similar to an ordinary resource file display, but attempts to move, rename,
modify or delete object templates within it are ignored. It is not possible to edit an
object template within the object prototypes window; instead you must first drag
the object template into a resource file display. The object prototypes window
does not have a menu and only Ctrl-Z and Ctrl-A keyboard short-cuts are available.
427

The resource file display
The resource file display

The resource file display is Filer-like, in that it contains a grid of icons, one per
object template held in the resource file. The sprite associated with each icon is a
pictorial clue as to the type of object template that icon represents; each class of
object template has its own sprite. The text associated with each icon is the name
assigned to that object template.

Icons may be selected, deselected and dragged from one resource file display to
another (as in the Filer).

Editing an object template

To edit an object template, double-click on its icon. A window will then open for
that object template. Some common features of editing object templates are
described in Editing object templates in general on page 432.

For details of editing the individual types of object templates see

● Editing the Menu class on page 435

● Editing a Window object template and gadgets on page 445

● Editing other classes on page 481.

Copying object templates

You can copy object templates between resource file displays by dragging their
icons. You can also make a copy of an object template within one resource file
display by using Shift-Drag Select.

Moving object templates

You can move an object template from one resource file display to another using
Shift-Drag Select. This will remove the object template from the source window.

Note: Copy or move operations that would result in duplicate names are resolved
by the new object templates' names being automatically disambiguated by the
addition of a unique numeric suffix (you will be warned if this happens).
428

ResEd
If you drag a selection into a different application, the result is the exporting of a
resource file containing just the selected object templates. This file is named
Selection.

If the resource file display is the target of a drag and drop or DataSave interaction
from another application, it checks the file type and rejects the file if not of type
Resource or Text (for more information on text files see Exporting and importing
messages on page 493). Resource files are imported into the resource file display
and object template names are disambiguated if necessary, as described above.
Importing a file does not alter the filename of the destination resource file display
– the name of the incoming file is simply ignored.

The resource file display menu

Clicking Menu on the resource file display shows the ResEd menu:

The File menu

Info leads to a File Info dialogue box.

Save leads to a Save as dialogue box, which includes a Selection button for saving
only the selected object templates.

Export messages leads to a Save as dialogue box allowing you to produce a text
file containing all the user-visible messages for the file (or selection, if Save
selection is set). The messages may then be edited (typically, translated into a
different language) and then re-imported by dropping the file back into the
resource file display.

For more information about exporting and importing messages see Exporting and
importing messages on page 493.
429

The resource file display
The Edit menu

Copy (which is shaded unless only one object template is selected) leads to the
following dialogue box:

The name field is filled in with the name of the selected object template. To make a
copy of the object template in the same file, alter the name and click Copy.

Rename leads to a dialogue box with a writable icon for entering a new name for
the selected object template and a Rename button to accept the change:

The writable icon is initially filled in with the current name. When Rename is
pressed, the object template is renamed unless a name clash would occur, in which
case an error message is issued instead.

You can also change an object template’s name by clicking Alt-Select inside
the icon’s name, editing the string and pressing Return:

Pressing Escape or clicking outside the writable icon cancels the rename.

Delete deletes all the selected object templates.

Object flags allows you to edit the settings of the object flags for the selected
object templates. See The Object flags dialogue box on page 431 for more details.

Select all selects all the object templates in a resource file display.

Clear selection deselects all the selected object templates.

Prototypes...

This option displays the object prototypes window.

click Alt-select inside the icon’s name edit the name and press Return
430

ResEd
The Object flags dialogue box

You can edit most object template data by double-clicking on its icon. There is,
however, a 32-bit flags field in the object header. These flags are applicable to all
classes of object, and you may view the flags of an individual object template by
selecting it and entering the Object flags dialogue box. It has the following
appearance:

To summarise, the flags are:

If there is one object template selected, or multiple object templates which have
identical flag values, the buttons will be set to Yes or No as appropriate. If there are
multiple selected object templates with different flag settings, then the flags which
differ will be set to As Is, indicating to the user that the flag value differs across the
object templates.

You may adjust the settings as required, and on pressing OK the new flag values
will be applied to the selected object templates. Any flags which are set to As Is
will not be applied to the selected object templates; each object template will
retain its existing value for those flags. So, for example, you could change a
number of object templates to be ‘Shared’ without altering their other flags.

Bit Meaning when set

0 create object when resource file is loaded

1 show object as soon as it is created

2 object is shared

3 mark this as an Ancestor object
431

Editing object templates in general
Editing object templates in general

Once you have dragged an object template from the Objects prototype window
into the resource file display you can edit it by double-clicking on its icon. You can
then edit a properties box for that object template specifying how you want it to
appear and behave. All the object properties boxes share the following features.

Length fields

Help messages

The Window and Menu object templates, and all gadget templates, include the
facility to specify a help message:

If you switch on the Help text option you are then able to enter a help message
into the associated message field:

By default an asterisk is displayed in the Length field. This asterisk ensures that,
whatever string you enter into the message field, the exact length of that string
(including its terminator) will be passed to the Toolbox.

Alternatively you can manually change the size of the Length field to be greater
than the length of the help message itself. This is useful if you wish to alter the
help message at run-time. If you type a number into the Length field directly, then,
when you click on OK, the size of the Length field will be set to the length of the
string you entered +1 (unless the number you entered is greater than the length of
the string, in which case the number will remain as you entered it).

The following are some points to bear in mind when entering help text:

● If you switch off the Help text option then any help message you entered in
the associated message field will be removed.

● If you switch on the Help text option, but leave the associated message field
empty, then the Interactive help window will go blank when the user moves the
pointer over the relevant object.

Other length fields

Some other options in object properties boxes behave in a similar manner to the
above; for example, editing the Titles of objects.
432

ResEd
The selection model

ResEd supports some new selection techniques to improve the way you can
manipulate objects and object templates.

Selection highlighting

ResEd provides two levels of selection with two corresponding types of highlight:

● a full highlight for a selection within a window that has the input focus

● a partial highlight for the previous selection in a deselected window.

For example, when you select one or more object templates in the object
prototypes window and drag them to a resource file display, the original object
templates remain partially highlighted. This allows you to return to the object
prototypes window and, by clicking on any of the object templates within the
original selection, automatically select all of the original selection. For example:

You can use this additional selection technique throughout ResEd; for example,
you can select menu entries when editing a Menu object template, and still retain
them as a selection if you temporarily need to edit a different window:

object templates remain partiallyobject templates fully highlighted
in resource file display highlighted in previous window

Window has input focus two menu entries selected
within the window

menu entries still selected
when the window no longer
has the input focus
433

Editing object templates in general
Box selection

If you use the mouse to drag a Select box around a group of object templates, you
can control whether all the objects (even those partly) within the box are selected,
or just the ones wholly within the box:

Groups of gadgets (in the Window editor) or groups of menu entries (in the Menu
editor) can be selected in a similar way.

Cancel and OK

Cancel

Clicking Cancel (or pressing Escape) will close the dialogue box without making
any changes.

Clicking Adjust Cancel (or pressing Shift-Escape) will leave the dialogue box
displayed but will remove any changes made since opening the box.

OK

Clicking OK (or pressing Return) will close the dialogue box and include any
changes in the object template.

Clicking Adjust OK (or pressing Shift-Return) will leave the dialogue box displayed
and update all changes made since opening the box (e.g. if you increased the
contents of a help message field, the Length field would then be increased
automatically).

dragging a box around a group
of object templates will select any
object template partly or wholly
within the Select box

dragging a box around a group
of object templates while holding
down Shift will select only objects
wholly within the Select box

Select box
434

ResEd
Editing the Menu class

Double-clicking on a menu object template in the resource file display will display
a Menu editing window with the following appearance:

The editing window displays the menu as it will appear when displayed by the
Toolbox.

The Menu editor

Clicking Menu inside the editing window displays the following menu:

Edit leads to the Edit submenu.

Delete deletes the selected menu entries.

Properties... opens the Menu entry properties dialogue box for the selected
menu entry (see Editing a Menu entry on page 436).

Select all selects all the menu entries in the menu.

Clear selection deselects all the menu entries in the menu.

Properties... displays the Menu properties dialogue box, described in Editing the
Menu on page 438.

Menu entries... displays the Menu entries window, described in Inserting a new Menu
entry on page 439.

double-click on the menu title to display the
Menu properties dialogue for the menu

double-click on a menu entry to open the
Menu entry properties dialogue for that entry

click Menu inside the editing window to
display the top-level menu
435

Editing the Menu class
Editing a Menu entry

The Menu entry properties dialogue box

This is a dialogue box for viewing and editing the characteristics of a menu entry.
You can open it by selecting a menu entry in the editing window and then selecting
Properties... from the Edit menu (or by double-clicking on a menu entry):

Component ID is a text field containing the hexadecimal component identifier of
this menu entry. Normally there is no need for you to edit this field as the
component identifiers are automatically assigned. If you wish to assign identifiers
yourself, you must ensure that they are unique within each menu.

Note: Clicking OK while any component ids are the same will elicit an error
message and the dialogue box will stay open until this is sorted out.

Text and Sprite determine the contents of the menu entry:

If you select Text, you can then enter the text and keyboard short-cut to be
displayed, and the maximum permissible length for the entry’s text to be set to
at run-time.

If you want to enter a keyboard short-cut into the Key field manually, you may
have to use !Chars to display short-cuts such as Shift F3. It is more advisable
to create a keyboard short-cut first (in the Keyboards shortcut dialogue box),
and then drag this short-cut to the menu entry properties dialogue box.
This process is fully described in Using a keyboard short-cut entry to ‘fill in’ a menu
entry on page 454.
436

ResEd
If you select Sprite, you may then enter the name of a sprite to be displayed.

Ticked displays a tick next to this entry.

Has Submenu controls whether the entry has a submenu arrow.

Faded displays this entry in grey; when the menu is shown by an application the
entry will be unselectable.

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this menu.
If Help text is switched off, the Toolbox will instead supply any help text
associated with the menu as a whole – see Editing the Menu on page 438).

The Click action section specifies what happens when the user selects this menu
entry. The first thing that will happen is that the application will receive an event:

Selecting Default specifies that you will receive the default event
(Menu_Selection).

Selecting Other allows you to receive whichever event you specify in the
associated writable field (the event can be entered as a hex number, e.g.
‘&345’, or as a decimal number).

After the event has been delivered, you can specify whether an object will be shown
automatically. You can do this by turning on the Show object option and entering
the name of the object to be shown in the associated writable field.

The Submenu action section is very similar, and specifies what should happen
when the user traverses the submenu arrow of this entry. (The section is faded
unless the Has Submenu option has been selected). The text fields have the same
meanings as for menu selection. The default event in this case is Menu_Submenu.

The two Show object name fields may be filled in by dragging an object template's
icon from the resource file display into the appropriate text entry field (or onto the
corresponding option icon if the text entry field is shaded).
437

Editing the Menu class
Editing the Menu

The Menu properties dialogue box

This is a dialogue box for editing the top-level characteristics of a menu. It is
opened from the Edit menu or by double-clicking on the menu's title:

The Title field contains the text shown at the head of the menu.

Note: If a Menu with no title is shown, the Wimp will not display a title bar. This is
not Style Guide compliant, but the Menu editor allows this so that you can set a
title at run-time.

Deliver event before showing controls the following:

● None specifies that no event should be returned.

● Default specifies that the default event (Menu_AboutTobeShown) should
be returned immediately before showing the window.

● Other allows you to specify a different event to be delivered to the
application. The associated field displays the event code in hex; you may
enter event codes in either decimal or hex (by prefixing with ‘&’).

Deliver event when hidden controls the following:

● None specifies that no event should be returned.

● Default specifies that the default event (Menu_HasBeenHidden) should
be returned immediately after the window is hidden.

● Other allows you to specify a different event to be delivered to the
application. The associated field displays the event code in hex; you may
enter event codes in either decimal or hex (by prefixing with ‘&’).

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this menu
(if Help text is switched off, the Toolbox will not reply to such HelpRequest
messages).
438

ResEd
Inserting a new Menu entry

You can insert new menu entries into the menu using the Menu entries window.
The Menu entries window is opened by selecting Menu entries... from the
top-level menu.

The Menu entries window contains a dotted line separator and three prototype
menu entries:

● a basic menu entry

● a menu entry with a submenu arrow

● a ticked menu entry.

The menu entries in the Menu entries window may be dragged with the mouse and
dropped over the menu area to insert new menu entries and separators. The new
entry is placed between two existing entries according to the vertical position of
the drop point. If the mouse pointer is within the menu's title, it is inserted after
the title; if it is dropped after the final entry it is appended at the bottom.

Manipulating menu entries

Copying menu entries

You can copy a menu entry from one part of a menu to another using Shift-Drag
Select. The insertion point is determined as for inserting a new item. New menu
entries are automatically assigned unique component ids within the menu.

You can also use Drag Select to copy menu entries between editing windows.

Moving menu entries between different editing windows

You can move menu entries between different Menu editing windows using
Shift-Drag Select. The selected entries are deleted from the source window.

Re-ordering menu entries

You can re-order menu entries using Drag Select. The insertion point is determined
as for inserting a new item.
439

Example menu
Note: If a copy or move operation results in a menu containing two entries with the
same component id, the editor forces the newly inserted one to have a unique id.

Example menu

This example shows you how you might create the three menu entries in the
following typical menu:

Creating a submenu

The first menu entry in the above example (Pen) has an associated submenu, so
the Menu entry properties box could be filled in as follows:

The minimum sections to edit in the Menu entry properties box are

● Text – give the menu entry a unique name (e.g. ‘Pen’).

