RISC OS 3

Programmer’s Reference Manual

Volume 4

Copyright © 1992 Acorn Computers Limited. All rights reserved.
Published by Acorn Computers Technical Publications Department.

No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

The product described in this manual is not intended for use as a critical component in
life support devices or any system in which failure could be expected to result in
personal injury.

The product described in this manual is subject to continuous development and
improvement. All information of a technical nature and particulars of the product and its
use (including the information and particulars in this manual) are given by Acorn
Computers Limited in good faith. However, Acorn Computers Limited cannot accept
any liability for any loss or damage arising from the use of any information or
particulars in this manual.

If you have any comments on this manual, please complete the form at the back of the
manual and send it to the address given there.

Acorn supplies its products through an international distribution network. Your supplier
is available to help resolve any queries you might have.

Within this publication, the term ‘BBC’ is used as an abbreviation for ‘British
Broadcasting Corporation’.

ACORN, ACORNSOFT, ACORN DESKTOP PUBLISHER, ARCHIMEDES,
ARTHUR, ECONET, MASTER, MASTER COMPACT, THE TUBE, VIEW and
VIEWSHEET are trademarks of Acorn Computers Limited.

Adobe and PostScript are trademarks of Adobe Systems Inc

ARM is a trademark of Advanced RISC Machines Ltd

TgX is a trademark of the American Mathematical Society

ImageWriter, LaserWriter and Macintosh are trademarks of Apple Computer Inc
DBase is a trademark of Ashton Tate Ltd

UNIX is a trademark of AT&T

Atari is a trademark of Atari Corporation

AutoCAD is a trademark of AutoDesk Inc

Amiga is a trademark of Commodore-Amiga Inc

Commodore is a trademark of Commodore Electronics Limited

SuperCalc is a trademark of Computer Associates

CorelDraw is a trademark of Corel Corporation

VT is a trademark of Digital Equipment Corporation

Ist Word Plus is a trademark of GST Holdings Ltd

Deskjet, HP, HPGL, LaserJet and PaintJet are trademarks of Hewlett-Packard

Corporation

Colourjet is a trademark of Integrex Ltd

IBM is a trademark of International Business Machines Corporation
ITC Zapf Dingbats is a trademark of International Typeface Corporation
Helvetica and Times are trademarks of Linotype Corporation

Lotus 123 is a trademark of The Lotus Corporation

MS-DOS is a trademark of Microsoft Corporation

MultiSync and NEC are trademarks of NEC Limited

Epson, EX and FX are trademarks of Seiko Epson Corporation

Sun is a trademark of Sun Microsystems Inc

Ethernet is a trademark of Xerox Corporation

All other trademarks are acknowledged.

Published by Acorn Computers Limited

ISBN for complete set of five volumes: 1 85250 110 3
ISBN for this volume: 1 85250 114 6

Edition 1

Part number 0470,294

Issue 1, 1992

4-iii

Contents

About this manual 1-xi

Part 1 - Introduction 1-1
An introduction to RISC OS 1-3
ARM Hardware 1-9
An introduction to SWIs 1-23
* Commands and the CLI 1-33
Generating and handling errors 1-41
OS_Byte 1-49
OS Word 1-59
Software vectors 1-63
Hardware vectors 1-113
Interrupts and handling them 1-119
Events 1-147
Buffers 1-163
Communications within RISC OS 1-181

Part 2 — The kernel 1-201
Modules 1-203
Program Environment 1-289
Memory Management 1-345
Time and Date 1-411
Conversions 1-455
Extension ROMs 1-501

Part 3 — Kernel input/output 1-503
Character Output 1-505
VDU Drivers 1-549
Sprites 1-775
Character Input 1-865
The CLI 1-957
The rest of the kernel 1-969

Part 4 — Using filing systems 2-1
Introduction to filing systems 2-3
FileSwitch 2-11
FileCore 2-197
ADFS 2-265
RamFS 2-315
DOSFS 2-323
NetFS 2-343
NetPrint 2-393
PipeFS 2-413
ResourceFS 2-415
DeskFS 2-427
DeviceFS 2-429
Serial device 2-445
Parallel device 2-487
System devices 2-495
The Filer 2-499
Filer Action and FilerSWIs 2-513
Free 2-521

Part 5 — Writing filing systems 2-529
Writing a filing system 2-531
Writing a FileCore module 2-597
Writing a device driver 2-607

Part 6 — Networking 2-617
Econet 2-619
File server protocol interface 2-705
The Broadcast Loader 2-739
BBC Econet 2-741
Hourglass 2-745
NetStatus 2-759

Part 7 — The desktop 3-1
The Window Manager 3-3
Pinboard 3-291
Drag A Sprite 3-297
The Filter Manager 3-301
The TaskManager module 3-311
TaskWindow 3-319
ShellCLI 3-327

Part 8 — Non-kernel input/output 3-331
ColourTrans 3-333
The Font Manager 3-411
SuperSample module 3-529
Draw module 3-533

Part 9 — Printing 3-563
Printer Drivers 3-565
Printer Dumpers 3-673
PDumperSupport 3-689
Printer definition files 3-709
MakePSFont 3-741

Part 10 — Internationalisation 3-743
MessageTrans 3-745
International module 3-767
The Territory Manager 3-793

Part 11 - Sound 4-1
The Sound system 4-3
WaveSynth 4-79

Part 12 — Utilities 4-83
The Buffer Manager 4-85
Squash 4-103
ScreenBlank 4-109

Part 13 — Hardware support 4-115
Expansion Cards and Extension ROMs 4-117
Floating point emulator 4-169
ARM3 Support 4-191
The Portable module 4-205
Joystick module 4-217

Part 14 — Programmer’s support 4-221
Debugger 4-223
BASIC and BASICTrans 4-241
The shared C library 4-249
Command scripts 4-351

Appendixes and tables 4-359
Appendix A: ARM assembler 4-361
Appendix B: Warnings on the use of ARM assembler 4-383
Appendix C: ARM procedure call standard 4-397
Appendix D: Code file formats 4-417
Appendix E: File formats 4-457
Appendix F: System variables 4-499
Appendix G: The Acorn Terminal Interface Protocol 4-507
Appendix H: Registering names 4-549
Table A: VDU codes 4-555
Table B: Modes 4-559
Table C: File types 4-563
Table D: Character sets 4-567

Part 15 — The kernel 5a-1
Introduction to RISC OS 3.5 and RISC OS 3.6 5a-3
ARM hardware 5a-13
Hardware vectors 5a-21
Interrupts 5a-33
Modules 5a-35
Memory management 5a-37
CMOS RAM allocation 5a-73
DMA 5a-81
Video 5a-101
JPEG images 5a-145
Miscellaneous kernel items 5a-163

Part 16 — Filing and networking 5a-165
FileSwitch 5a-167
FileCore 5a-171
ADFS 5a-185
DOSFS 5a-191
CDs and CD-ROMs 5a-193
NetPrint 5a-213
Parallel and serial device drivers 5a-215
Keyboard and mouse S5a-231
Filing system locking and resets 5a-247
Free 5a-259
Writing a filing system 5a-261
Writing a FileCore module 5a-265
Econet 5a-269
AUN 5a-279
The Internet module 5a-305
Acorn Access 5a-473

Part 17 — The desktop 5a-485
The desktop 5a-487
Drag An Object 5a-515
Draw file renderer 5a-521
RISC OS boot applications 5a-533
The colour picker 5a-555
Printing 5a-579
Internationalisation 5a-589

Part 18 — Miscellaneous 5a-593
Sound 5a-595
CompressJPEG 5a-617
Expansion card support 5a-625
Joystick module 5a-637
Monitor power saving 5a-653
The Toolbox modules 5a-657

Appendixes 5a-661
Appendix A: Warnings on the use of ARM assembler 5a-663
Appendix B: File formats 5a-665
Appendix C: Errata and omissions for RISC OS 3 PRM 5a-667

Indexes Index-1
Index of * Commands Index-3
Index of OS_Bytes Index-13
Index of OS_Words Index-17
Numeric index of Service Calls Index-19
Alphabetic index of Service Calls Index-25
Numeric index of SWIs Index-31
Alphabetic index of SWIs Index-57
Index by subject Index-83

Part 11 — Sound

4-1

4-2

72 The Sound system

Introduction

The Sound system provides facilities to synthesise and playback high quality digital
samples of sound. Since any sound can be stored digitally, the system can equally well
generate music, speech and sound effects. Eight fully independent channels are
provided.

The sound samples are synthesised in real time by software. A range of different Voice
Generators generate a standard set of samples, to which further ones can be added. The
software also includes the facility to build sequences of notes.

The special purpose hardware provided on ARM-based systems simply reads samples at
a programmable rate and converts them to an analogue signal. Filters and mixing
circuitry on the main board provide both a stereo output (suitable for driving personal
hi-fi stereo headphones directly, or connecting to an external hi-fi amplifier) and a
monophonic or stereophonic output to the internal speaker(s).

4-3

Overview

Overview

There are four parts to the software for the Sound system: the DMA Handler, the
Channel Handler, the Scheduler, and Voice Generators. These are briefly summarised
below, and described in depth in later sections.

The DMA Handler

The DMA Handler manages the DMA buffers used to store samples of sound, and the
associated hardware used.

The system uses two buffers of digital samples, stored as signed logarithms. The data
from one buffer is read and converted to an analogue signal, while data is
simultaneously written to the other buffer by a Voice Generator. The two buffers are
then swapped between, so that each buffer is successively written to, then read.

The DMA Handler is activated every time a new buffer of sound samples is required. It
sends a Fill Request to the Channel Handler, asking that the correct Voice Generators fill
the buffer that has just been read from.

The DMA Handler also provides interfaces to program hardware registers used by the
Sound system. The number of channels and the stereo position of each one can be set,
the built-in loudspeaker(s) can be enabled or disabled, and the entire Sound system can
also be enabled or disabled. The sample length and sampling rate can also be set.

The services of the DMA Handler are mainly provided in firmware requiring privileged
supervisor status to program the system devices. It is tightly bound to the Channel
Handler, sharing static data space. Consequently, this module must not be replaced or
amended independently of the Channel Handler.

The Channel Handler

The Channel Handler provides interfaces to control the sound produced by each
channel, and maintains internal tables necessary for the rest of the Sound system to
produce these sounds.

The interfaces can be used to set the overall volume and tuning, to attach the channels to
different Voice Generators, and to start sounds with given pitch, amplitude and duration.

The following internal tables are built and maintained: a mapping of voice names to
internal voice numbers; a record for each channel of its volume, voice, pitch and timbre;
and linear and logarithmic lookup tables for Voice Generators to scale their amplitude to
the current overall volume setting.

Fill Requests issued by the DMA Handler are routed through the Channel Handler to the
correct Voice Generators. This allows any tables involved to be updated.

4-4

The Sound system

The Channel Handler is tightly bound to the DMA Handler, sharing static data space.
Consequently, this module must not be replaced or amended independently of the DMA
Handler.

The Scheduler

The Scheduler is used to queue Sound system SWIs. Its most common use is to play
sequences of notes, and a simplified interface is provided for this purpose.

A beat counter is used which is reset every time it reaches the end of a bar. Both its
tempo and the number of beats to the bar can be programmed.

You may replace this module, although it is unlikely to be necessary.

Voice Generators

Voice Generators generate and output sound samples to the DMA buffer on receiving a
Fill Request from the Channel Handler. Typical algorithms that might be used to
synthesise a sound sample include calculation, lookup of filtered wavetables, or
frequency modulation. A Voice Generator will normally allow multiple channels to be
attached.

An interface exists for you to add custom Voice Generators, expanding the range of
available sounds. The demands made on processor bandwidth by synthesis algorithms
are high, especially for complex sounds, so you must write them with great care.

4-5

Technical details

Technical details

DMA Handler

The DMA Handler manages the hardware used by the Sound system. Two physical
buffers in main memory are used. These are accessed using four registers in the sound
DMA Address Generator (DAG) within the MEMC (memory controller) chip:

e The DAG sound pointer points to the byte of sound to be output
e The current end register points to the end of the DMA buffer

e The next start/end register pair point to the most recently filled buffer.

The sound pointer is incremented every time a byte is read by the video controller for
output. When it reaches the end of the current buffer the memory controller switches
buffers: the sound pointer and buffer end registers are set to the values stored in the next
start and next end registers respectively. An interrupt is then issued by 10C (the I/O
controller) indicating the buffers have switched, and the DMA handler is entered.

The DMA Handler calls the Channel Handler with a Fill request, asking that the next
buffer be filled. (See page 4-10 for details of the Channel Handler.) If this fill is
completed, control returns to the DMA Handler and it makes the next start and next end
registers point to the buffer just filled. If the fill is not completed then the next registers
are not altered, and so the same buffer of sound will be repeated, causing an audible
discontinuity.

Configuring the Sound system

The rest of this section outlines the factors that you must consider if you choose to
reconfigure the Sound system.

Terminology used

4-6

e The output period is the time between each output of a byte.

e The sample period is the time between each output for a given channel.
o The buffer period is the time to output an entire buffer.

There are corresponding rates for each of the above.

e The sample length is the number of bytes in the buffer per channel.

e The buffer length is the total number of bytes in the buffer.

The Sound system

DMA Buffer period

A short buffer period is desirable to minimise the size of the buffer and to give high
resolution to the length of notes; a long buffer period is desirable to decrease the
frequency and number of interrupts issued to the processor. A period of approximately
one centisecond is chosen as a default value, although this can be changed, for example
to replay lengthy blocks of sampled speech from a disc.

Sample rate: maximum

A high sample rate will give the best sound quality. If too high a rate is sought then
DMA request conflicts will occur, especially when high bandwidths are also required
from VIDC (the Video Controller) by high resolution screen modes. To avoid such
contention the output period must not be less than 4us. Outputting a byte to one of eight
channels every 4us results in a sample period of 32us, which gives a maximum sample
rate of 31.25kHz.

Sample rate: default

The clock for the Sound system is derived from the system clock for the video
controller, which is then divided by a multiple of 24. Current ARM based computers use
a VIDC system clock of 24MHz, 25.175MHz or 36MHz, depending on the screen mode
and monitor type selected. The default output period is 6ps, which is compatible with
VIDC system clocks running at multiples of 4MHz from 12MHz upwards (ie 12MHz,
16MHz, 20MHz...). This 6us output period is obtained as follows from the 24MHz and
36MHz VIDC system clocks:

e 24MHz clock divided by 144 (6 x 24)
e 36MHz clock divided by 216 (9 x 24)

Unfortunately with a VIDC system clock of 25.175MHz (used for VGA screen modes)
the same output period cannot be produced. The divider used is the same as for a 24MHz
VIDC system clock (ie 144, or 6 x 24), which results in a slightly shorter output period,
and so sounds are approximately a semitone higher.

Outputting a byte to one of eight channels every 6ps results in a sample period of 48us,
which gives a default sample rate of 20.833kHz.

4-7

DMA Handler

Buffer length

4-8

The DMA buffer length depends on the number of channels, the sample rate, and the
buffer period. It must also be a multiple of 4 words. Using the defaults outlined above,
the lengths shown in the middle two columns of the following table are the closest
alternatives:

Buffer lengths for one centisecond sample, at sample rate of 20.833 kHz:

Bufferlength Output period
1 channel 208 bytes 224 bytes 48us
2 channels 416 bytes 448 bytes 24us
4 channels 832 bytes 896 bytes 12us
8 channels 1664 bytes 1792 bytes 6us
Buffer period 0.9984cs 1.0752cs
Interrupt rate 100.16Hz 93.01Hz
Bytes per channel &D0 &EO

The system default buffer period is chosen as 0.9984 centiseconds, thus the sample
length is 208 bytes, or 52 words (13 DMA quad-word cycles). The buffer length is a
multiple of this, depending on how many channels are used.