● Has submenu – switch it on.
440

ResEd
● Show object (in the Submenu action area) – switch it on and specify the name
of the object to show if the user traverses the submenu arrow (e.g. ‘PenMenu’).

You would then create another menu object template and give it the name
‘PenMenu’. This object would be displayed when the user traverses the submenu
arrow.

Displaying a dialogue box

The second menu entry in the above example (Styles...) has an associated
dialogue box, so the Menu entry properties box could be filled in as follows:

The minimum sections to edit in the Menu entry properties box are as follows:

● Text – give the menu entry a unique name (e.g. ‘Styles’). In this particular
example the ellipsis (...) signifies to the user that the dialogue box that will be
displayed is a persistent dialogue box (so the Show as transient option
should not be selected).

● Show object (in the Click action area) – switch it on and specify the name of
the object to show if the user clicks on this entry (e.g. ‘StylesBox’).

You would then create a window object template for the dialogue box and give it
the name ‘StylesBox’. This object would be displayed when the user clicks on
Styles...
441

Example menu
Note: Any object (e.g. submenus and dialogue boxes) can also be built
dynamically at run-time by the client application (see Attaching a submenu
dynamically on page 173).
442

ResEd
Creating a keyboard short-cut

The third menu entry in the above example (Group F3) returns an event if the
user clicks on the entry or uses a keyboard short-cut (Shift F3); this would allow the
client application to perform an appropriate action on receipt of the event.

Creating this keyboard short-cut requires two stages:

● defining the keyboard short-cut within the window object template itself.

● dragging this keyboard short-cut to the Menu entry properties box.

Defining the keyboard short-cut

The first stage is to define the keyboard short-cut within the window object
template itself. For example:

1 Click Select on the Key field and press Shift F3; the corresponding code (&193)
is automatically entered into the Key code field.

2 Specify the event code in the Deliver event box (e.g. ‘&345’).

3 Click on Update to add the new keyboard short-cut to the scrolling list.

4 Click on OK to add the new keyboard short-cut to the Window object template.

For more information on keyboard short-cuts see Keyboard short-cuts on page 452.
443

Example menu
Filling in the Menu entry properties box

The next stage is to open the third menu entry and give it a unique name (i.e.
‘Group’), and then drag the keyboard short-cut to it. This will automatically fill in:

● the Key short-cut (e.g. Shift F3) in the Key field

● the event code to return if the user clicks on this entry (e.g. ‘&345’):

Interactive help for menu entries

The Help window gives you information about the Menu window and also displays
the component id of an individual menu entry:

If the pointer is over a menu entry
the component id of that entry will
be displayed in the help window
444

ResEd
Editing a Window object template and gadgets

Double-clicking on a window object template in the resource file display will
display an editing window. This window displays the window object template as it
will appear (complete with gadgets) when displayed by the Toolbox. It has the
following appearance:

The Window menu

Info leads to an Info box showing the object template’s name.

Edit leads to the Edit submenu for the selected gadget(s).
See The Edit submenu on page 459.

Main properties... opens the Main window properties dialogue box. This box
allows you to specify those properties.
See The Main properties dialogue box on page 446 for more details.

Other properties... opens the Other window properties dialogue box. This box
allows you to edit those properties of a window object template that you would
normally only specify once.
See The Other properties dialogue box on page 449 for more details.

Colours... opens the Window Colours dialogue box.
See Window Colours on page 451 for more details.

Extent... opens the Window Extent dialogue box.
See Window Extent on page 452 for more details.

Key shortcuts... opens the Keyboard short-cuts dialogue box. This allows you to
define keyboard short-cuts for use inside the window.
See Keyboard short-cuts on page 452 for more details.

Toolbars... allows you to attach toolbar object templates to this window. See
Toolbar object template on page 463 for more details.

double-click Select on
the window background
to display the Main
properties dialogue box
445

Editing a Window object template and gadgets
Grid leads to the Grid dialogue box. This allows you to display an optional grid of
alignment points to assist in the uniform placement of gadgets.
See The Grid on page 455 for more details.

Gadgets... opens, or brings to the front, the gadgets window. This is a selection of
gadgets which may be dragged into a Window object template to populate it with
gadgets. See The gadgets window on page 456 for more details.

Close closes the window and incorporates any changes.

The Main properties dialogue box

This dialogue box allows you to edit the main properties of a window object
template. The name of the window object template that the dialogue box refers to
is displayed in the titlebar. Choose Main properties... from the Window menu or
double-click Select on the window background to display this box:
446

ResEd
Icons controls the following features:

Title allows you to enter the title of the window within the title bar. If you
switch this option off the window will not have a title bar.

Note: The window title is always a vertically-centred, indirected text icon in
system font; there is no facility to set a validation string.

Justify title allows you to specify the justification of the title within the title
bar.

The Back, Close, Toggle, Hscroll, Vscroll and Size option buttons control
whether the Back icon, Close icon, Toggle Size icon, Horizontal scroll bar,
Vertical scroll bar and Adjust size icons are displayed.

Show Menu is an option button that controls whether the window has a menu
attached to it. If this is switched on, the associated writable field is unshaded for
the menu object template's name to be entered. Alternatively the field can be filled
in by dropping a menu object template onto it (or onto the corresponding option
icon if the field itself is shaded).

Default input focus allows you to set the characteristics of the default input focus
for the window.

None specifies that the window has no input focus and no caret.

Invisible caret specifies that the window has input focus, but no caret is
displayed until the user clicks in an appropriate area.

In gadget specifies that the window has input focus and the caret is displayed
inside a gadget. You can enter the component id of the gadget in the adjoining
field or drag a gadget to the field (or to the corresponding radio button if the
field itself is shaded).

Auto-open controls whether the Window module automatically (re-)opens the
window when a Wimp_OpenWindowRequest event is received.

Auto-close controls whether the Window module automatically closes the window
when a Wimp_CloseWindowRequest event is received.
447

Editing a Window object template and gadgets
Deliver event before showing controls the following:

● Default specifies that the default event (Window_AboutToBeShown)
should be returned immediately before showing the window.

● None specifies that no event should be returned.

● Other allows you to specify a different event to be delivered to the
application. The associated field displays the event code in hex; you may
enter event codes in either decimal or hex (by prefixing with ‘&’). When the
event is delivered the rest of the event block is filled in as it would have
been for Window_AboutToBeShown.

Deliver event when hidden controls the following:

● Default specifies that the default event (Window_HasBeenHidden)
should be returned immediately after the window is hidden.

● None specifies that no event should be returned.

● Other allows you to specify a different event to be delivered to the
application. The associated field displays the event code in hex; you may
enter event codes in either decimal or hex (by prefixing with ‘&’). When the
event is delivered the rest of the event block is filled in as it would have
been for Window_HasBeenHidden.

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over this window
(if Help text is switched off, the Toolbox will not reply to such HelpRequest
messages).

The above controls are described in the Window Manager chapter in Volume 3 of the
RISC OS Programmer’s Reference Manual, and in the chapter Window class on page 289.
448

ResEd
The Other properties dialogue box

This dialogue box allows you to edit those properties of a window object template
that you would normally only specify once. You can only display this box by
choosing Other properties... from the Window menu:

Flags controls the following features:

Pane specifies that the window is a pane.

Moveable determines if the window is moveable, i.e. it can be dragged by the
user.

Backdrop, if selected, does not allow any other windows to be opened below
this one.

Allow offscreen allows the window to be opened or dragged outside the
screen area (regardless of the Configure option settings).

Hot keys allows events to be generated for hot keys.

Auto-redraw specifies that the window can be redrawn entirely by the Wimp,
i.e. there are no user graphics in the work area.

Real colours specifies that the window colours should be treated as GCOL
numbers instead of standard Wimp colours.

Force on-screen forces the window to stay on screen.
449

Editing a Window object template and gadgets
Note: Old-style window flags are not supported (i.e. bit 31 of the window flags word
is always set).

Button type determines how the Wimp will deal with mouse movements and clicks
over the window’s background. There are 16 possible types which can be selected
from the Pop-up menu (see the RISC OS Programmer’s Reference Manual entry for
Wimp_CreateIcon on page 1-93 for more details).

Extendable X ignores the right-hand extent if the Adjust size icon of the window is
dragged.

Extendable Y ignores the lower extent if the Adjust size icon of the window is
dragged.

User scroll controls the Scroll_Request event:

Off does not return a Scroll_Request event.

Autorepeat returns a Scroll_Request event when a mouse button is clicked on
one of the arrow icons (with auto-repeat) or in the outer scroll bar region (no
auto-repeat).

Debounced returns a Scroll_Request event when a mouse button is clicked on
one of the arrow icons (but with no auto-repeat) or in the outer scroll bar
region (no auto-repeat).

Sprite area controls whether sprites are located in the client area or the Wimp
sprite area.

Shape is an option button that controls whether the mouse pointer should change
shape when it is over the window. If this is switched on, the associated writable
fields are unshaded for the pointer sprite's name, its length, and the coordinates of
its hotspot to be entered.

Manipulating the window

You can use the icons around the window object template to manipulate the
window's size, position and scroll offsets. This information is saved with the
template. The stacking position is not saved; all templates are saved with a
stacking position of -1 (top of stack) unless the window's Backdrop flag is set, in
which case the position is -2 (bottom of the stack).
450

ResEd
Re-sizing the window

You can resize windows which have no scrollbar using Ctrl-Shift-Drag Adjust. The
window can only be resized subject to the constraints of its current work area
extent.

Moving the window

You can move windows which have no title bar using Ctrl-Shift-Drag Select.

Closing the window

The window's Close icon, if present, may be used to close the window. The window
may also be closed by using the Close menu option, or by the keyboard short-cut
Ctrl-F2.

Window Colours

This dialogue box allows you to edit the colours of a window:

The display fields contain the Wimp colour number of the chosen colour, and have
their backgrounds set to that colour. The menu buttons invoke a pop-up menu
offering a choice of the 16 Wimp colours. The menus for Titlebar: Foreground and
Work area: Background also offer the choice Transparent.

An alternative form of this dialogue box is displayed if the window object’s Real
colours flag has been set (see The Other properties dialogue box on page 449). In this
case the pop-up menus are not available and the colour display fields are replaced
by writable icons; values in the range 0 to 255 may be entered.
451

Editing a Window object template and gadgets
Window Extent

This dialogue box allows you to edit the extent (work area size) of a window:

The Work area is represented by two pairs of x,y coordinates for the lower-left and
upper-right corners. You may adjust these coordinates by typing into the adjoining
writable fields, or using the adjuster arrows on the ‘adjustable square’.

Clicking on the Clip button causes the size of the work area to be made equal to
the window's current visible area on your screen.

Width and Height allow you to enter the size below which the window may not go.

Keyboard short-cuts

Each window may have a list of keyboard short-cuts associated with it. These are
programmable mappings from Wimp key codes to Toolbox events. When a
keystroke event is delivered, the Window module checks to see if it is in the list of
short-cuts for the window containing the caret. If so, it delivers the associated
event to the application. Alternatively (or additionally), a keyboard short-cut may
be associated with an object template which specifies an object to be shown when
the keystroke happens.

upper-right corner

lower-left corner

adjuster arrows
for altering the
corner coordinates
452

ResEd
The keyboard short-cuts assigned to a window may be created and modified using
the Keyboard shortcuts dialogue box. The name of the window that the dialogue
box refers to is displayed in the titlebar:

Existing keyboard short-cuts are displayed in the scrolling area. Double-click on
one of them to load its details into the icons below for editing; alternatively simply
type in the details of the new one.

Key is a special icon which allows you to define a key code by pressing the
corresponding key(s) on the keyboard. First click Select on the icon to activate it
and then press the key combination. The corresponding code appears in the Key
code field, and a description of the key appears in the Key field. Note that
Shift-Ctrl-letter combinations are not allowed.

Key code is the Wimp keycode for the event as described in the RISC OS
Programmer’s Reference Manual entry for Wimp_Poll (see page 1-112). This code is
displayed automatically when you enter a key press into the Key field, or you may
specify it yourself as a decimal number or a hex number (by preceding it with &).

Deliver event selects whether the keystroke will generate an event. The associated
writable field allows you to enter the event code as a decimal or hex number.

Show object selects whether the keystroke should show an object. The associated
writable field allows you to specify the name of the object template to be shown.

Transient causes the object to be shown with transient behaviour.

Update adds the new keyboard short-cut to the scrolling list, replacing any
short-cut for the same key already present.

Delete deletes the selected short-cuts from the list. The short-cuts listed in the
scrolling list can be selected for deleting by clicking on them (Adjust toggles
whether the short-cut is selected or not).
453

Editing a Window object template and gadgets
OK accepts the updated list of short-cuts and closes the window.

Cancel closes the window, discarding any changes.

Using a keyboard short-cut entry to ‘fill in’ a menu entry

You can fill in the Key field and Click action fields (Deliver event, Show object
and Show as transient) in a menu entry by dragging a keyboard short-cut entry
from the Keyboard shortcuts scrolling area and dropping it into a Menu entry
properties dialogue box in the Menu editor:

drag the required keyboard
short-cut to the Menu entry
Properties dialogue box -
the Key field and Click action
fields and options will be filled in
454

ResEd
The Grid

The Grid dialogue box can display an optional grid of alignment points to assist in
the uniform placement of gadgets:

The grid is represented by a matrix of dots which overlay the contents of the
window. The grid spacing is specified as a number of OS Units between grid points,
this being configurable independently for different windows.