DMA Buffer format

The sound DMA system systematically outputs bytes at the programmed sample rate;
each (16-byte) load of DMA data from memory is synchronised to the first stereo image
position. Each byte must be stored as an eight bit signed logarithm, ready for direct
output to the VIDC chip:

Multiple channel operation is possible with two, four or eight channels; in this case the
data bytes for each channel must be interleaved throughout the DMA buffer at two, four
or eight byte intervals. When output the channels are multiplexed into what is effectively
one half, one quarter or one eighth of the sample period, so the signal level per channel
is scaled down by the same amount. Thus the signal level per channel is scaled,
depending on the number of channels; but the overall signal level remains the same for
all multi-channel modes.

Showing the interleaving schematically:

Single channel format:

The Sound system

0 byte 0 | byte1 | byte2 | byte 3 | byte4 | byte 5 | byte 6 | byte 7
chan1 |chan1 | chan1|chan1|chan1|chan1 |chan1 | chan 1
+8 | byte 8 | byte 9 | byte 10 | byte 11 | byte 12 | byte 13| etc...
chan1 |chan1 |chan1 | chan1 | chan 1 | chan 1
Output rate = 20 kHz
Image registers 0 - 7 programmed identically
Two channel format:
0 byte 0 | byte O | byte1 | byte 1 | byte 2 | byte 2 | byte 3 | byte 3
chan1 |chan2 | chan1|chan2 | chan1|chan2 | chan1 | chan 2
+8 | byte 4 | byte4 | byte5 | byte 5 | byte 6 | byte 6 | etc...
chan1 | chan2 | chan1 | chan2 | chan 1 | chan2
Output rate = 40 kHz
Image registers 0+2+4+8 and 1+3+5+7 programmed per channel
Four channel format:
0 byte 0 | byte O | byte 0 | byte 0 | byte 1 | byte 1 | byte 1 | byte 1
chan1 |chan2 | chan3 | chan4 | chan1 | chan2 | chan 3 | chan 4
+8 | byte 2 | byte2 | byte2 | byte 2 | byte 3 | byte 3 | etc...
chan1 | chan2 | chan3 | chan4 | chan 1 | chan 2

Output rate = 80 kHz
Image registers 0+4, 1+5, 2+6 and 3+7 programmed per channel

4-9

Channel Handler

Eight channel format:

0 byte 0 | byte O | byte 0 | byte 0 | byte O | byte O | byte 0 | byte 0

chan1 | chan2 | chan3 | chan4 | chan5 | chan6 | chan7 | chan 8

+8 | byte 1 | byte1 | byte 1 | byte 1 | byte 1 | byte 1 | etc...

chan1 | chan2 | chan 3 | chan4 | chan5 | chan 6

Output rate = 160 kHz
Image registers programmed individually.

The Channel Handler manages the interleaving for you by passing the correct start
address and increment to the Voice Generator attached to each channel.

Channel Handler

The Channel Handler registers itself with the DMA Handler by passing its address using
Sound_Configure. At this address there must be a standard header:

Channel Handler

4-10

Offset Value

0 pointer to fill code

4 pointer to overrun fixup code
8 pointer to linear-to-log table
12 pointer to log-scale table

The fill code handles fill requests from the DMA Handler. The Channel Handler
translates the fill request to a series of calls to the Voice Generators, passing the required
buffer offsets so that data from all channels correctly interleaves. Any unused channels
within the buffer are set to zero by the Channel Handler so they are silent.

The overrun fixup code deals with channels that are not successfully filled within a
single buffer period and hence repeat the same DMA buffer. This feature is no longer
supported in RISC OS and the fixup code is never called. (In the Arthur OS the
offending channel was marked as overrun, the previous Channel Handler was aborted,
and a new buffer fill initiated.)

The pointer to the linear-to-log table holds the address of the base of an 8 Kbyte table
which maps 32-bit signed integers directly to 8-bit signed volume-scaled logarithms in a
suitable format for output to the VIDC chip.

The Sound system

The pointer to the log-scale table holds the address of a 256-byte table which scales the
amplitude of VIDC-format 8-bit signed logarithms from their maximum range down to
a value scaled to the volume setting. Voice Generators should use this table to adjust
their overall volume.

Sound Channel Control Block (SCCB)

The Channel Handler maintains a 256 byte Sound Channel Control Block (SCCB) for
each channel. An SCCB contains parameters and flags used by Voice Generators, and an
extension area for programmers to pass any essential further data. Such an extension
must be well documented, and used with care, as it will lead to Voice Generators that are
no longer wholly compatible with each other.

The 9 initial words hold values that are normally stored in RO - R8 inclusive. They are
loaded from the SCCB using the instruction LDMIA R9,{R0-R8}

Offset Value

0 gate bit + channel amplitude (7-bit log)
1 index to voice table

2 instance number for attached voice

3 control/status bit flags

4 phase accumulator pitch oscillator

8 phase accumulator timbre oscillator

12 number of buffer fills left to do (counter)
16 (normally working R4)

20 (normally working R5)

24 (normally working R6)

28 (normally working R7)

32 (normally working R8)

36-63 reserved for use by Acorn (28 bytes)

64 - 255 available for users

The flag byte indicates the state of the voice attached to the channel, and may be used for
allocating voices in a polyphonic manner. Each time a Voice Generator completes a
buffer fill and returns to the Channel Handler it returns an updated value for the Flags
field in RO.

It is the responsibility of the Channel Handler to store the returned flag byte, and to
update the other fields of each SCCB as necessary.

Note — In the Arthur OS, the flag byte was also used to detect channels that had overrun.
If any were found then a call was made indirected through the fix up pointer (see above).

4-11

Scheduler

Voice Table

The Channel Handler uses a voice table recording the names of voices installed in the 32
available voice slots. It is always accessed through the SWI calls provided, and so its
format is not defined.

Scheduler
Header
The Scheduler registers itself with the DMA Handler by passing its address using
Sound_Configure. At this address there must be a pointer to the code for the Scheduler.
Use

4-12

Although the Scheduler is principally designed for queuing sound commands it can be
used to issue other SWIs. Thus it could be used to control, for example, an external
instrument interface (such as a Musical Instrument Digital Interface (MIDI) expansion
podule), or a screen-based music editor with real-time score replay.

Extreme care must be used with the Scheduler, as it has limitations. R2 - R7 are always
cleared when the SW1 is issued, and the error-returning form (‘X form) of the SWI is
forced. Return parameters are discarded. If pointers are to be passed in RO or R1 then the
data they address must be preserved until the SWI is called. If a SWI will not work
within these limitations it must not be called by the Scheduler.

The Scheduler implements the queue as a circular chain of records. A stack listing the
free slots is also kept. The number of free slots varies not only according to how many
events are queued, but also to how the events are ‘clustered’.

The queue is always accessed through the SWI calls provided, and so its precise format
is not defined.

Event dispatcher

Every centisecond the beat counter is advanced according to the tempo value, and any
events that fall within the period are activated in strict queuing order. Voice and
parameter change events are processed and the SCCB for each Voice Generator updated
as necessary by the Channel Handler, before fill requests are issued to the relevant Voice
Generators.

The Sound system

Voice Generators

A Voice Generator is added to the Sound system by issuing a Sound_InstallVoice call,
which passes its address to the Channel Handler. At this address there must be a standard

header:
Header
Offset Contents
0 B FillCode
4 B UpdateCode
8 B GateOnCode
12 B GateOffCode
16 B Instantiate
20 B Free
24 LDMFD R13!,{pc}
28 Offset from start of header to voice name

The Fill, Update, GateOn and GateOff entries provide services to fill the DMA buffer at
different stages of a note, as detailed in the section entitled Entry points for buffer filling
on page 4-15.

The Instantiate and Free entries provide facilities to attach or detach the Voice Generator
to or from a channel, as detailed in the section entitled Voice instantiation on page 4-16.