Show grid controls whether the grid is currently displayed for this window.

If Lock to grid is selected, gadgets may only be moved or resized in units of grid
spacing. This means that if you have a group of gadgets then you can move (or
resize) them, either horizontally or vertically, in multiples of the selected grid
spacing, and they will keep their relative positions.

Note: If you drag gadgets into a window, the gadgets will not be locked to the grid
in the window until you use the Snap to grid option (see page 460).

Grid spacing controls the spacing of the grid. For maximum compatibility across
different RISC OS modes you are advised to set grid spacings to exact multiples of
8, and to this end the adjuster arrows alter the grid spacing in steps of 8. Values
that are not a multiple of 8 may be entered from the keyboard but will be forced to
be exact multiples of 4. For example:

There is also an option that allows you to snap gadgets to grid points. This is
described in Snap to grid on page 460.
455

Gadgets
Gadgets

The gadgets window

You can populate a window with gadgets by dragging them in from the gadgets
window. This is a read-only window containing a typical example of each
supported gadget type. You can display the gadgets window by choosing the
Gadgets... option from a Window menu (or by pressing Ctrl-G):

The gadgets in the gadgets window may not be moved or deleted. The gadgets
window does not have a menu, and only the keyboard short-cuts ^A and ^Z are
available.

Positioning and moving gadgets

You can drag any of the gadgets from the gadgets window into your window object
template and drop them wherever is appropriate.

drag a gadget from the
Gadgets window into the
Window object template
456

ResEd
Repositioning and copying

You can reposition one or more gadgets in your window by first selecting them and
then using Drag-Select with the pointer over one of the selected gadgets. If Lock to
grid is on, the gadgets are moved by the nearest multiple of the grid spacing. If you
hold down Shift, a copy of the gadgets is made.

Accurate positioning

There are three ways to position a gadget accurately:

● specify its coordinates in the window’s work-area coordinate system
(see The Coordinates dialogue on page 461)

● align it with one or more other gadgets using the Align menu (see page 462).

● move the gadget (or selection of gadgets) using the cursor keys. This can be
done by selecting a gadget, holding down the Select button (as if dragging),
and then pressing any of the four cursor keys.

Auto-scrolling

If you want to move a gadget beyond the visible area of the window on the screen
you must drag the gadget very slowly towards one of the sides of the window.
Auto-scrolling of the window will occur when the mouse pointer comes close to a
side of the window; scrolling is faster the closer the pointer is to the edge.

Moving gadgets between windows

You can copy gadgets between windows by dragging them from one window object
template to another (to avoid auto-scrolling you should not drag a gadget too
slowly when dragging between windows).

If you hold down Shift the gadgets are deleted from the source window.

drag a gadget slowly to any side of
the window to start auto-scrolling
457

Gadgets
Moving a gadget in one direction only

You can move a gadget in one direction only using Drag-Adjust on the top, bottom,
left or right resize handles (if Lock to grid is switched on, the gadgets are moved
by the nearest multiple of the grid spacing):

Changing the size of a gadget

You can change the size of a gadget using Drag-Select on a resize handle (if Lock to
Grid is on the change in size of the gadget (or selection of gadgets) is always a
multiple of the grid spacing).

You can also change the size of one gadget, or of a selection of gadgets, using the
Width and Height options in the Coordinates dialogue box (see page 461).

Stacking

Gadgets are not intended to be stacked; so there are no facilities for placing one
gadget ‘above’ another. Gadgets whose bounding boxes overlap will stack in an
arbitrary order; there is no way you can guarantee that this order will remain
unchanged. The exception to this rule is the labelled box gadget, which is always
placed beneath all other gadgets.

Moving the caret between writable gadgets

You can define the order in which the caret is moved between writable gadgets (in
response to the Tab, Shift-Tab, up-arrow and down-arrow keys) by filling in the
Before and After fields of the gadget properties dialogues:

These fields contain the component ids of the two gadgets ‘before’ and ‘after’ the
gadget. To help you fill these in, you can drag gadgets into them, or more typically
you can use the Link writables option in the Edit submenu. This automatically fills
in these fields for all the selected gadgets that support caret movement (writable
fields, string sets and number ranges). The ordering imposed is left-to-right and
top-to-bottom (as if you were reading a page of text).

move vertically only

move horizontally only move horizontally only

move vertically only
458

ResEd
The Edit submenu

If you select one or more gadgets then, depending on the gadgets selected, some
of the following edit options in the Edit submenu will be available:

Delete deletes the selection of gadgets.

Properties... opens the gadget properties dialogue box for the selected gadget. An
alternative way to open this dialogue box is to double-click Select on the gadget
itself.

Snap to grid snaps selected gadgets to the window grid (see Snap to grid on
page 460). Note that this option is independent of the Lock to grid setting, and is
operative even when the grid points are not displayed.

Make radio group makes any selected radio buttons into a radio group (see
Manipulating radio groups on page 460).

Link writables links the selected writable gadgets together so that they can be
traversed with Tab, Shift-Tab, up arrow and down arrow keys (see Moving the caret
between writable gadgets on page 458).

Coordinates allows gadget coordinates to be entered from the keyboard for
precise positioning (see The Coordinates dialogue on page 461).

Align allows you to align gadgets with one another (see The Align menu on
page 462).

Select all selects all the gadgets in the window.

Select leads to the Select submenu.

Radio group selects all the radio buttons in the radio group to which the
selected radio button belongs (see Manipulating radio groups on page 460).

Next writable selects the gadget that is linked after the selected gadget.

Previous writable selects the gadget that is linked before the selected gadget.

Default writable selects any gadget that is assigned as the ‘default input
focus’ for the window.

Default action selects any action button that is assigned as the default action
button.

Cancel action selects any action button that is assigned as the cancel action
button.

Clear selection deselects all the gadgets in the window.
459

Gadgets
Snap to grid

The Snap to grid operation on the Edit submenu makes each selected gadget
move so that its alignment point is on the nearest gridpoint.

The ‘alignment point’ of a gadget is as follows:

● the Y-coordinate is always the centre of the gadget

● the X-coordinate is normally the lefthand side of the gadget.

(the only exception is the label gadget; where the alignment point is on the
lefthand side if the label is left-justified, on the righthand side if the label is
right-justified, and in the centre if the label is centre-justified)

Snap to grid snaps each selected gadget independently (when the selection is
moved under grid-lock, the relative positions of the gadgets are preserved).

If you drag a selection of gadgets into a window they will not be snapped to the
grid in that window (even if Lock to grid were switched on). If they were snapped
automatically to the grid it would alter their relative positions to each other, and
this might not be desired. The gadgets remain selected when dragged into a
window, so if you do want to snap them to the grid then you can just press Ctrl-S
(for Snap to grid).

Manipulating radio groups

When you drag radio buttons into a Window object template from the gadgets
window, each one ends up in its own new radio group. You must then select and
group them explicitly using the Make radio group option in the Edit menu.

The Make radio group option is faded unless the window's selection consists
entirely of radio buttons. When you choose this menu entry, the selected radio
buttons are placed into a single new radio group.

To select all members of a radio group, press Menu over one of them and choose
Radio group from the Select submenu in the Edit menu. This enables you to see
instantly the grouping relationship between radio buttons.

When a radio button is copied within a window by use of Shift-Drag, the copy is put
into the same group as the original. So the easiest method to create a radio group
is to drag a single radio button into the Window object template and make
multiple copies of it using Shift-Drag Select.

Dragging a group of radio buttons between window templates

Adding radio buttons to a window never adds them to a pre-existing group; but any
radio groups added to a window remain as groups.
460

ResEd
The Coordinates dialogue

This dialogue box allows you to position or size selected gadgets by entering
coordinates (in the window's work-area coordinate system) from the keyboard:

When a single gadget is selected, all four option buttons are switched on and the
four writable fields are filled in with its position and size.

If you select more than one gadget, they are checked to see if they have common
values for any of the four attributes. Those attributes with common values are filled
in, and the corresponding option buttons switched on. Those attributes with
differing values are faded, and the corresponding option buttons switched off. You
may toggle the option buttons to alter the settings of any of the latter attributes.

When you click OK, the attributes are set from those fields with the option buttons
switched on. The attributes that have their option buttons off are left alone. Thus,
it is possible to set several gadgets to have the same X position without altering
their Y positions, and at the same time equalise the width of the selected gadgets:

... would result in this

selecting the four
gadgets below, and
setting Position and
Size as opposite ...
461

Gadgets
The Align menu

The Align menu allows you to align a group of selected gadgets in a window

1 select one or more gadgets

2 decide which gadget you want to align the other gadgets to and press Menu
over it (this gadget does not need to be part of the selection)

3 go into the Align menu and click on the required type of alignment:

The gadgets are then moved to align with the nominated gadget.

If you press Menu when the pointer is not over a gadget the Align menu will be
faded. Lock to grid is ignored when aligning.

Aligning gadgets from top to bottom

The top three options control how the gadgets will be aligned from top to bottom.
In the following example the gadgets are aligned with the slider gadget:

Before aligning Top edges Centre lines Bottom edges
462

ResEd
Aligning gadgets from left to right

The bottom three options control how the gadgets will be aligned from left to right.
In the following example the gadgets are aligned with the Labelled box gadget:

Toolbar object template

The toolbar object prototype is a window object template. Double-clicking on it
inside a resource file display will display a blank editing window:

You can then edit this window, move it round the screen (using Ctrl-Shift-Drag
Select), change its size (using Ctrl-Shift-Drag Adjust) and colour, drag gadgets into
it etc, in exactly the same way as you would edit a window object template.

Before aligning Left edges Centre lines Right edges
463

Gadgets
Positioning the toolbar within a window

Once you have finished designing your toolbar you can open a window object
template, go into the window menu for that template, and select the Toolbars...
option. This will display the following box:

You can enter a toolbar object template name into a writable field after switching
on the corresponding option icon (e.g. to the right of Top left), or drop a toolbar
object template onto the writable field (or onto the associated option icon if the
writable field is faded).
464

ResEd
Interactive help for gadgets

The Help window displays the id, size and position of a gadget in a window.

In the following example, a window has been customised as a Find dialogue box
and the pointer has been moved over two of the gadgets in the window:

The customised window shown above is described in Adding a find capability on
page 59 in the User Interface Toolbox manual.

Help displays the id, size and position
of the writable field gadget

Help displays the id, size and position
of the radio button gadget
465

Gadgets
Common features in gadget properties boxes

Some features are common to several or all gadget properties boxes. These are
described here rather than repeating their descriptions in each gadget section:

● The title bar contains a string describing the type of gadget being edited.

● The first field is always a writable icon containing the gadget's Component ID.
Normally you do not have to enter anything into this field as a unique number
is automatically assigned to it. If you need to, you can change a gadget's id by
typing a new id into this icon. When OK is pressed, the gadget will be
renumbered. Duplicate component ids are not allowed within a window; any
attempt to set a component id to one already used by a gadget in the same
window will be faulted. New gadgets dragged in from the gadgets window have
a new unique component id chosen automatically.

● Next to the component id is a display field showing the name of the window
object template that the gadget belongs to.

● Many of the dialogues have a Text field allowing you to type in a string which
appears in the gadget.

● All gadgets have a Help text field. This is a writable icon for you to supply a
suitable interactive help string for the Toolbox to send to !Help when the
mouse pointer is over the gadget. If the Help text option icon is not selected,
the underlying window will respond to !Help instead.

● All gadgets have a Faded option button. Setting this fades the gadget and
makes it inactive to mouse clicks.

title bar

Component ID

name of

Help text

Faded

Length field

OK and Cancel buttons

option

window
Text field

Deliver
event
466

ResEd
● Some string entry fields (including Help and Text) have an associated Length
field. This is a writable number range which specifies the length of the buffer
used to hold the text. For more details on how this field works see Help messages
on page 432.

● Several of the dialogues feature a Deliver event section. This section allows
you to specify whether or not you want an event to be returned, and what that
event should be:

● Default specifies that the default event should be returned.

● None (if present) specifies that no event should be returned.

● Other is used to specify a user event; you may enter event codes in either
decimal or hex (by prefixing with ‘&’).

● Every gadget properties dialogue has OK and Cancel buttons (see page 434
for more details).

Opening a gadget properties box

You can open the properties dialogue box for a gadget by double-clicking on the
gadget in the Window editor.

The following sections describe in detail the layout and extra controls of each type
of gadget properties dialogue:

Gadget see page

Action button properties 468

Adjuster arrow properties 469

Button properties 469

Display field properties 471

Draggable properties 471

Label properties 472

Labelled box properties 473

Number range properties 473

Option button properties 475

Pop-up menu properties 476

Radio button properties 476

Slider properties 477

String set properties 478

Writable field properties 480
467

Gadgets
Action button properties

The action button properties box is displayed as follows:

The Show object option controls whether pressing this button should cause
another object to be shown automatically. You can enter the object template's
name into the associated writable field, or drag the object template into this field
(or onto the associated option icon if the field is faded). This mechanism may be
used to make nested dialogues.

Show as transient selects whether the object will be shown as a transient or not.

The Button section allows you to specify the operation of the action button.

Default controls whether this button is the default for the window it is in. If
you select it, the button is given a highlighted border and is activated by any
presses of the Return key within its window.

Cancel controls whether this button is the cancel button for the window it is
in. If this is selected, all clicks on the button cause the window to be closed.
Also any Escape key presses when the parent window has the caret cause the
Cancel button to be activated.