The Install entry was originally to be called when a Voice Generator was initialised.
Since Voice Generators are now implemented as Relocatable Modules, which offer
exactly this service in the form of the Initialisation entry point, this field is not supported
and simply returns to the caller (LDMFD R13!,{pc} above).

The voice name is used by the Channel Handler voice table. It should be both concise
and descriptive. The offset must be positive relative — that is, the voice name must be
after the header.

Buffer filling: entry conditions

A fill request to a Voice Generator is made by the Channel Handler using one of the four
buffer fill entry points. The registers are allocated as follows:

Register Function

R6 negative if configuration of Channel Handler changed
R7 channel number

R8 sample period in ps

R9 pointer to SCCB (Sound Channel Control Block)
R10 pointer to end of DMA buffer

R11 increment to use when writing to DMA buffer

4-13

Voice Generators

R12 pointer to (start of DMA buffer + interleaf offset)
R13 stack (Return address is on top of stack)
R14 do not use

Further parameters are available in the SCCB for that channel, which is addressed by
R9. See the section entitled Channel Handler on page 4-10 for details. The usage of the
parameters depends on which of the four entry points is called.

The ARM is in IRQ mode with interrupts enabled.

Buffer filling: routine conditions

The routine must fill the buffer with 8 bit signed logarithms in the correct format for
direct output to the VIDC chip:

The ARM is in IRQ mode with interrupts enabled. They must remain enabled to ensure
that system devices do not have a lengthy wait to be serviced. The code for a Voice
Generator must therefore be re-entrant, and R14 must not be used as a subroutine link
register, since an interrupt will corrupt it. Sufficient IRQ stack depth must be maintained
for system IRQ handling. You can enter SVC mode if you wish.

Buffer filling: exit conditions

4-14

When a Voice Generator has completed a buffer fill it sets a flag byte in R0, and returns
to the Channel Handler using LDMFD R13!,{PC}. The flag byte shows the status of
each channel, and is used to prioritise fill requests to the Voice Generators.

7 0
QK| I |F|A|V]|F2|F1
Bit Meaning

Q Quiet (GateOff flag)

K Kill pending (GateOn flag)

I Initialise pending (Update flag)

F Fill pending

A Active (normal Fill in progress)

A% oVerrun flag (no longer supported)
F2, Fl1 2-bit Flush pending counter

The Sound system

Entry points for buffer filling

There are four different entry points for buffer filling, which are used at the different
stages of a note. It is the responsibility of the Channel Handler to determine which Voice

Generator to call, which entry should be used, and to update the SCCB as necessary
when these calls return.

GateOn entry

The GateOn entry is used whenever a sound command is issued that requires a new
envelope. Normally any previous synthesis is aborted and the algorithm restarted.

On exit a the A bit (bit 3) of the flag byte is set.

Update entry

The Update entry is used whenever a sound command is issued that requires a smooth
change, without a new envelope (using extended amplitudes &180 to &1FF in the
*Sound command for example). Normally the previous algorithm is continued, with
only the amplitude, pitch and duration parameters supplied by the SCCB updated.

On exit the A bit (bit 3) of the flag byte is returned unless the voice is to stop sounding;
for example if the envelope has decayed to zero amplitude. In these cases the F2 bit
(bit 1) is set, and the Channel Handler will automatically flush out the next two DMA
buffers, before becoming dormant.

Fill entry

The Fill entry is used when the current sound is to continue, and no new command has
been issued.

On exit it is normal to return the same flags as for the Update entry.

GateOff entry

The GateOff entry is used to finish synthesising a sound. Simple voices may stop
immediately, which is liable to cause an audible ‘click’; more refined algorithms might
gradually release the note over a number of buffer periods. A GateOff entry may be
immediately followed by a GateOn entry.

On exit the F2 bit (bit 1) is set if the voice is to stop sounding, or the A bit (bit 3) is set if
the voice is still being released.

4-15

Voice instantiation

Voice instantiation

Two entry points are provided to attach or detach a voice generator and a sound channel.
On entry the ARM is in Supervisor mode, and the registers are allocated as follows:

Register Function
RO physical Channel number —1 (0 to 7)
R14 usable

The return address is on top of the stack. All other registers must be preserved by the
routines, which must exit using LDMFD R13!,{pc}

RO is preserved if the call was successful, else it is altered.

Instantiate entry

The Instantiate entry is called to inform the Voice Generator of a request to attach a
channel to it. Each channel attached is likely to need some private workspace. A Voice
Generator should ideally be able to support eight channels. The request can either be
accepted (RO preserved on exit), or rejected (RO altered on exit).

The usual reason for rejection is that an algorithm is slow and is already filling as many
channels as it can within each buffer period: for example very complex algorithms, or
ones that read long samples off disc.

Free entry

The Free entry is called to inform the Voice Generator of a request to detach a channel
from it. The call must release the channel and preserve all registers.

4-16

The Sound system

Service Calls

Service_Sound
(Service Call &54)

Parts of the Sound system are starting or dying

On entry
RO= 0 DMA Handler starting
1 DMA Handler dying
2 Channel Handler starting
3 Channel Handler dying
4 Scheduler starting
5 Scheduler dying

R1 = &54 (reason code)

On exit
RO, R1 preserved

Use

This call is made to signal that a part of the Sound system is about to start up or finish.

4-17

SWi calls

SWI calls

4-18

Sound_Configure
(swi &40140)

Configures the Sound system

On entry

RO = number of channels, rounded up to 1,2,4 or 8

R1 = sample length (in bytes per channel — default 208)

R2 = sample period (in ps per channel — default 48)

R3 = pointer to Channel Handler (normally 0 to preserve system Handler)
R4 = pointer to Scheduler (normally 0 to preserve system Scheduler)

On exit

RO - R4 = previous values

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This software interrupt is used to configure the number of sound channels, the sample
period and the sample length. It can also be used by specialised applications to replace
the default Channel Handler and Scheduler.

All current settings may be read by using zero input parameters.

The actual values programmed are subject to the limitations outlined earlier.

The Sound system

Related SWis

None

Related vectors

None

4-19

Sound_Enable (SWI &40141)

4-20

Sound_Enable
(swi &40141)

Enables or disables the Sound system

On entry

RO = new state:
0 for no change (read state)

1 for OFF
2 for ON
On exit
RO = previous state
1 for OFF
2 for ON

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This software interrupt is used to enable or disable all Sound interrupts and DMA
activity. This guarantees to inhibit all Sound system bandwidth consumption once a
successful disable has been completed.

Related SWis
Sound_Speaker (page 4-24), Sound_Volume (page 4-26)

The Sound system

Related vectors

None

4-21

Sound_Stereo (SWI &40142)

4-22

Sound_Stereo
(swi &40142)

Sets the stereo position of a channel

On entry

RO = channel (C) to program
R1 = image position:
0 is centre
127 for maximum right
—127 for maximum left
—128 for no change (read state)

On exit

RO preserved
R1 = previous image position, or —128 if RO > 8§ on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

For N physical channels enabled, this call will program stereo registers C, C+N,
C+2N... up to stereo register 8. For example, if two channels are currently in use, and
channel 1 is programmed, channels 3, 5 and 7 are also programmed; if channel 3 is
programmed, channels 5 and 7 are also programmed, but not channel 1.

This Software call only updates RAM copies of the stereo image registers and the new
positions, in fact, take effect on the next sound buffer interrupt.

IRQ code can call this SWI directly for scheduled image movement.

The Sound system

Related SWis

None

Related vectors

None

4-23

Sound_Speaker (SWI &40143)

Sound_Speaker
(swi &40143)

Enables or disables the speaker(s)

On entry

RO = new state:
0 for no change (read state)

1 for OFF
2 for ON
On exit
RO = previous state
1 for OFF
2 for ON

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This software interrupt enables/disables the monophonic or stereophonic mixed
signal(s) to the internal loudspeaker amplifier(s). It has no effect on the external stereo
headphone/amplifier output.

This SWI disables the speaker(s) by muting the signal; you may still be able to hear a
very low level of sound.