When you make an action button into the Default or Cancel button for its
window, that attribute is removed from the button that previously had it.

If you drag an action button into another window, the editor checks that the
strictures regarding Default and Cancel buttons are not violated (that there
must be at most one of each). If necessary the previous ‘owners’ of these
attributes are made into normal action buttons.
468

ResEd
Whenever the Default attribute is added to an action button, its bounding box
is automatically enlarged to include the special border, and when the attribute
is removed, the bounding box is made correspondingly smaller.

Local makes an action button into a Local action button. Unlike a normal
action button, activating it will not cause the parent window to be closed.

Adjuster arrow properties

The adjuster arrow properties box is displayed as follows:

The Direction radio buttons control the direction that the arrow button is pointing
in, and hence whether the button will return ‘up’ or ‘down’ events.

Button properties

The Button gadget exposes most of the underlying Wimp icon, allowing you to
create custom controls. The Button properties box is displayed as follows:
469

Gadgets
Text and Sprite are option buttons controlling the contents of the icon. By
switching the two buttons on or off, or just switching one of them on, you can
produce four combinations. The effects of these various combinations are
described in the RISC OS Programmer’s Reference Manual on page 3-101. If necessary
you can then specify a validation string in the Validation field. Note, however, that
if you only switch on Sprite, then the pointer must be to a sprite name.

Use client’s sprite area specifies that the Toolbox should first check on those
areas set up by Toolbox_Initialise, rather than using the default Wimp Sprite area.

Return menu clicks specifies that a Menu click is returned to the client application
(instead of being processed and acted upon by the Toolbox).

Button Type is a string set offering the sixteen possible Wimp button types:

0 Never 8 Double/Drag
1 Always 9 Menu icon
2 Auto-repeat 10 Double/Click/drag
3 Click 11 Radio
4 Release 12 Type 12
5 Double click 13 Type 13
6 Click/Drag 14 Write/Click/Drag
7 Release/Drag 15 Writeable

ESG is a writeable field for the input of the icon's Exclusive Selection Group
number. This number is constrained to be between 0 and 31.

Foreground and Background offer the choice of the sixteen standard Wimp
colours from a pop-up menu. The associated display field shows the chosen colour,
as well as the Wimp colour number in a contrasting colour.

The option buttons under Icon flags are used to set the remaining icon flag bits
that are not implicitly defined by the above settings. The correspondence between
buttons and icon flag bits is as follows (see the RISC OS Programmer’s Reference
Manual entry for Wimp_CreateIcon on page 1-93 for more details):

Button Bit
Border 2
H-centred 3
V-centred 4
Filled 5
Adjust 10
Half size 11
Needs help 7
Right justified 9
470

ResEd
There are three icon flag bits that are pre-set which you cannot change:

Display field properties

The display field properties box is displayed as follows:

The Justify radio buttons are used to choose whether the contents are positioned
to the left, right or centre of the gadget.

Draggable properties

The draggable properties box is displayed as follows:

Bit Set to

6 always set to system font

8 always indirected

21 always unselected when first displayed
471

Gadgets
The Draggable gadget may have a writable text string, a sprite, or both, as chosen
by relevant option buttons. At least one of these must be on.

The Deliver event at start of drag option allows you to control delivery of the
Draggable_DragStarted event.

Use Toolbox IDs allows you to specify that object/component id pairs of the drag
destination will be reported, rather than Wimp window handle/icon handle pairs.

The Drag type radio buttons allow you to select the behaviour of the draggable.

Drag provides drag behaviour equivalent to dragging a standard Save As box.

Double/Click is equivalent to Icon button type 10.

Double/Select is equivalent to Icon button type 8.

Has drop shadow allows you to specify whether the draggable has a grey drop
shadow when dragged.

Dithered allows you to specify whether the draggable is displayed as
semi-transparent when dragged.

Label properties

The label properties box is displayed as follows:

The Justify radio buttons are used to choose whether the contents are positioned
to the left, right or centre of the gadget.

Display border controls whether the gadget's bounding box is drawn or not.
472

ResEd
Labelled box properties

The labelled box properties box is displayed as follows:

The labelled box can have either a textual or sprite label, but not both. This is
chosen using the Text and Sprite radio buttons. The text entry field next to the
unselected radio button is faded.

Filled allows you to specify that the background to the sprite is set to grey.

Number range properties

The number range properties box is displayed as follows:
473

Gadgets
Deliver events when value changes controls whether the application receives
NumberRange_ValueChanged events when the contents of the writable change.

Initial, Minimum, Maximum and Step Size are writable fields in which you specify
the main parameters of the number range. They are always specified as integers.

Precision controls the display of a decimal point; its value is the number of digits
to be displayed to the right of the point (thus if precision is 2, the value 2.34 is
specified as 234). To display integers, set Precision to 0.

Has numerical display controls whether any numbers are displayed.

Display and Writable select whether the display area may be typed into. If
Writable is on, the Link to gadgets section allows you to specify which
gadgets the caret should be moved to when the Tab, Shift Tab, up-arrow and
down-arrow keys are pressed. If you drag a gadget into the Before or After
writable fields (or their associated option icons) its component id is entered
into the field automatically. Normally, however, you would use the Link
writables option in the Edit menu to determine the path taken by the caret.
See Moving the caret between writable gadgets on page 458 for more details.

The Justify radio buttons are used to choose whether the numeric value is
positioned to the left, right or centre of the numerical display field.

Display width allows you to specify the width (in multiples of 4 OS units) of the
field that displays the number (only if Has slider is switched on).

Has adjusters controls whether adjuster arrows are displayed; if selected, they will
appear as a pair of buttons to the right of the display area (or, if there is a slider, at
either end of the slider).

Has slider controls the presence and positioning of the gadget's associated slider.
The slider is always placed 8 OS units away from the display area, and may be to
the left or right of it. The slider will be interactive only if the writable radio button
is selected.

The Slider colour section allows you to specify the colours of the slider:

Bar is a display field showing the colour of the slider's bar. The colour is set by
specifying a Wimp colour number from the attached pop-up menu.

Background is a display field showing the background colour of the slider's
bar. The colour is set by specifying a Wimp colour number from the attached
pop-up menu.
474

ResEd
Altering the size of the numerical field

As well as the normal eight resize handles, number range gadgets which display a
slider and numerical display have an additional handle. You can drag this handle
to the left or right to adjust the size of the numerical display field:

Note: You can only alter the size of the numerical field on one number range
gadget at a time. If you try and resize this field on a selection of number range
gadgets only the gadget you are actually resizing will be resized.

Option button properties

The option button properties box is displayed as follows:

Selected chooses whether this button is initially switched on or not.

drag the handle to the leftdrag the handle to the right
to shorten the numerical field to lengthen the numerical field
475

Gadgets
Pop-up menu properties

The pop-up menu properties box is displayed as follows:

Show menu controls whether a menu will be automatically shown when the menu
button is clicked. The template name of the menu to be attached may be filled in
by dragging a Menu object template to this field. If no Menu object template is
supplied, the application will be expected to create it at run-time in response to
the PopUp_MenuAboutToBeShown event.

Deliver event before showing controls whether the client application will receive
a PopUp_MenuAboutToBeShown event when the object is about to be shown.

Radio button properties

The radio button properties box is displayed as follows:

Each radio button is a separate gadget and belongs to a ‘radio group’, this group
being the set of radio buttons with which it is mutually exclusive. The radio group
is implemented by means of a ‘Group Number’ (see Radio buttons on page 390) in
the Toolbox data structure that describes the gadget; the group number is not the
same as the Wimp's ESG (which the Toolbox does not use). You cannot specify the
476

ResEd
group number explicitly, instead you must use the Make radio group option in
the Edit menu; however, the group number assigned by ResEd is always displayed
in the in group field.

Selected chooses whether the button is initially on or off; only one button in the
group may be on at once, and switching another on will turn off the previously-on
button.

Slider properties

The slider properties box is displayed as follows:

The Type radio buttons select between a read/write slider and a read-only one.

The Orientation radio buttons select whether the slider is horizontal or vertical.
When a slider’s orientation is changed, it is rotated through 90 degrees about its
centre point.

Slider colour Bar is a display field showing the colour of the slider's bar. The
colour is set by specifying a Wimp colour number from the attached pop-up menu.

Slider colour Background is a display field showing the background colour of the
slider. The colour is set by specifying a Wimp colour number from the attached
pop-up menu.
477

Gadgets
The Deliver events buttons control when the application will receive
Slider_ValueChanged events.

Minimum and Maximum are the signed integer bounds of the slider's range.

The Initial value and Step size are constrained to be valid given the current
minimum and maximum settings.

String set properties

The string set properties box is displayed as follows:

To set up a string set, enter the list of available strings into the Strings writable
field. The list is comma-separated; to include a comma in one of the strings,
precede it with a backslash. To include a literal backslash, use two backslashes.

The Initial writable field is for entering the string whose value will be used as the
initial contents of the string set. This string does not have to be one of the list of
available strings.

Has display field controls whether any text is displayed.
478

ResEd
Display and Writable select whether the display area may be typed into. If
Writable is switched on, the display area of the string set will be writable and
the user may enter any desired string into it – not just one of the
predetermined choices. Switching on Writable also enables you to fill in the
Specify allowed characters section.

The Justify radio buttons are used to choose whether the contents are positioned
to the left, right or centre of the display area.

Deliver events Value Changed controls whether the application receives
StringSet_ValueChanged events when the contents of the writable change.

Deliver events About To Be Shown controls whether the client application will
receive a StringSet_AboutToBeShown event when the object is about to be shown.

The Specify allowed characters section allows you to specify what characters may
be typed into the display area. If you do not switch on this option any character will
be accepted (before you can fill in the Specify allowed characters section you
must first switch on Writable).

Length determines the size of buffer allocated to the validation string.

Allowed characters accepts a pattern for the characters that should be
allowed in the gadget.

● The three option buttons marked a-z, A-Z and 0-9 enable you to specify
the lower-case letters a-z, the upper-case letters A-Z and the digits 0-9.

● The Other option allows you to enter a pattern as for the Wimp's icon
validation string ‘A’ command (for more information on the A command
see the RISC OS Programmer’s Reference Manual entry for Wimp_CreateIcon
on page 3-102).

For example, if you wanted to specify that the only characters allowed were the
digits 0-9 and the lower-case letters a-z, except for ‘d’, ‘p’ and ‘u’, you would fill
this section in as follows:

The Link to gadgets section allows you to specify which gadgets the caret should
be moved to when the Tab, Shift Tab, up-arrow and down-arrow keys are pressed. If
you drag a gadget into the Before or After writable fields (or into the associated
option icon if the writable field is faded) its component id is entered into the field
automatically. Normally, however, you would use the Link writables option in the
Edit menu to determine the path taken by the caret. See Moving the caret between
writable gadgets on page 458 for more details.
479

Gadgets
Writable field properties

The writable field properties box is displayed as follows:

The Justify radio buttons are used to choose whether the contents are positioned
to the left, right or centre of the gadget.

The Specify allowed characters section allows you to specify what characters may
be typed into the display area. Length determines the size of buffer allocated to
the validation string. Allowed characters accepts a pattern for the characters that
should be allowed in the gadget as for the Wimp's icon validation string ‘A’
command. For a full description of allowed characters see the section on allowed
characters on the previous page.

If Password behaviour is switched on, then any characters entered will be
displayed as minus signs.

The Link to gadgets section allows you to specify which gadgets the caret should
be moved to when the Tab, Shift Tab, up-arrow and down-arrow keys are pressed. If
you drag a gadget into the Before or After writable fields (or into the associated
option icon if the writable field is faded) its component id is entered into the field
automatically. Normally, however, you would use the Link writables option in the
Edit menu to determine the path taken by the caret. See Moving the caret between
writable gadgets on page 458 for more details.

Deliver events when value changes controls whether the application receives
WritableField_ValueChanged events when the contents of the writable change.
480

ResEd
Editing other classes

There are three stages in editing any of the remaining object templates.

1 Display the object prototypes window and drag the required object templates
from the object prototypes window into your resource file display:

2 Edit each object template by double-clicking on its icon in the resource file
display. An editing window for that object template will then be opened.
For example, the File Info object template:

In general the editing dialogue boxes for these remaining object templates are
not WYSIWYG representations of the underlying objects.

3 Close the editing window with the OK button to confirm the changes you have
made. If you close the editing window with the Cancel button, the modified
data is discarded.

drag the required object templates
to your resource file display
481

Editing other classes
Common features in standard dialogue boxes and menus

Some features are common to several or all standard dialogue boxes or standard
menus. These are described here rather than repeating their descriptions in each
individual section:

● Title is the title string to appear in the title bar of the dialogue box or menu. If
this is set to Default, the module will provide a suitable default. If it is set to
Other, the accompanying writable fields are unfaded for you to specify an
initial title and its maximum length.

● Deliver event controls the following:

Before showing controls whether the client application will receive a
DialogueAboutToBeShown event when the object is about to be shown.

When hidden specifies that the client application will receive a
DialogueCompleted event when the object is hidden.

● Use alternative window is an option button which controls the availability of
the writable field next to it. If the option is switched on, you may enter the
name of a Window object template to be used as the prototype for creating the
relevant object template, instead of the standard one (alternatively you can
drag a window object template icon from the resource file display into the
writable field – or into the associated option icon if the writable field is faded).
This enables any standard dialogue or menu to be given a custom appearance.
The custom window must contain gadgets similar to those used in the default
module window; see the relevant chapter on the particular module for details.