Related SWis
Sound_Enable (page 4-20), Sound_Volume (page 4-26)

4-24

The Sound system

Related vectors

None

4-25

Sound_Volume (SWI &40180)

Sound_Volume
(swi &40180)

Sets the overall volume of the Sound system

On entry
RO = sound volume (1 - 127) (0 to inspect last setting)

On exit

RO = previous volume

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call sets the maximum overall volume of the Sound system. A change of 16 in the
volume will halve or double the volume. The command scales the internal lookup tables
that Voice Generators use to set their volume; some custom Voice Generators may
ignore these tables and so will be unaffected.

A large amount of calculation is involved in this apparently trivial call. It should be used
sparingly to limit the overall volume; the volume of each channel should then be set
individually.

Related SWis
Sound Enable (page 4-20), Sound_Speaker (page 4-24)

Related vectors

None

4-26

The Sound system

Sound_SoundLog
(swi &40181)

Converts a signed integer to a signed logarithm, scaling it by volume

On entry
RO = 32-bit signed integer

On exit

RO = 8-bit signed volume-scaled logarithm

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call maps a 32-bit signed integer to an 8 bit signed logarithm in VIDC format. The
result is scaled according to the current volume setting. Table lookup is used for

efficiency.

Related SWis
Sound_LogScale (page 4-28)

Related vectors

None

4-27

Sound_LogScale (SWI &40182)

4-28

Sound_LogScale
(swi &40182)

Scales a signed logarithm by the current volume setting

On entry
RO = 8-bit signed logarithm

On exit
RO = 8-bit signed volume-scaled logarithm

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This software interrupt maps an 8-bit signed logarithm in VIDC format to one scaled
according to the current volume setting. Table lookup is used for efficiency.

Related SWis
Sound SoundLog (page 4-27)

Related vectors

None

The Sound system

Sound_ InstallVoice
(swi &40183)

Adds a voice to the Sound system

On entry

RO = pointer to Voice Generator
R1 = voice slot (0 to install in next free slot, else 1 - 32)

On exit

RO = pointer to name of previous voice, or null terminated error string if R1 =0
R1 = voice number allocated, or 0 if unable to install

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This software interrupt is used by Voice Modules or Libraries to add a Voice Generator
to the table of available voices. If an error occurs, this SWI does not set V in the usual
manner. Instead R1 is zero on exit, and RO points directly to a null-terminated error
string.

4-29

Sound_InstallVoice (SWI &40183)

If RO is in the range O - 3, this call takes other action as follows:

RO Action Page

0 Reads the name of the voice installed in the specified slot 4-29

1 Adds a voice to the Sound system, specifying its name in the 4-29
local language

2 Reads the name of the voice installed in the specified slot, and its ~ 4-29
local name

3 Changes the local name of the voice installed in the specified slot 4-29

Related SWis
Sound RemoveVoice (page 4-35)

Related vectors

None

4-30

The Sound system

Sound_ InstallVoice 0
(swi &40183)

Reads the name of the voice installed in the specified slot

On entry

RO=0
R1 = voice slot

On exit

RO = pointer to name of installed voice
R1 preserved

Use

This call reads the name of the voice installed in the specified slot. If the slot is unused
RISC OS gives a null pointer. (The Arthur OS gave a pointer to the string ‘*** No
Voice’.)

4-31

Sound_InstallVoice 1 (SWI &40183)

4-32

Sound_ InstallVoice 1
(swi &40183)

Adds a voice to the Sound system, specifying its name in the local language

On entry

RO=1

R1 = voice slot (0 to install in next free slot, else 1 - 32)

R2 = pointer to Voice Generator

R3 = pointer to voice name in local language, or 0 if no local name

On exit

Use

RO preserved

R1 = voice number allocated, or 0 if unable to install

R2 = pointer to name of previous voice, or null terminated error string if R1 =0
R3 preserved

This software interrupt is used by Voice Modules or Libraries to add a Voice Generator
to the table of available voices, specifying its name in the local language. If an error
occurs, this SWI does not set V in the usual manner. Instead R1 is zero on exit, and R0
points directly to a null-terminated error string.

This reason code is not available in RISC OS 2.

The Sound system

Sound_ InstallVoice 2
(swi &40183)

Reads the name of the voice installed in the specified slot, and its local name

On entry

RO=2
R1 = voice slot

On exit

RO, R1 preserved
R2 = pointer to name of installed voice
R3 = pointer to name of installed voice in local language

Use

This call reads the name of the voice installed in the specified slot, and its local name. If
the slot is unused RISC OS gives a null pointer. (The Arthur OS gave a pointer to the
string ‘*** No Voice’.) The local name is otherwise guaranteed to be non-null and valid.

This reason code is not available in RISC OS 2.

4-33

Sound_InstallVoice 3 (SWI &40183)

Sound_ InstallVoice 3
(swi &40183)

Changes the local name of the voice installed in the specified slot

On entry
RO=3
R1 = voice slot
R2=0

R3 = pointer to new voice name in local language

On exit
RO - R3 preserved

Use

This call changes the local name of the voice installed in the specified slot. The local
name is set to the new name given, even if it had no local name before this call was

made.

This reason code is not available in RISC OS 2.

4-34

The Sound system

Sound_RemoveVoice
(swi &40184)

Removes a voice from the Sound system

On entry

R1 = voice slot to remove (1 - 32)

On exit

RO = pointer to name of previous voice (or error message)
R1 is voice number de-allocated (0 for FAIL)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This software interrupt is used when Voice Modules or Libraries are to be removed from
the system. It notifies the Channel Handler that a RAM-resident Voice Generator is
being removed. If an error occurs, this SWI does not set V in the usual manner. Instead
R1 is zero on exit, and RO points directly to a null-terminated error string.

This call must also be issued before the Relocatable Module Area is Tidied, since the
module contains absolute pointers to Voice Generators that are likely to exist in the
RMA.

Related SWis
Sound InstallVoice (page 4-29)

4-35

Sound_RemoveVoice (SWI &40184)

Related vectors

None

4-36

The Sound system

Sound_AttachVoice
(swi &40185)

Attaches a voice to a channel

On entry

RO = channel number (1 - 8)
R1 = voice slot to attach (0 to detach and mute channel)

On exit

RO preserved (or 0 if illegal channel number)
R1 = previous voice number (or 0 if not previously attached)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call attaches a voice with a given slot number to a channel. The previous voice is
shut down and the new voice is reset.

Different algorithms have different internal state representations so it is not possible to
swap Voice Generators in mid-sound.

Related SWis
Sound AttachNamedVoice (page 4-43)

Related vectors

None

4-37

Sound_ControlPacked (SWI &40186)

4-38

Sound_ControlPacked
(swi &40186)

Makes an immediate sound

On entry

RO is AAAACCCC Amp/Channel
R1 is DDDDPPPP Duration/Pitch

On exit
RO,R1 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call is identical to Sound_Control (page 4-41), but the parameters are packed 16-bit
at a time into low RO, high RO, low R1, high R1 respectively. It is provided for BBC
compatibility and for the use of the Scheduler. The Sound_Control call should be used in
preference where possible.

Related SWis
Sound Control (page 4-41)

Related vectors

None

The Sound system

Sound_Tuning
(swi &40187)

Sets the tuning for the Sound system

On entry

RO = new tuning value (or 0 for no change)

On exit

RO = previous tuning value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use
This call sets the tuning for the Sound system in units of 1/4096 of an octave.

The command *Tuning 0 may be used to restore the default tuning.

Related SWis

None

Related vectors

None

4-39

Sound_Pitch (SWI &40188)

4-40

Sound_Pitch
(swi &40188)

Converts a pitch to internal format (a phase accumulator value)

On entry

RO = 15-bit pitch value:
bits 14 - 12 are a 3-bit octave number
bits 11 - 0 are a 12-bit fraction of an octave (in units of 1/4096 octave)

On exit
RO = 32-bit phase accumulator value, or preserved if RO > &8000 on entry

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This software interrupt maps a 15-bit pitch to an internal format pitch value (suitable for
the standard voice phase accumulator oscillator).

Related SWis

None

Related vectors

None

The Sound system

Sound_Control
(swi &40189)

Makes an immediate sound

On entry

RO = channel number (1 - 8)
R1 = amplitude:
&FFF1 - &FFFF and 0 for BBC emulation amplitude (0 to -15)
&0001 - &000F BBC envelope not emulated
&0100 - &01FF for full amplitude/gate control:
bit 7is 0 for gate ON/OFF
1 for smooth update (gate not retriggered)
bits 6 - 0 are 7-bit logarithm of amplitude
R2 = pitch
&0000 - &00FF for BBC emulation pitch
&0100 - &7FFF for enhanced pitch control:
bits 14 - 12 = 3-bit octave
bits 11 - 0 = 12-bit fractional part of octave
(&4000 is nominally Middle C)
&8000 +n ‘n’ (in range 0 - &7FFF) is phase accumulator increment
R3 = duration
&0001 - &00FE for BBC emulation in 5 centisecond periods
&00FF for BBC emulation ‘infinite’ time (converted to &F0000000)
> &00FF for duration in 5 centisecond periods.

On exit
RO - R3 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

4-41

Sound_Control (SWI &40189)

Re-entrancy
Not defined

Use

This call allows real-time control of a specified Sound Channel. The parameters are
immediately updated and take effect on the next buffer fill.

Gate on and off correspond to the start and end of a note and of its envelope (if
implemented). ‘Smooth’ update occurs when note parameters are changed without
restarting the note or its envelope — for example when the pitch is changed to achieve a
glissando effect.

If any of the parameters are invalid the call does not generate an error; instead it returns
without performing any operation.

Related SWis
Sound_ControlPacked (page 4-38)

Related vectors

None

4-42

The Sound system

Sound_AttachNamedVoice
(swi &4018A)

Attaches a named voice to a channel

On entry

RO = channel number (1 - 8)
R1 = pointer to voice name (ASCII string, null terminated)

On exit

RO is preserved, or 0 for fail
R1 is preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call attaches a named voice to a channel. If no exact match for the name is found
then an error is generated and the old voice (if any) remains attached. If a match is found
then the previous voice is shut down and the new voice is reset.

Different algorithms have different internal state representations so it is not possible to
swap Voice Generators in mid-sound.

Related SWis
Sound_AttachVoice (page 4-37)

Related vectors

None

4-43

Sound_ReadControlBlock (SWI &4018B)

4-44

Sound_ReadControlBlock
(swi &4018B)

Reads a value from the Sound Channel Control Block

On entry

RO = channel number (1 - 8)
R1 = offset to read from (0 - 255)

On exit

RO preserved (or 0 if fail, invalid channel, or invalid read offset)
R1 preserved
R2 = 32-bit word read (if RO non-zero on exit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call reads 32-bit data values from the Sound Channel Control Block (SCCB) for the
designated channel. This call can be used to read parameters not catered for in the
Sound_Control calls returned by Voice Generators, using an area of the SCCB reserved
for the programmer.

Related SWis
Sound WriteControlBlock (page 4-45)

Related vectors

None

The Sound system

Sound_WriteControlBlock
(swi &4018C)

Writes a value to the Sound Channel Control Block

On entry

RO = channel number (1 - 8)
R1 = offset to write to (0 - 255)
R2 = 32-bit word to write

On exit

RO preserved (or O if fail, invalid channel, or invalid write offset)
R1 preserved
R2 = previous 32-bit word (if RO non-zero on exit)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call writes 32-bit data values to the Sound Channel Control Block (SCCB) for the
designated channel. This call can be used to pass parameters not catered for in the
Sound_Control calls to Voice Generators, using an area of the SCCB reserved for the
programmer.

Related SWis
Sound_ReadControlBlock (page 4-44)

4-45

Sound_WriteControlBlock (SWI &4018C)

Related vectors

None

4-46

Initialises the Scheduler’s event queue

On entry

No parameters passed in registers

On exit

RO =0, indicating success

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

The Sound system

Sound_QlInit
(swi &401CO0)

This call flushes out all events currently scheduled and re-initialises the event queue.
The tempo is set to the default, the beat counter is reset and disabled, and the bar length

set to zero.

Related SWis

None

Related vectors

None

4-47

Sound_QSchedule (SWI &401C1)

Sound_QSchedule
(swi &401C1)

Schedules a sound SWI on the event queue

On entry

RO = schedule period
—1 to synchronise with the previously scheduled event
-2 for immediate scheduling
R1 =0 to schedule a Sound ControlPacked call, or SWI code to schedule (of the form
&xF000000 + SWI number)
R2 = SWI parameter to be passed in RO
R3 = SWI parameter to be passed in R1

On exit

RO = 0 for successfully queued
RO < 0 for failure (queue full)

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call schedules a sound SWI call. If the beat counter is enabled the schedule period
is measured from the last start of a bar, otherwise it is measured from the time the call is
made.

A schedule time of —1 forces the new event to be queued for activation concurrently with
the previously scheduled one.

4-48

The Sound system

The event is typically a Sound ControlPacked type call, although any other sound SWI
may be scheduled. There are limitations: R2 - R7 are always cleared, and any return
parameters are discarded. If pointers are to be passed in RO or R1 then any associated
data must still remain when the SWI is called (the workspace involved must not have
been reused, the Window Manager must not have paged it out, and so on).

Related SWis
Sound_QFree (page 4-51)

Related vectors

None

4-49

Sound_QRemove (SWI &401C2)

Sound_QRemove
(swi &401C2)

This SWI call is for use by the Scheduler only. You must not use it in your own code.

4-50

The Sound system

Sound_QFree
(swi &401C3)

Returns minimum number of free slots in the event queue

On entry

No parameters passed in registers

On exit

RO = number of guaranteed slots free
RO < 0 indicates over worst case limit, but may still be free slots

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call returns the minimum number of slots guaranteed free. The calculation assumes
the worst case of data structure overheads that could occur, so it is likely that more slots
can in fact be used. If this guaranteed free slot count is exceeded this call will return
negative values, and the return status of Sound_QSchedule must be carefully monitored
to observe when overflow occurs.

Related SWis
Sound_QSchedule (page 4-48)

Related vectors

None

4-51

Sound_QSDispatch (SWI &401C4)

Sound_QSDispatch
(swi &401C4)

This SWI call is for use by the Scheduler only. You must not use it in your own code.

4-52

The Sound system

Sound_QTempo
(swi &401C5)

Sets the tempo for the Scheduler

On entry

RO = new tempo (or 0 for no change)

On exit

RO = previous tempo value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This command sets the tempo for the Scheduler. The default tempo is & 1000, which
corresponds to one beat per centisecond; doubling the value doubles the tempo (ie
&2000 gives two beats per centisecond), while halving the value halves the tempo (ie
&800 gives half a beat per centisecond).

The parameter can be thought of as a hexadecimal fractional number, where the three
least significant digits are the fractional part.

Related SWis
Sound QBeat (page 4-54)

Related vectors

None

4-53

Sound_QBeat (SWI &401C6)

4-54

Sound_QBeat
(swi &401C6)

Sets or reads the beat counter or bar length

On entry

RO = 0 to return current beat number

RO = -1 to return current bar length

RO < -1 to disable beat counter and set bar length 0

RO = +N to enable beat counter with bar length N (counts 0 to N—1)

On exit

RO = current beat number (RO = 0 on entry), otherwise the previous bar length.

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

The simplest use of this call is to read either the current value of the beat counter or the
current bar length.

When the beat counter is disabled both it and the bar length are reset to zero. All
scheduling occurs relative to the time the scheduling call is issued.

When the beat counter is enabled it is reset to zero. It then increments, resetting every
time it reaches the programmed bar length (N—1). Scheduling using Sound QSchedule
then occurs relative to the last bar reset; however, scheduling using *QSound is still
relative to the time the command is issued.