● Every dialogue box and menu has OK and Cancel buttons.

Use

OK and Cancel buttons

Title

Deliver
event

alternative
window
482

ResEd
Colour Dialogue class

The Colour Dialogue object template is displayed as follows:

Include "None" button is an option button that decides whether the dialogue will
allow the choice of ‘no’ colour.

Select "None" button specifies that the None button is selected by default.

Initial colour is a display field that shows the RGB value of the selected colour.
Next to it is a pop-up button which summons a colour picker from which the initial
colour may be chosen.

Colour Menu class

The Colour Menu object template is displayed as follows:

Include "None" entry is an option button that controls the presence of an entry
for ‘no colour’ (i.e. None) on the menu.

The Initial colour display field shows the initially-ticked colour, and the pop-up
menu to the right of it is itself a colour menu enabling the initial colour to be
chosen. The option icon controls whether any value is ticked or not.
483

Editing other classes
DCS class

The DCS (Discard, Cancel, Save) object template is displayed as follows:

Message is a writable field for entering the message to be displayed in the centre
of the window. Its behaviour is similar to that of the Title field.

File Info class

The File Info object template is displayed as follows:

Filename is a writable field containing the initial contents of the filename display.

Filetype is a display field showing the initial filetype's name and hex value. Next to
it is a pop-up menu button which displays a list of filetypes for you to choose from.
If you want to specify a filetype not on this list you can go to the Filetype dialogue
box (via the Other menu option) and fill in the writable field with any filetype name
or number. The number must be in decimal unless preceded with '&'. The two
special filetypes ‘directory’ (&1000) and ‘application’ (&2000) may also be entered.
484

ResEd
Note that no interface is provided for setting the ‘filesize’, ‘modified’ and ‘date’
fields of the File Info object template because these cannot be known when the
template is being created. They must be filled in by the application at run-time.

Font Dialogue class

The Font Dialogue object template is displayed as follows:

Initial font is a writable field for you to type in the initial font name to be put into
the font dialogue. Alternatively, you can select a font from the pop-up menu next to
the writable field. Note that it is possible that the initial font will not be available
at run-time; if so, a default will be substituted by the module (as will be the case if
the option icon is not switched on).

Font height is a number range giving the initial contents of the object's font height
setting. You can change the integer value using the adjuster arrows, or type a new
value in yourself.

Aspect ratio is a number range giving the initial contents of the object's aspect
ratio setting. You can change the integer value using the adjuster arrows, or type a
new value in yourself.

Sample string is a writable field that lets you specify the test string to be displayed
when the Font Dialogue's Try button is pressed. If the option icon is not switched
on, the module will substitute a default.

The Allow system font option button controls whether System Font will be
selectable using the Font Dialogue object.
485

Editing other classes
Font Menu class

The Font Menu object template is displayed as follows:

Initial font is a writable field for you to type in the initial font name. Alternatively,
you can select a font from the popup menu next to the writable field. Note that it is
possible that the initial font will not be available at run-time; if so, a default will be
substituted by the module (as will be the case if the option icon is not switched
on).

The Allow system font option button controls whether System Font will be on the
menu. If you switch this option on, the Initial font menu has System Font on it too.
486

ResEd
Iconbar icon class

The Iconbar icon object template is displayed as follows:

Position and Priority control where on the iconbar the icon will appear. You can
select the position from the adjoining pop-up menu or enter a value directly into
the writable field.

● Types -3 and -4 require a Wimp icon handle to be passed into the call to
Toolbox_ShowObject to specify which icon the position is relative to.

They are also incompatible with the object's auto-show bit being set, as they
depend on a Wimp icon handle being specified in the call to
Toolbox_ShowObject. The editor does not force this bit to be clear in these
cases; the effect of setting it is undefined.

Value
-1
-2
-3
-4
-5
-6
-7
-8
487

Editing other classes
● Types -5, -6, -7 and -8 require an integer Priority to be specified in the
writable field provided. The priority level is as documented in the RISC OS
Programmer’s Reference Manual entry for Wimp_CreateIcon on page 1-93. The
Priority field is faded when Position is not set to one of -5 through -8. Priority
is normally a decimal integer, but a hex value may be entered by preceding it
with an '&'.

Sprite name is a writable field where you can enter the name of the sprite to be
displayed in the icon. If the icon is to display text as well, you should switch on the
Text option button. This unfades the two writable fields next to it, enabling you to
enter the initial string and maximum length. Switching this option button on sets
bit 0 of the object's flags word.

Grouped under Select button and Adjust button are the controls for specifying
what should happen when the user clicks on the icon with the appropriate mouse
buttons:

Deliver event is a writable field for the input of an event code to be delivered
to the application.

Show object is a writable field that takes the name of an object template to be
shown. You can enter the name of the object template by typing or by dragging
an object template into the writable field (or into the associated option icon if
the writable field is faded). It is possible to ask for both an event to be
delivered and an object to be shown.

The Transient option selects whether the object will be shown as a transient
or not.

Deliver event before showing controls whether the client application will
receive an Iconbar_DialogueAboutToBeShown event when the object is about
to be shown.

Show menu is a writable field for you to specify the name of a menu to be shown
when the user clicks in the icon with the Menu mouse button. If the associated
option button is turned off, the field is faded and no menu will be shown. You can
enter the name of the menu by dragging a Menu object template from the resource
file display into the writable field (or into the associated option icon if the writable
field is faded).

The writable field next to Help text allows you to supply a suitable interactive help
string for the Toolbox to send to !Help when the mouse pointer is over the object.
If Help text is switched off then no help text will be sent.
488

ResEd
Print Dialogue class

The Print Dialogue object template is displayed as follows:

Listed under Optional features are a number of option buttons that select which
of the optional controls will be present on the dialogue box. Some of these option
buttons control the availability of further parameters.

Copies selects whether the dialogue box will allow the user to specify the number
of copies to be printed. If this is selected, the writable field to its right is unfaded
for the initial value of the number of copies to be specified.

Scale factor selects whether the dialogue box will allow the user to specify a scale
factor for the print job. If this is selected, the writable field to its right is unfaded for
the initial value of the scale factor to be specified.

Page range selects whether the dialogue box will allow the user to specify the
range of pages to be printed. If you switch this option on, the two radio buttons to
its right are unfaded for you to specify the default page range. Selecting All means
that the default will be for all pages to be printed. Selecting From means that only
a specified range of pages will be printed; this range is specified using the two
writable fields (which are faded until From is selected.)

Orientation selects whether the Print dialogue box will include a choice of Upright
(portrait) or Sideways (landscape) mode. The radio buttons to the right of it are
faded unless you switch on this option, and enable you to choose what the default
orientation will be.
489

Editing other classes
Draft button selects whether the Print dialogue box has a Draft option button or
not. The associated radio buttons choose the initial state of the Draft button.

Setup button selects whether the dialogue box has a Setup button. If you switch
this option on, the fields underneath and to the right are unfaded to enable the
specification of the following parameters:

Show window is the name of the Window object template to be used for the
Setup dialogue. You can enter this by typing, or by dragging a Window object
template into the writable field (or into the associated option icon if the
writable field is faded).

Deliver event before showing is an option button that controls whether a
Print_SetUpAboutToBeShown event will be delivered before the Setup
dialogue is shown.

Save button selects whether the Print dialogue box has a Save action button for
saving the current printing setup.

Prog Info class

The Prog Info object template is displayed as follows:

Purpose, Author and Version are writable fields that allow you to specify the
contents of the corresponding parts of the Prog Info dialogue box.

Include "Licence" is an option button which controls whether the Prog Info
dialogue box has a Licence type field. If you switch on this option, you can select
the licence type from the pop-up menu next to the writable field. The licence types
available are Public domain, Single user, Single machine, Site, Network and
Authority.
490

ResEd
Quit Dialogue class

The Quit Dialogue object template is displayed as follows:

Message is a writable field that allows you to enter the message to be displayed in
the centre of the window. Its behaviour is similar to that of the Title field.

Save As class

The Save As object template is displayed as follows:

Filename is a writable field for you to enter the default filename to be displayed in
the dialogue.

Filetype is a display field showing the current filetype's name and hex value. Next
to it is a pop-up menu button which displays a list of filetypes for you to choose
from. If you want to specify a filetype not on this list you can go to the Filetype
dialogue box (via the Other menu option) and fill in the writable field with any
491

Editing other classes
filetype name or number. The number must be in decimal unless preceded with
'&'.The two special filetypes ‘directory’ (&1000) and ‘application’ (&2000) may also
be entered.

Include "Selection" Button is an option button that allows you to control the
presence or absence of the Save As dialogue's Selection option.

If the Client participates option button

● is off, the Save As module will itself handle all data saving on behalf of the
client, and the Supports RAM transfers option button remains faded.

● is on, the Save As module will involve the client in data saving, using the RAM
transfer protocol only when the Supports RAM transfers option button is on.

Scale Dialogue class

The Scale Dialogue object template is displayed as follows:

Minimum, Maximum and Step size are writable integer fields for entering the
constraints to be placed on user-specified scale factors.

Preset values is a list of four writable fields allowing you to specify the scale
factors on the preset size local action buttons.

Include "Scale to fit" button is an option button that allows you to control the
presence or absence of a Scale to fit action button in the Scale Dialogue object.
492

ResEd
Exporting and importing messages

For some purposes, especially internationalisation, you may want to edit the
user-visible messages held in a resource file en masse. Rather than manually
stepping through every object template in the file, it is useful to be able to edit all
the messages in one place. You can do this using the Export messages menu item
(see page 429). This menu item leads to a Save as box containing a Textfile icon. If
you drag this icon into a Filer window or a text editor, ResEd generates a file of
messages in MessageTrans format (see the RISC OS Programmer’s Reference Manual
for details).

The file produced contains the messages from each object template in turn.
Because these do not have specific tags, a unique tag is generated automatically
for each message. These tags take the form:

<object name>|<number>:

where

<object name>is the name of the object template
<number> is the number of the message within that object

You can then edit the resulting message file, and drag it back into the resource file
display. A warning is displayed, and you must click on Import to proceed.

The messages are matched to their respective objects by use of the information
stored in the tags. So, for example, the message

SetColours|5:This is the setcolours dialogue

will replace the fifth message in the object template whose name is ‘Setcolours’.
This means that you should take extra care when editing a resource file after its
messages have been exported, and before they have been imported back again.
Objects should not be renamed, and gadgets within window object templates must
not be deleted. On the other hand it is safe to add new templates, or to add new
gadgets, or move existing gadgets within a window.

Note: it is important that you do not alter any of the tags while editing the
messages.

When revised messages are imported, to an object that is currently being edited it
is forcibly re-loaded to ensure that its editor is kept up-to-date with the changes.
Thus there is potential for you to lose changes made while editing, so care should
be exercised when importing message files. Indeed, it is best, before exporting or
importing messages, to ensure that there are no unconfirmed changes in any
dialogue boxes associated with the file.
493

Keystroke equivalents
Keystroke equivalents

On occasions, it can be quicker when you are working in ResEd to use the keyboard
instead of the mouse, especially when you are familiar with ResEd.

In the resource file display

In the Window editor

In the Menu editor

Keystroke Effect

Ctrl-O

F3

open the Object flags dialogue box for the selected
objects

display a Save As dialogue box

Keystroke Effect

Ctrl-W

Ctrl-E

Shift-K

Ctrl-T

Ctrl-G

Ctrl-P

Shift-C

Shift-G

Ctrl-S

Ctrl-R

Ctrl-L

Ctrl-F2

Shift-R

open the Main properties dialogue box

open the Extents dialogue box

open the Keyboard shortcuts dialogue box

open the Toolbars dialogue box

open the Gadgets dialogue box

open the properties dialogue box for the selected gadget

open the Coordinates dialogue box for the selected
gadget

open the Grid dialogue box

snap the selected gadgets to the grid

make the selected radio buttons into a radio group

link the selected writable gadgets together

close this window

show all members of the radio group to which the selected
radio button belongs

Keystroke Effect

Ctrl-M open the Menu properties dialogue box for editing the
top-level characteristics of a menu

Ctrl-P open the Menu entry properties dialogue box for the
selected menu entry
494

ResEd
When editing in general

Mouse behaviour

The following mouse actions work on individual menu entries, gadgets or object
templates or selections of the same.

Object prototype windows, gadget windows and menu entry windows behave in
the same manner as described below, except that, as they are non-editing
windows, they do not allow operations such as deletion or repositioning.

In the Window editor

Keystroke Effect

Ctrl-A

Ctrl-K

Ctrl-Z

select all entries, gadgets or objects

delete selected entries, gadgets or objects

clear current selection

Mouse action Effect Page

Double-click on a gadget to open its properties dialogue
box

467

Drag Select on a gadget to move it around the window

or to copy it from one window to another

or on the resize handle of a gadget to resize
it

457

458

Drag Adjust on the resize handle of a gadget to move it
in one direction only

458

Shift-Drag Select on a gadget to make a copy of it within the
window

or move it from one window to another
(deletes the original)

457

Ctrl-Shift-Drag Select on a window (with or without a titlebar) to
move it around the screen

451

Ctrl-Shift-Drag Adjust on a window (with or without an Adjust size
icon) to change its size

451
495

In the Menu editor window

In the resource file display

Box selection

The mouse can be used in two ways to select a group of object templates:

● Dragging a box around a group of object templates will select any object
template partly or wholly within the Select box.

● Dragging a box around a group of object templates while holding down Shift
will select only object templates wholly within the Select box.