The Sound system

Related SWis
Sound_QTempo (page 4-53)

Related vectors

None

4-55

Sound_Qinterface (SWI &401C7)

Sound_QlInterface
(swi &401C7)

This SWI call is for use by the Scheduler only. You must not use it in your own code.

4-56

The Sound system

* Commands
*Audio

Turns the Sound system on or off

Syntax
* Audio On|Off

Parameters
On or Off

Use

* Audio turns the Sound system on or off. Turning the Sound system off silences it
completely, stopping all Sound interrupts and DMA activity. Turning the Sound system
back on restores the Sound DMA and interrupt system to the state it was in immediately
prior to being turned off.

All Channel Handler and Scheduler activity is effectively frozen during the time the
Audio system is off, but software interrupts are still permitted, even if no sound results.

Example
*Audio On

Related commands

*Speaker, *Volume

Related SWis
Sound_Enable (page 4-20)

Related vectors

None

4-57

*ChannelVoice

4-58

% .
ChannelVoice

Assigns a voice to a channel

Syntax
*ChannelVoice channel voice_number|voice_name

Parameters
channel 1to8
voice_number 1 to 16, as given by *Voices; or 0 to mute the channel
voice_name name, as given by *Voices

Use

*Channel Voice assigns a voice (sound) to one of the eight independent channels used
for sound output. It is better to specify the voice by name rather than by number, since
the name is independent of the order in which the voices are loaded. Note that the name
is case sensitive. Alternatively, you can mute a channel by assigning it a voice slot of 0.

By default, only the first of the eight voices will be available. To make others available,
use the SWI Sound Configure, or enter BASIC and type

>VOICES n

where n is 2, 4 or 8 (the number of sound channels to enable). Do not, however, confuse
the VOICES command in BASIC with *Voices, the command described in this manual.

Example

*ChannelVoice 1 StringLib-Pluck

Related commands

*Stereo, *Voices

Related SWis

Sound_Configure (page 4-18), Sound_AttachVoice (page 4-37),
Sound AttachNamedVoice (page 4-43)

Related vectors

None

The Sound system

*Configure SoundDefault

Sets the configured speaker setting, volume and voice

Syntax

*Configure SoundDefault speaker volume voice_number

Parameters
speaker 0 to disable the internal loudspeaker(s) — although the
headphones remain enabled
1 to enable the internal loudspeaker(s)
volume 0 (quietest) to 7 (loudest)
voice_number 1 to 16, as given by *Voices
Use

*Configure SoundDefault sets the configured speaker setting, volume and voice. The
voice number is assigned to channel 1 only (the default system Bell channel).

Example
*Configure SoundDefault 1 7 1

Related commands

None

Related SWis

None

Related vectors

None

4-59

*QSound

*QSound

Generates a sound after a given delay

Syntax

*QSound channel amplitude pitch duration beats

Parameters

Use

channel
amplitude

pitch

duration

beats

1to8

0 (silent) and &FFFF (almost silent) down to &FFF1 (loud)
for a linear scale — or

&100 (silent) to &17F (loud) for a logarithmic scale, where a
change of 16 will halve or double the amplitude

0 to 255, where each unit represents a quarter of a semitone,
with a value of 53 producing middle C — or

256 (&100) to 32767 (&7FFF), where the bottom 12 bits
give the fraction of an octave, and the top three bits the
octave, with a value of 16384 (&4000) producing middle C
0 to 32767 (&7FFF), giving the duration of the note in
twentieths of a second — but a value of 255 (&FF) gives a
note of infinite duration (limited by the envelope, if present)
beats delay before the sound is generated, occurring at the
rate set by *Tempo

*QSound generates a sound after a given delay. It is identical in effect to issuing a
*Sound command after the specified number of beats have occurred. The channel will
only sound if at least that number of channels have been selected, and the channel has a

voice attached.

Example
*QSound 1 &FFF2 &5800 10 50

Related commands

4-60

*Sound, *Tempo

The Sound system

Related SWis
Sound_QSchedule (page 4-48)

Related vectors

None

4-61

*Sound

*
Sound
Generates an immediate sound
Syntax
*Sound channel amplitude pitch duration
Parameters
channel 1to8
amplitude 0 (silent) and &FFFF (almost silent) down to &FFF1 (loud)
for a linear scale — or
&100 (silent) to &17F (loud) for a logarithmic scale, where a
change of 16 will halve or double the amplitude
pitch 0 to 255, where each unit represents a quarter of a semitone,

with a value of 53 producing middle C — or

256 (&100) to 32767 (&7FFF), where the bottom 12 bits
give the fraction of an octave, and the top three bits the
octave, with a value of 16384 (&4000) producing middle C
duration 0 to 32767 (&7FFF), giving the duration of the note in
twentieths of a second — but a value of 255 (&FF) gives a
note of infinite duration (limited by the envelope, if present)

Use
*Sound generates an immediate sound. The channel will only sound if at least that
number of channels have been selected, and the channel has a voice attached.
Example

*Sound 1 &FFF2 &5800 10

Related commands
*QSound

Related SWis
Sound_ControlPacked (page 4-38), Sound Control (page 4-41)

4-62

The Sound system

Related vectors

None

4-63

*Speaker

*Speaker

Turns the internal speaker(s) on or off

Syntax
*Speaker On|Off

Parameters
On or Off

Use

*Speaker turns the internal speaker(s) on or off. It does not affect the 3.5 mm stereo jack
socket, which you can still use to play the sound through headphones or an amplifier.

You may still be able to hear a very low level of sound, as this command mutes the
speaker(s) rather than totally disabling them.

Example
*Speaker Off

Related commands

*Audio, *Volume

Related SWis
Sound Speaker (page 4-24)

Related vectors

None

4-64

The Sound system

*
Stereo
Sets the position in the stereo image of a sound channel
Syntax
*Stereo channel position
Parameters
channel 1to8
position —127(full left) to +127(full right)
Use
*Stereo sets the position in the stereo image of a sound channel.
Example
*Stereo 2 100 set channel 2 output to come predominantly from the right

Related commands

*Channel Voice, *Voices

Related SWis
Sound_Stereo (page 4-22)

Related vectors

None

4-65

*Tempo

*
Tempo
Sets the tempo for the Scheduler

Syntax

*Tempo tempo

Parameters
tempo 0 to &FFFF (default &1000)

Use

*Tempo sets the Sound system tempo (the rate of the beat counter). The default tempo is
&1000, which corresponds to one beat per centisecond; doubling the value doubles the
tempo (so &2000 gives two beats per centisecond), while halving the value halves the
tempo (so &800 gives a beat every two centiseconds).

Example
*Tempo &1200

Related commands
*QSound

Related SWis
Sound QTempo (page 4-53)

Related vectors

None

4-66

The Sound system

% .
Tuning

Alters the overall tuning of the Sound system

Syntax
*Tuning relative_change

Parameters
relative_change —16383 to 16383 (0 resets the default tuning)

Use

*Tuning alters the overall tuning of the Sound system. A value of zero resets the default
tuning. Otherwise, the tuning is changed relative to its current value in units of 1/4096 of
an octave.

Example
*Tuning 64

Related commands

None

Related SWis
Sound_Tuning (page 4-39)

Related vectors

None

4-67

*Voices

4-68

Displays a list of the installed voices

Syntax

*Voices

Parameters

None

Use

*Voices

*Voices displays a list of the installed voices by name and number, and shows which
voice is assigned to each of the eight channels. A voice can be attached to a channel even

if that channel is not currently in use.

Example

*Voices
Voice Name
12 1 WaveSynth-Beep
34 2 StringLib-Soft
3 StringLib-Pluck
4 StringLib-Steel
5 StringLib-Hard
56 6 Percussion-Soft
7 Percussion-Medium
78 8 Percussion-Snare
9 Percussion-Noise
AN Channel Allocation Map

Related commands

*ChannelVoice, *Stereo

Related SWis
Sound_InstallVoice (page 4-29)

Related vectors

None

The Sound system

*Volume

Sets the maximum overall volume of the Sound system

Syntax

*Volume volume

Parameters
volume 1 (quietest) to 127 (loudest)

Use

*Volume sets the maximum overall volume of the Sound system. A change of 16 in the
volume parameter will halve or double the actual volume.