Groups of gadgets (in the Window editor) or groups of menu entries (in the Menu
editor) can be selected in a similar way.

Mouse action Effect Page

Double-click on a menu entry to open its properties
dialogue box

436

Drag Select on a menu entry to reposition it within the
list of menu entries

or to copy it from one menu to another

439

Shift-Drag Select on a menu entry to make a copy of it within
the list of menu entries

or move it from one menu to another
(deletes the original)

439

Mouse action Effect Page

Double-click on a window, toolbar or menu object
template to open its editor

on any other object template to open its
properties dialogue box

428

Drag Select on an object template to copy it from one
resource file display to another

428

Shift-Drag Select on an object template to make a copy of it
within the resource file display

or move it from one resource file display to
another (deletes the original)

428
496

18 ResTest

aving constructed a resource file you may wish to experiment with the

interface to ensure that the proper links have been made between the different

objects in the file. The resource file test application (ResTest) allows you to

● check the appearance and behaviour of all the objects in your resource file

● monitor the flow of Toolbox and Wimp event codes inside an event log window
and, if required, save this event log to a file.

Starting ResTest

Start ResTest in a similar way to other RISC OS applications, by double-clicking on
its application icon. Then drag your resource file (or a selection of object templates
from ResEd) to the ResTest iconbar icon.

ResTest will read the resource file and register it with the Toolbox. If your resource
file contains any objects marked as auto-create they will be created automatically;
any objects marked as auto-create and auto-show will be created and displayed.
Thus certain objects in the resource file may appear immediately (e.g. iconbar
icons). If these objects are linked to other objects, they will also be created, and
these will be shown when you perform the appropriate action. For example, if an
iconbar icon is linked to a menu, the menu will be shown when you press the Menu
button on the icon. Then if the menu itself is linked to submenus, these will be
shown when you traverse the submenu arrows.

The iconbar menu

Once you have dragged your resource file to the ResTest icon then you can click
Menu on the iconbar icon and the ResTest menu will be displayed.

Info displays an Info dialogue box.

Create displays all the object template names in the resource file. Choosing an
entry calls Toolbox_CreateObject on that template and creates the object. Shared
objects which have already been created are shaded to indicate that they cannot be
created more than once.

H

497

Show displays all the objects that have been created from the object templates. If
you go to this submenu immediately after dragging your resource file to ResTest,
only two types of object will be displayed:

● those objects marked auto-create

● other objects referenced from those objects (see Attached objects on page 12).

So, for example, if the only object marked auto-create was an iconbar icon object,
then that object would be displayed, plus the menu object referenced by the
iconbar icon object, plus any objects referenced by that menu object. Other
objects are added to the Show list as you create them from the Create submenu.

Each entry shows the run-time generated object id and the name, or the object
template from which it was created. For example:

Entries which are currently showing are ticked. You can cause an unshown object
to be shown by clicking Select on its entry, and cause a shown object to be
unshown by unticking. Click with the Adjust button causes an object to be shown
transiently, and the menu tree will not stay open.

Delete displays all the objects that have been created. You can call
Toolbox_DeleteObject on an object by clicking on its entry. If the object has
unshared children then they are deleted too (a shared object will only be deleted
when all its uses are deleted – see Deleting an object on page 8).

Note: If you delete one or more objects created by a menu object (i.e. attached to
the menu object), and then try and delete the menu object itself, you may see the
following ResTest error displayed (you should not worry about this error):

Invalid Object Id (object id)

object idis the object id of the attached object that was deleted before the
menu object was deleted

So, in the example displayed of a Show menu (taken from the example application
constructed in the chapter Building an application on page 41), if the Scale object
were deleted, and then ViewerMenu were deleted (ViewerMenu is the menu object
that created the Scale object), then the above error message would be displayed
and the object id would be that of the Scale object.

object id

object
template name

currently
showing
498

ResTest
Choices displays the following dialogue box:

This box allows you to select what information is displayed in the event log
window. The options are fully described in the following section The event log window.

Quit shuts down ResTest, removes all its windows from the screen, and deletes any
objects that were created in that session.

The event log window

If you click Select on the ResTest iconbar icon, the event log window is displayed.
This window contains a log of the events received from the Toolbox. You can use
this to verify that the proper assignment of events to user actions has been made.

The output in the log window displays four sets of information, depending on what
options you have selected from the Choices box in the ResTest menu:

Toolbox event code

This displays the event code (including client-specified events) and the flags value
of the event block. It is always preceded by ‘EventCode:’
499

The event log window
Toolbox id block

This displays the contents of the id block. It is always preceded by ‘IdBlock:’

where

Event block

Once an event has occurred (e.g. DragEnded), information about that event is
returned in the event block. This information is always displayed indented by eight
spaces (how much information is displayed depends on the event):

WIMP events

This option allows you to select various types of Wimp events from the attached
pop-up menu. The information displayed is always preceded by ‘WIMP event:’.

The following example shows the Wimp events reported when Pointer in and
Pointer out have been selected from the pop-up menu:

The ResTest menu

If you click Menu in the log window the ResTest menu is displayed.

Save leads to a Save as dialogue allowing you to save the text in the log window to
a file.

Clear removes any text in the log window.

so = self object
sc = self component
po = parent object
pc = parent component
ao = ancestor object
ac = ancestor component
500

19 DrawFile

rawFile is a module that renders Draw files.
Differences between DrawFile output and !Draw output

The following are some small differences between the output of the DrawFile
module and !Draw.

Text

A text line that uses a font which can’t be found will be rendered (in system font) at
a size to fit its bounding box.

Transformed text

Transformed text lines in system font are supported. A transformed text line that
uses a font which can’t be found will be rendered (in system font) at a size to fit its
bounding box. The transformation will be ignored.

Text areas

In a text area, if you change (for example) the margin size (\M command), the
change doesn’t take effect until the next output line. In Draw, this refers to
printable characters: but in DrawFile, it includes colour and font change
commands as well (this is because DrawFile uses the Font Manager to remember
the current font and colours). This means that line breaks can happen at slightly
different places when using DrawFile.

The following commands cause output to occur:

B C U V <digits>

The following do not:

! ; A D F L M P

By preceding the former with the latter, the problem can be avoided.

Sprite colours

For a sprite without a palette, the colours used are the WIMP colours, found by
using Wimp_ReadPalette.

D

501

SWI DrawFile_Render
SWI DrawFile_Render

On entry

R0 = flags:
bit 0 set means render bounding boxes (as dotted red rectangles)
bit 1 set means do not render the objects themselves
bit 2 set means R5 is used as the flatness parameter

R1 = pointer to Draw file data
R2 = size of Draw file in bytes
R3 = pointer to transformation matrix

0� use identity
R4 = pointer to clipping rectangle in OS units

0 no clipping rectangle set up
R5 = flatness with which to render lines (if bit 2 of R0 set)

On exit

All registers preserved

Use

This SWI renders a Draw file at a given screen position where that position is
defined as screen position 0, 0 with the x- and y-translations as specified in the
transformation matrix. Hence to render a non-rotated 1:1 Draw file at x, y (screen
coordinates in OS units) the transformation matrix is:

The effects of calling the module with the matrix not of the form:

(which is a translation and a magnification). If R3 = 0, then unit transformation
matrix is assumed (i.e. the Draw file is rendered with its bottom left corner at
screen coordinates (0, 0)).

1 << 16

0

256*x

1 << 16

0

256*y

f

0

x

f

0

y

502

DrawFile
The clipping rectangle is typically a redraw rectangle returned by the Wimp on a
redraw window request. If R4 = 0, then the whole Draw file is rendered. If non-zero,
only objects which intersect the clipping rectangle are rendered.

C veneer
extern _kernel_oserror *drawfile_render (int flags, void *data,
 int size, Transform *trfm,
 BBox *clip,int flatness);

SWI DrawFile_BBox

On entry

R0 = flags (must be 0)
R1 = pointer to Draw file data
R2 = size of Draw file in bytes
R3 = pointer to transformation matrix

0use identity
R4 = pointer to 4-word buffer to hold the bounding box of the Draw file

(x0, y0, x1, y1) in Draw units

On exit

All registers preserved

Buffer pointed at by R4 holds the bounding box of the Draw file (x0, y0, x1, y1) in
Draw units

Use

This SWI is used to determine the bounding box (in Draw units) of the given Draw
file, as if it were plotted with the transformation given.

C veneer
extern _kernel_oserror *drawfile_bbox (int flags, void *data,
 int size, Transform *trfm,
 BBox *box);
503

SWI DrawFile_DeclareFonts
SWI DrawFile_DeclareFonts

On entry

R0 = flags
bit 0 set means do not download font (passed to PDriver_DeclareFont)

R1 = pointer to Draw file data
R2 = size of Draw file in bytes

On exit

All registers preserved

All fonts used by the document have been declared

Use

If a printer requires font declarations, this SWI must be called for each Draw file to
be printed, between the calls to PDriver_SelectJob and PDriver_DrawPage.

All fonts are declared as ‘kerned’, since this includes the non-kerned case.

C veneer
extern _kernel_oserror *drawfile_declare_fonts (int flags, void *data,
 int size);
504

Appendix A: Resource File Formats

his appendix describes the resource file format, which is intended to replace

the Wimp Template file format, allowing you to specify the appearance of not

only window definitions, but also menu definitions and dialogue boxes.

Terminology

The following terms are used throughout this appendix:

Term Meaning

word 4 bytes stored in a file in ‘little-endian’ format; that is the
least significant byte of the word is stored first.

resource file consists of a fixed size header, followed by a contiguous
set of user interface object templates or ‘objects’. An
object consists of a fixed size header followed by the
variable size ‘body’ of the object, followed by 3 tables:

string table
message table
relocations table

All object headers are word-aligned. Unless otherwise
explicitly stated, all occurrences of a ‘word’ in this
appendix are assumed also to be aligned on a 4-byte
address.

string is a sequence of ASCII characters terminated by a NUL
character. There is one table per object which holds all
such strings.

A ‘string reference’ is given by its byte offset from the
start of the strings table.

A null string reference is represented by -1.
typedef int StringReference;

message is some textual information which is visible to the user.
All such messages for an object are held in its Messages
Table.

A null message reference is represented by -1.
typedef int MsgReference;

T

505

Resource file format
Resource file format

Diagrammatic representation

Diagrammatically, a resource file is as follows:

where the file header is:

File Header
3 words

eOF

sequence of object templates

Resource File ID ‘ReSF’

Version Number

Objects Offset

1 word

1 word

1 word
506

Resource File Formats
A resource file containing no objects has an objects Offset of -1 where an object
template is:

A String Table Offset of -1 is used to denote an Object Template which has no
String Table.

A Messages Table Offset of -1 is used to denote an Object Template which has no
Messages Table.

A Relocation Table Offset of -1 is used to denote an Object Template which has no
Relocation Table, and hence the nrelocs must always be > 0, if the Relocation Table
exists.

When the Resource File is loaded by the Toolbox, the body offset field is always
relocated to be a real pointer (but this is not specified as a relocation in the
relocation table).

1 wordString Table Offset

Messages Table Offset

Relocation Table Offset

Object Class

Flags

Version

Name

Object Size (in bytes)

Body Offset

Body Size (in bytes)

Body

(nul padded) /000

String Table

Messages Table

nrelocs
Relocations Table

1 word

1 word

1 word

1 word

1 word

3 words

1 word

1 word

1 word

O
bj

ec
t

H
ea

de
r

O
bj

ec
t

B
o

dy
Ta

bl
es
507

Resource file format
Resource File Format Description

A resource file begins with a standard fixed size header which has the format:

 ‘RESF’ 1 word
 Version number 1 word (* 100, e.g. 109 means 1.09)
 Objects Offset 1 word

The current version number is 1.01

The objects Offset gives the byte offset from the beginning of the file where the
object templates begin.

typedef struct
{
 int file_id;
 int version_number;
 int objects_offset;

} ResF_FileHeader;

The rest of the file starts with a contiguous sequence of object templates where
each template has 3 words giving the byte offsets from the beginning of the
template of each of the string, messages and relocations tables, followed by a
standard fixed size header, followed by the body of the object, followed by its
tables. All object headers are word-aligned.

Where the object header is:

Note that the name of an object is limited to 12 bytes including a terminating NUL
character.

‘Total size’ of object refers to the total size of the object header, the object body
and the string and message tables.

‘Body size’ refers only to the size of the object’s body (i.e. without its string and
message tables).

Field Type

Class of object 1 word

Flags 1 word

Version of the class module required 1 word

Object name 3 words

Total size of object in bytes 1 word

Offset of object body from start of object header 1 word

Total size of object body in bytes 1 word
508

Resource File Formats
typedef struct
{
 int class;
 int flags;
 int version;
 char name[12];
 int total_size;
 int body_offset;
 int body_size;

} ObjectTemplateHeader;

typedef struct
{
 int string_table_offset;
 int messages_table_offset;
 int relocations_table_offset;
 ObjectTemplateHeader hdr;

} ResourceFileObjectTemplateHeader;

The use of a body_offset field is to allow expansion in the header, without losing
backwards compatibility.

Relocations at Load Time

When the resource file is loaded into memory, the relocations table for each object
is used to relocate any string, message, sprite area references and object offsets
which appear in the object’s body.

This means that the file can be loaded in one operation into memory, and when
relocation has been done, the memory can be used directly to create an object.

Table Formats

There are three tables which optionally appear at the end of an object template:
strings table, messages table, and relocations table.

Strings table

The string table contains all strings which are not visible to the user which are
referenced elsewhere in the object. A string is a sequence of ASCII characters
terminated by a NULL character.
509

Resource file format
Messages Table

The messages table contains a list of strings consisting of text strings which will be
visible to the user at run-time, and which are referred to by the object template.

Relocations Table

The first word of the relocations table gives the number of relocations in the table.

The relocations table contains entries which give the byte offset of a word in the
object which should be relocated at load time; this is an offset from the base of the
object’s body. Each entry is two words long: the byte offset, and a relocation
directive. Possible relocation directives are:

Relocation Directive Value Meaning

StringReference 1 add the address of the base of the
strings table to this word

MsgReference 2 add the address of the base of the
messages table to this word

SpriteAreaReference 3 enter the address of the Sprite area
into which the client’s Sprites file
has been loaded

ObjectOffset 4 add the address of the object's
body to this word
510

Appendix B: Support for RISC OS 3.10

his appendix describes the support provided for RISC OS 3.10.
RISC OS 3.10 support is located in System:Modules.310Support:

RISC OS 3.10 has the following restrictions which would affect Toolbox
applications:

● basic 3.10 does not have 3D icons as standard (e.g. option buttons and radio
buttons)

● fading icons on 3.10 is not always consistent (e.g. text label will gain a white
box behind the text)

● deleting a window while a ‘slabbed’ button is pressed in will cause a crash.

The ThreeTen module addresses the above restrictions. It is automatically loaded
by the Window module when running on a RISC OS 3.10 machine, and also looks
for a new version of DragASprite and BorderUtils. It is able to co-exist with New
Look.

T

511

512

Index

Button_SetValidation 355
A
action buttons 341–349

editing 468
events

ActionButton_Selected 349
methods

ActionButton_GetClickShow 347
ActionButton_GetEvent 345
ActionButton_GetText 343
ActionButton_SetClickShow 346
ActionButton_SetEvent 344
ActionButton_SetFont 348
ActionButton_SetText 342

templates 349
adjuster arrows 350

editing 469
events

Adjuster_Clicked 350
templates 350

ancestor objects 10
attached objects 12
auto-create 11
auto-show 11

B
button gadget 351–357

editing 469
events 357
methods

Button_GetFlags 351
Button_GetValidation 356
Button_GetValue 354
Button_SetFlags 352
Button_SetFont 357

Button_SetValue 353
templates 357

C
class, definition 3
client application, definition 3
client handle

returning value of 26
setting and reading 10

Colour Dialogue box class 67–80
Application Program Interface 68
attributes 68
before dialogue box is shown 69
colour selections 70
completing a colour dialogue 70
creating and deleting 68
editing 483
events

ColourDbox_AboutToBeShown 78
ColourDbox_ColourSelected 79
ColourDbox_DialogueCompleted 79

methods
ColourDbox_GetColour 74
ColourDbox_GetColourModel 76
ColourDbox_GetDialogueHandle 72
ColourDbox_GetNoneAvailable 77
ColourDbox_GetWindowHandle 71
ColourDbox_SetColour 73
ColourDbox_SetColourModel 75
ColourDbox_SetNoneAvailable 77

setting and reading colour model 70
setting and reading colours 69
showing 69
templates 80
513

user interface 67
Colour Menu Class

editing 483
Colour Menu class 81–90

Application Program Interface 82
attributes 82
before menu is shown 83
colour selection processing 83
creating and deleting 82
events

ColourMenu_AboutToBeShown 88
ColourMenu_ColourSelection 89
ColourMenu_HasBeenHidden 88

methods
ColourMenu_GetColour 85
ColourMenu_GetNoneAvailable 86
ColourMenu_GetTitle 87
ColourMenu_SetColour 84
ColourMenu_SetNoneAvailable 85
ColourMenu_SetTitle 86

setting and getting selected colour 83
showing 83
templates 89
user interface 81
Wimp event handling 90

colours, definition 3
component 7

D
dialogue box, definition 3
Discard/Cancel/Save Dialogue box class 91–103

Application Program Interface 92
attributes 92
changing the DCS message 94
creating and deleting 93
editing 484
events

DCS_AboutToBeShown 99
DCS_Cancel 101
DCS_DialogueCompleted 101
DCS_Discard 100

DCS_Save 100
getting the underlying window ID 94
methods

DCS_GetMessage 96
DCS_GetTitle 98
DCS_GetWindowID 94
DCS_SetMessage 95
DCS_SetTitle 97

showing 93
templates 102
user interface 91
Wimp event handling 103
window definition 102

display fields 358–360
editing 471
methods

DisplayField_GetValue 359
DisplayField_SetFont 360
DisplayField_SetValue 358

templates 360
draggable gadgets 361–368

editing 471
events

Draggable_DragEnded 368
Draggable_DragStarted 367

methods
Draggable_GetSprite 363
Draggable_GetState 366
Draggable_GetText 365
Draggable_SetSprite 362
Draggable_SetState 366
Draggable_SetText 364

templates 368
DrawFile 501–504

example 56
specifying 63
SWIs

DrawFile_BBox 503
DrawFile_DeclareFonts 504
DrawFile_Render 502
514

Index
E
events see Toolbox event 12–15
example application see Hyper example 41

F
File Info Dialogue box class 105–119

Application Program Interface 106
attributes 106
before File Info box is shown 107
creating and deleting 107
editing 484
events

FileInfo_AboutToBeShown 117
FileInfo_DialogueCompleted 118

methods
FileInfo_GetDate 114
FileInfo_GetFileName 112
FileInfo_GetFileSize 113
FileInfo_GetFileType 110
FileInfo_GetModified 109
FileInfo_GetTitle 116
FileInfo_GetWindowID 108
FileInfo_SetDate 114
FileInfo_SetFileName 111
FileInfo_SetFileSize 113
FileInfo_SetFileType 110
FileInfo_SetModified 109
FileInfo_SetTitle 115

setting and reading fields 108
showing 107
templates 118
user interface 105
Wimp event handling 119
window definition 119

Font Dialogue box class 121–137
Application Program Interface 122
attributes 122
before Font box is shown 124
completing a Font dialogue 124
creating and deleting 123

current selection 124
editing 485
events

FontDbox_AboutToBeShown 133
FontDbox_ApplyFont 134
FontDbox_DialogueCompleted 134

font selection 124
methods

FontDbox_GetFont 127
FontDbox_GetSize 129
FontDbox_GetTitle 132
FontDbox_GetTryString 130
FontDbox_GetWindowID 125
FontDbox_SetFont 126
FontDbox_SetSize 128
FontDbox_SetTitle 131
FontDbox_SetTryString 129

showing 123
templates 135
user interface 121
Wimp event handling 137
Window definition 135

Font Menu class 139–146
Application Program Interface 140
attributes 140
before Font Menu is shown 141
creating and deleting 140
editing 486
events

FontMenu_AboutToBeShown 144
FontMenu_FontSelection 145
FontMenu_HasBeenHidden 144

font selection 141
receiving 141

methods
FontMenu_GetFont 143
FontMenu_SetFont 142

showing 141
templates 145
user interface 139
Wimp event handling 146
515

G
Gadgets 294, 327–340

Application Program Interface 327
attributes 328
creating and deleting 329
flags 330
hotspots 57
methods 332

Gadget_GetFlags 332
Gadget_GetHelpMessage 335
Gadget_GetIconList 336
Gadget_GetType 337
Gadget_MoveGadget 338
Gadget_SetFlags 333
Gadget_SetHelpMessage 334

Wimp event handling 340

H
Hyper example 41–66

client events 65
client handle

example of 44
coding 49, 56
component id 57
creating a basic resource file 46
description of !Hyper 41
design requirements 43
designing 43
DrawFile 56
event driven interface 44
exporting a drawfile 61
file loading 50
find box 59
handlers 49
handling views 52
HCL files 41, 65
hotspots 57
keyboard short-cuts 58
linking data structures 57
object id 56

redraw handler 56
ResTest 48
scaling 56
shared objects 44
status bar 58

I
Iconbar icon class 147–166

Adjust click events 151
Application Program Interface 148
attributes 148
creating and deleting 149, 171, 293
editing 487
events

Iconbar_AdjustAboutToBeShown 165
Iconbar_Clicked 164
Iconbar_SelectAboutToBeShown 164

Help messages 151
menu 150
methods

Iconbar_GetEvent 155
Iconbar_GetHelpMessage 159
Iconbar_GetIconHandle 152
Iconbar_GetMenu 153
Iconbar_GetShow 157
Iconbar_GetSprite 163
Iconbar_GetText 161
Iconbar_SetEvent 154
Iconbar_SetHelpMessage 158
Iconbar_SetMenu 153
Iconbar_SetShow 156
Iconbar_SetSprite 162
Iconbar_SetText 160

position and priority 150
Select click events 151
showing 150
templates 165
user interface 147
Wimp event handling 166

id block 14
516

Index
L
labelled boxes 370

editing 473
templates 370

labels 369
editing 472
templates 369

M
Menu class 167–202

adding menu entries 172
Adjust clicks on a Menu 173
Application Program Interface 168
attaching a submenu dynamically 173
attributes 168
changing a Menu entry 172
creating and deleting 171
events

Menu_AboutToBeShown 199
Menu_HasBeenHidden 199
Menu_Selection 200
Menu_SubMenu 200

fading a Menu entry 172
interactive help 174
menu attributes 168
menu entry attributes 169
Menu hits 173
methods

Menu_AddEntry 195
Menu_GetClickEvent 190
Menu_GetClickShow 188
Menu_GetEntryHelpMessage 194
Menu_GetEntrySprite 182
Menu_GetEntryText 180
Menu_GetFade 178
Menu_GetHeight 196
Menu_GetHelpMessage 192
Menu_GetSubMenuEvent 186
Menu_GetSubMenuShow 184
Menu_GetTick 176

Menu_GetTitle 198
Menu_GetWidth 197
Menu_RemoveEntry 196
Menu_SetClickEvent 189
Menu_SetClickShow 187
Menu_SetEntryHelpMessage 193
Menu_SetEntrySprite 181
Menu_SetEntryText 179
Menu_SetFade 177
Menu_SetHelpMessage 191
Menu_SetSubMenuEvent 185
Menu_SetSubMenuShow 183
Menu_SetTick 175
Menu_SetTitle 197

removing menu entries 172
showing 172
submenu arrows 174
templates 201
ticking a Menu entry 172
user interface 167
Wimp event handling 202

messages 17
exporting 493
importing 493
messages table 510

method, definition 3
methods of objects 8

N
number ranges 371–378

editing 473
events

NumberRange_ValueChanged 378
methods

NumberRange_GetBounds 376
NumberRange_GetValue 374
NumberRange_SetBounds 375
NumberRange_SetValue 373

templates 378
517

O
object

ancestor 10
returning 29

attached objects 12
auto-create 11
auto-show 11
classes 7
component 7
creating 8, 20

side effects 12
customising a dialogue box 59
definition 3
deleting 8, 21
example 18
getting class of 7
getting the template name 30
hiding 9, 23
id 7
methods 8
miscellaneous operation 25
parent 10

returning 28
returning class of 27
returning information on 24
returning value of client handle 26
setting value of client handle 26
shared 9, 44
show types 9
showing 8
showing on screen 22
template flags 431

object id 7
example 56

option buttons 379–385
editing 475
events

OptionButton_StateChanged 385
methods

OptionButton_GetEvent 383
OptionButton_GetLabel 381
OptionButton_GetState 384

OptionButton_SetEvent 382
OptionButton_SetLabel 380
OptionButton_SetState 383

templates 385

P
parent objects 10
persistent dialogue box, definition 3
pop-up menus 386–389

editing 476
events

PopUp_AboutToBeShown 389
methods

PopUp_GetMenu 388
PopUp_SetMenu 387

templates 389
Print Dialogue box class 203–222

action button clicks 207
Application Program Interface 204
attributes 205
before Print box is shown 207
creating and deleting 206
editing 489
events

Print_AboutToBeShown 215
Print_DialogueCompleted 216
Print_Print 219
Print_Save 218
Print_SetUp 218
Print_SetUpAboutToBeShown 217

getting and setting printing options 207
getting Print Dialogue’s title 207
getting underlying object ID 208
methods

Print_GetCopies 210
Print_GetDraft 214
Print_GetOrientation 212
Print_GetPageRange 209
Print_GetScale 211
Print_GetTitle 213
Print_GetWindowID 208
518

Index
Print_SetCopies 210
Print_SetDraft 214
Print_SetOrientation 212
Print_SetPageRange 209
Print_SetScale 211

printing options 207
SetUp window 208
showing 206
templates 220
user interface 203
Wimp event handling 222
Window definition 220

Prog Info Dialogue box class 223–234
Application Program Interface 224
attributes 224
creating and deleting 224
editing 490
events

ProgInfo_AboutToBeShown 232
ProgInfo_DialogueCompleted 233

licence type 225
methods

ProgInfo_GetLicenceType 230
ProgInfo_GetTitle 231
ProgInfo_GetVersion 228
ProgInfo_GetWindowID 226
ProgInfo_SetLicenceType 229
ProgInfo_SetTitle 231
ProgInfo_SetVersion 227

showing 225
templates 233
user interface 223
version string 225
Wimp event handling 234
Window definition 234

Q
Quit Dialogue box class 235–246

Application Program Interface 236
attributes 236
changing the Quit Dialogue’s message 238

creating and deleting 237
editing 491
events

Quit_AboutToBeShown 243
Quit_Cancel 245
Quit_DialogueCompleted 244
Quit_Quit 244

getting ID of underlying window 238
methods

Quit_GetMessage 240
Quit_GetTitle 242
Quit_GetWindowID 238
Quit_SetMessage 239
Quit_SetTitle 241

showing 237
templates 245
user interface 235
Wimp event handling 246
Window definition 246

R
radio buttons 390–398

editing 476
events

RadioButton_SetLabel 391
RadioButton_StateChanged 398

methods
RadioButton_GetEvent 394
RadioButton_GetLabel 392
RadioButton_GetState 396
RadioButton_SetEvent 393
RadioButton_SetFont 397
RadioButton_SetState 395

templates 398
relocations table 509–510
ResEd

action button properties 468
adjuster arrow properties 469
aligning gadgets 462

faded menu 462
button properties 469
519

Cancel box 434
colour dialogue template 483
colour menu template 483
common features in gadget properties 466
common features in standard dialogue box-

es and menus 482
creating a resource file 423
DCS template 484
dialogue boxes and standard menus 481–

492
common features 482
editing 481
example 441, 481

display field properties 471
draggable properties 471
editing an object template 428
example application 46
exporting messages 493
file info template 484
font dialogue template 485
font menu template 486
gadgets 456–480

Align menu 462
auto-scrolling 457
common features 466
coordinates dialogue box 461
Edit menu 459
inserting into a window 456
moving the caret between gadgets 458
positioning and moving 456
radio groups 460
re-sizing 458
snap to grid 460
stacking 458

grid in window template 455
Help

for gadgets 465
on menu entries 444, 465

help messages 432
iconbar icon template 487
importing messages 493
keyboard short-cuts 452

example 58, 443–444

label properties 472
labelled box properties 473
length fields 432
Menu class 435–441

copying menu entries 439
Edit menu 435
example 440
inserting a new menu entry 439
menu entry properties 436
menu properties 438
moving menu entries 439
re-ordering menu entries 439

messages
exporting 493
importing 493

number range properties 473
object flags 431
object prototypes window 427
object templates

box selection 434
Cancel box 434
help messages 432
Length fields 432
OK box 434
selection model 433

OK box 434
option button properties 475
pop-up menu properties 476
print dialogue template 489
prog info template 490
quit dialogue template 491
radio button properties 476
radio groups 460
ResEd iconbar icon 426
ResEd iconbar menu 426
resource file display 428–431

copying object templates 428
Edit menu 430
File menu 429
moving object templates 428
Object flags 431
saving a resource file 429

save as template 491
520

Index
scale dialogue template 492
selection model for object templates 433
slider properties 477
snap to grid 460
starting ResEd 426
string set properties 478
toolbar example 58
toolbar template 463
window objects 445–455

closing the window 451
colours in a window 451
extent of a window 452
grid 455
main properties 446
moving the window 451
other properties 449
re-sizing the window 451
Window menu 445

writable field properties 480
resource file

definition 3, 15
format 15
loading 15, 35

resource file formats 505–510
description 508
diagrammatic representation 506
messages table 510
relocations at load time 509
relocations table 510
strings table 509

ResTest 497–500
event log window

clear text in log window 500
event block 500
save text in log window 500
Toolbox event code 499
Toolbox id block 500
WIMP events 500

example session 48
iconbar menu 497

Choices 499
Create 497
Delete 498

Show 498
object ids 56
starting ResTest 497

RISC OS 3.10 support 511

S
SaveAs Dialogue box class 247–272

Application Program Interface 248
attributes 249
before dialogue box is shown 253
cancelling the dialogue 253
creating and deleting 249
dialogue completed 255
editing 491
error handling 255
events

SaveAs_AboutToBeShown 267
SaveAs_DialogueCompleted 268
SaveAs_FillBuffer 269
SaveAs_SaveCompleted 270
SaveAs_SaveToFile 268

file size, setting 253
filename and filetype, setting 250
methods

SaveAs_BufferFilled 265
SaveAs_FileSaveCompleted 266
SaveAs_GetFileName 260
SaveAs_GetFileSize 262
SaveAs_GetFileType 261
SaveAs_GetTitle 258
SaveAs_GetWindowID 256
SaveAs_SelectionAvailable 263
SaveAs_SetDataAddress 264
SaveAs_SetFileName 259
SaveAs_SetFileSize 262
SaveAs_SetFileType 261
SaveAs_SetTitle 257

save completed successfully 255
saving by the module 253
saving data from a Toolbox client 251
saving to a file 254
521

saving via RAM transfer 254
Selection option button 253
setting file size 253
setting filename and filetype 250
showing 250
templates 270
user interface 247
Wimp event handling 271
Window definition 271

Scale Dialogue box class 273–287
Application Program Interface 274
attributes 275
before Scale box is shown 276
cancelling a Scale dialogue 276
completion of a Scale dialogue 277
creating and deleting 275
editing 492
events

Scale_AboutToBeShown 284
Scale_ApplyFactor 285
Scale_DialogueCompleted 285

methods
Scale_GetBounds 281
Scale_GetTitle 283
Scale_GetValue 279
Scale_GetWindowID 278
Scale_SetBounds 280
Scale_SetTitle 282
Scale_SetValue 279

reading and setting the writable field 277
reading and setting writable field parameters

277
scale factor 276
showing 276
templates 286
user interface 273
Wimp event handling 287
Window definition 286

shared objects 9
sliders 399–406

editing 477
events

Slider_ValueChanged 406

methods
Slider_GetBounds 403
Slider_GetColour 405
Slider_GetValue 401
Slider_SetBounds 402
Slider_SetColour 404
Slider_SetValue 400

templates 406
string sets 407–415

editing 478
events

StringSet_AboutToBeShown 414
StringSet_ValueChanged 414

methods
StringSet__SetFont 413
StringSet_GetComponents 412
StringSet_GetSelected 410
StringSet_SetAllowable 411
StringSet_SetAvailable 408
StringSet_SetSelected 409

templates 415
string, definition 3
strings table 509
support for RISC OS 3.10 511

T
task initialisation 16
template flags 431
templates

getting a template name 30
terminology used in this manual 3
textual name (name), definition 3
title, changing 296
toolbar 463

editing 463
example 58
positioning 463

Toolbox
application model 5
get information for client application 32
initialising 16, 33
522

Index
loading given resource file 35
messages 17
SWIs

Toolbox_CreateObject 20
Toolbox_DeleteObject 21
Toolbox_GetAncestor 29
Toolbox_GetClientHandle 26
Toolbox_GetObjectClass 27
Toolbox_GetObjectInfo 24
Toolbox_GetParent 28
Toolbox_GetSysInfo 32
Toolbox_GetTemplateName 30
Toolbox_HideObject 23
Toolbox_Initialise 33
Toolbox_LoadResources 35
Toolbox_ObjectMiscOp 25
Toolbox_RaiseToolboxEvent 31
Toolbox_SetClientHandle 26
Toolbox_ShowObject 22

Toolbox event 12–15
AboutToBeShown 44
definition 13
event codes 13
events

Toolbox_Error 37
Toolbox_ObjectAutoCreated 38
Toolbox_ObjectDeleted 38

format of 13
id block 14
raising an event 15
raising given event 31
redraw 57

transient dialogue box, definition 3

U
User Interface Object (object), definition 3
user, definition 3

W
Wimp

events 6
Window class 289–323

Application Program Interface 290
attributes 290
changing the title 296
events

Window_AboutToBeShown 318
Window_HasBeenHidden 319

gadgets
in a window 294
see also Gadgets

getting and setting a client handle 296
Help messages 296
keyboard short-cuts 292, 295, 321
menu 293
methods

Window_AddGadget 298
Window_AddKeyboardShortcuts 305
Window_GetHelpMessage 304
Window_GetMenu 300
Window_GetPointer 302
Window_GetTitle 308
Window_GetWimpHandle 297
Window_RemoveGadget 299
Window_RemoveKeyboardShortcuts

306
Window_SetHelpMessage 303
Window_SetMenu 300
Window_SetPointer 301
Window_SetTitle 307

pointer shapes 295
showing 293
templates 319
user interface 289
Wimp event handling 322

word, definition 3
writable fields 416–421

editing 480
events

WritableField_ValueChanged 421
523

methods
WritableField_GetValue 418
WritableField_SetAllowable 419
WritableField_SetFont 420
WritableField_SetValue 417

templates 421
524

✃

Reader’s Comment Form
User Interface Toolbox, Issue 3

We would greatly appreciate your comments about this Manual, which will be taken into account for the
next issue:

How would you classify your experience with computers?

Did you find the information you wanted?

Do you like the way the information is presented?

General comments:

If there is not enough room for your comments, please continue overleaf

ProgrammerUsed computers before experienced User experienced Programmer

Please send an e-mail with your
This information will only be used to get in touch with you in case we wish to explore your
comments further

Your name and address:

comments to:

manuals@riscosopen.org
525

526

	1 Introduction to the Toolbox
	Introduction
	Toolbox Application Model
	Toolbox objects
	Event handling
	Resource files
	Task initialisation and run-time information
	Message texts and nationalisation
	An Example object
	Toolbox SWIs
	SWI Toolbox_CreateObject (0x44ec0)
	SWI Toolbox_DeleteObject (0x44ec1)
	SWI Toolbox_ShowObject (0x44ec3)
	SWI Toolbox_HideObject (0x44ec4)
	SWI Toolbox_GetObjectState (0x44ec5)
	SWI Toolbox_ObjectMiscOp (0x44ec6)
	SWI Toolbox_SetClientHandle (0x44ec7)
	SWI Toolbox_GetClientHandle (0x44ec8)
	SWI Toolbox_GetObjectClass (0x44ec9)
	SWI Toolbox_GetParent (0x44eca)
	SWI Toolbox_GetAncestor (0x44ecb)
	SWI Toolbox_GetTemplateName (0x44ecc)
	SWI Toolbox_RaiseToolboxEvent (0x44ecd)
	SWI Toolbox_GetSysInfo (0x44ece)
	SWI Toolbox_Initialise (0x44ecf)
	SWI Toolbox_LoadResources (0x44ed0)
	SWI Toolbox_TemplateLookUp (0x44efb)
	Toolbox events

	2 Building an application
	Guide To Hyper
	How !Hyper was designed
	How !Hyper was implemented
	HyperCard Control Language

	3 Colour Dialogue box class
	User interface
	Application Program Interface
	Colour Dialogue methods
	Colour Dialogue events
	Colour Dialogue templates

	4 Colour Menu class
	User interface
	Application Program Interface
	Colour Menu methods
	Colour Menu events
	Colour Menu templates
	Colour Menu Wimp event handling

	5 Discard/Cancel/Save Dialogue box class
	User interface
	Application Program Interface
	DCS methods
	DCS events
	DCS templates
	DCS Wimp event handling

	6 File Info Dialogue box class
	User interface
	Application Program Interface
	File Info methods
	File Info events
	File Info templates
	File Info Wimp event handling

	7 Font Dialogue box class
	User interface
	Application Program Interface
	Font Dialogue methods
	Font Dialogue events
	Font Dialogue Templates
	Font Dialogue Wimp event handling

	8 Font Menu class
	User interface
	Application Program Interface
	Font Menu methods
	Font Menu events
	Font Menu templates
	Font Menu Wimp event handling

	9 Iconbar icon class
	User interface
	Application Program Interface
	Iconbar icon methods
	Iconbar icon events
	Iconbar icon templates
	Iconbar icon Wimp event handling

	10 Menu class
	User interface
	Application Program Interface
	Menu methods
	Menu events
	Menu Templates
	Menu Wimp event handling

	11 Print Dialogue box class
	User interface
	Application Program Interface
	Print Dialogue Methods
	Print Dialogue events
	Print Dialogue templates
	Print Dialogue Wimp event handling

	12 Prog Info Dialogue box class
	User interface
	Application Program Interface
	Prog Info methods
	Prog Info events
	Prog Info templates
	Prog Info Wimp event handling

	13 Quit Dialogue box class
	User interface
	Application Program Interface
	Quit methods
	Quit events
	Quit templates
	Quit Wimp event handling

	14 SaveAs Dialogue box class
	User interface
	Application Program Interface
	Save As methods
	Save As events
	Save As templates
	Save As Wimp event handling

	15 Scale Dialogue box class
	User interface
	Application Program Interface
	Scale methods
	Scale events
	Scale templates
	Scale Wimp event handling

	16 Window class
	User interface
	Application Program Interface
	Window methods
	Other SWIs
	Window events
	Window templates
	Window Wimp event handling
	Toolbars
	User interface
	Application program interface
	Toolbar methods
	Gadgets
	Application Program Interface
	Generic gadget methods
	Gadget Wimp event handling
	Action buttons
	Adjuster arrows
	Button gadget
	Display fields
	Draggable gadgets
	Labels
	Labelled boxes
	Number ranges
	Option buttons
	Pop-up menus
	Radio buttons
	Sliders
	String sets
	Writable fields

	17 ResEd
	Starting ResEd
	The object prototypes window
	The resource file display
	Editing object templates in general
	Editing the Menu class
	Example menu
	Editing a Window object template and gadgets
	Gadgets
	Editing other classes
	Exporting and importing messages
	Keystroke equivalents
	Mouse behaviour

	18 ResTest
	The event log window

	19 DrawFile
	SWI DrawFile_Render
	SWI DrawFile_BBox
	SWI DrawFile_DeclareFonts

	Appendix A: Resource File Formats
	Resource file format

	Appendix B: Support for RISC OS 3.10
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