The command scales the internal lookup tables that Voice Generators use to set their
volume (Some custom Voice Generators may ignore these tables and so will be
unaffected.) A large amount of calculation is involved in this. You should therefore use
this command sparingly, and only to limit the overall volume of all channels; if a single
channel is too loud or soft, you should alter just that channel’s volume.

Example
*Volume 127

Related commands
* Audio, *Configure SoundDefault, *Speaker

Related SWis
Sound_Volume (page 4-26)

Related vectors

None

4-69

Application notes

Application notes

The most likely change to the Sound system is to add Voice Generators, thus providing
an extra range of sounds. Each Voice Generator must conform to the specifications
given earlier in the section entitled Voice Generators on page 4-13, and those given
below. The speed and efficiency of Voice Generator algorithms is paramount, and
requires careful attention to coding; some suggested code fragments are given to help
you.

Code will not run fast enough in ROM, so ROM templates or user code templates must
be copied into the Relocatable Module Area where they will execute in fast sequential
RAM. If the RMA is to be tidied, all installed voices must be removed using the
Sound RemoveVoice call, then reinstalled using the Sound InstallVoice call.

Voice libraries are an efficient way of sharing common code and data areas; these must
be built as Relocatable Modules which install sets of voices, preferably with some form
of library name prefix.

Buffer filling algorithms

The Channel Handler sets up three registers (R12,11,10) which give the start address,
increment and end address for correct filling with interleaved sound samples. The
interleave increment has the value 1, 2, 4 or 8, and is equal to the number of channels.
This code is an example of how these registers should be used:

loop

; e.g. form VIDC format 8 bit signed log in Rs
STRB Rs,[R12],R11 ; store, and bump ptr

CMPS RI12,R10 ; check for end

BLT loop ; and loop until fill complete

The DMA buffer is always a multiple of 4 words (16 bytes) long, and word aligned.
Loop overheads can therefore be cut down by using two byte store operations. A further
improvement is possible if R11, the increment, is one; this implies that values are to be
stored sequentially, so word stores may be used.

Example code fragments

4-70

The fundamental operations performed by nearly all voice generators involve
Oscillators, Table lookup and Amplitude modulation. In addition, some algorithms
(plucked string and drum in particular) require random bit generators. Simple in-line
code fragments are briefly outlined for each of these.

The Sound system

In all cases the aim is to produce the most efficient, and wherever possible highly
sequential, ARM machine code. In most algorithms the aim must be to get as many
working variables into registers as possible, and then adapt the synthesis algorithms
wherever possible to use the high-speed barrel shifter to effect.

Oscillator coding

The accumulator-divider is the most useful type of oscillator for most voices. A
frequency increment is added to a phase accumulator register and the high-order bits of
the resulting phase provide the index to a wavetable. Alternatively, the top byte can be
directly used as a sawtooth waveform.

The frequency of the oscillator is linearly related to the frequency increment. Vibrato
effects can be obtained by modulating the frequency increment

Sixteen-bit registers provide good audible frequency resolution, and are used in many
digital hardware synthesizer products. The 32-bit register width of the ARM is ideally
split 16/16 bits for phase/increment.

Schematically

frequency increment

Sawtooth/
ADD > Index

phase accumulator

16

Figure 72.1 Schematic of accumulator/divisor oscillator

Coding
Register field assignment: Rp
31 1615 0

Phase Accumulator Increment

ADD Rp,Rp,Rp,LSL #16 ; phase accumulate

4-71

Wavetable access coding

Changing parameters or the voice table being used is best done at or close to
zero-crossing points, to avoid noise generation. If wavetables are arranged with
zero-crossing aligned to the start and end of the table then it is simple to add a branch to
appropriate code.

ADDS Rp,Rp,Rp,LSL #16 ; phase accumulate
BCS Update ; only take branch if past zero crossing

Wavetable access coding

Normally fixed-length (256-byte or a larger power of two) wavetables are used by most
voice generator modules. The high bits of the phase accumulator are added to a
wavetable base pointer to access the sample byte within the table:

Schematically
For a 256-byte table:

8
phase accumulator 7L>

32

[Table]
ADD ﬁé’ (byte fetch)

wavetable base pointer

Figure 72.2 Schematic of wavetable access code

Coding
LDRB Rs,[Rt,Rp,LSR #24]

where the most significant 8 bits of Rp contain the Phase index, Rt is the Table base
pointer, and Rs is the register used to store the sample.

Amplitude modulation coding

The amplitude of the resultant byte may be altered for three reasons: firstly to scale for
the overall volume setting, secondly to scale for the channel’s volume setting, and lastly
to provide enveloping.

4-72

The Sound system

Overall volume

If the overall volume setting changes, then your Update entry point will be called. You
can cope with the change in two ways. The first is to re-scale all the values in the
wavetable, using the SWI calls Sound SoundLog or Sound LogScale. This has the
advantage that buffer filling is faster as the values are already scaled, but has the
disadvantage that the wavetables might be stored to a lower resolution resulting in
increased noise levels.

The alternative is to re-scale the values between reading them from the wavetable and
outputting them, as in the example voice given later. The reverse then applies: buffer
filling is slower, but noise is reduced. This method is preferred, so long as the algorithm
is still able to fill the buffer within the required period.

Channel volume

The channel’s volume setting should be used by all well-behaved Voice Generators. The
volume is passed to the Voice Generator by the Channel Handler in the SCCB, as a
signed 8 bit logarithm, but in a different format to that used by the VIDC chip:

Amplitude Byte Data Format:

7 6 5 4 3 2 1 0
0 Logarithm

VIDC 8-bit sample format:

7 6 5 4 3 2 1 0
Logarithm S

Sign
bit

Coding

The coding is easiest if the values are treated as fractional quantities, and is then reduced
to subtracting logarithms and checking for underflow:

Ra contains amplitude in range 0 to 127
Rs contains sample data in range —127 to +127 [sign bit LSB]

4-73

Envelope coding

; do this each time Voice Generator is entered
RSB Ra,Ra,#127 ; make attenuation factor

; do this inside loop, before each write to buffer
SUBS Rs,Rs,Ra,LSL #1 ; note shift to convert to VIDC format
MOVMI Rs,#0 ; correct for underflow

Note — The example voice shows how this can be combined with use of the
volume-scaled lookup table to scale for both the overall and channel volume on each fill.

Envelope coding

Envelopes (if used) must be coded within the Voice Generator. A lookup table must be
defined giving the envelope shape. This is then accessed in a similar manner to a
wavetable, using the timbre phase accumulator passed in the SCCB. The sample byte is
then scaled using this value, as shown above.

If you continue after a gate off, you must store your own copy of the volume, as any
value in the SCCB will be overwritten.

Linear to logarithmic conversion

Algorithms which work with linear integer arithmetic may use the Channel Handler
linear-log table directly to fill buffers efficiently. The table is 8 Kbyte in length, to allow
the full dynamic range of the VIDC sound digital to analogue converter to be utilised.
The format is chosen to allow direct indexing using barrel-shifted 32-bit integer values.
The values in the table are scaled according to the current volume setting.

Coding

; to access the lookup table pointer during initialisation:
MOV RO,#0
MOV RIL#0
MOV R2#0
MOV R3#0 ;get Channel Handler base
MOV R4,#0
SWI "XSound_Configure"
BVS error_return
LDR R8,[R3,#8] ; lin-to-log pointer

; in line buffer filling code:
; linear 32-bit value in RO
LDRB RO,[R8,RO,LSR #19]; lin -> log
STRB RO,[R12],R11 ; output to DMA buffer

4-74

The Sound system

Random bit generator code

An efficient pseudo-random bit generator can be implemented using two internal
registers. This provides noise which is necessary for some sounds, percussion in
particular. One register is used as a multi-tap shift register, loaded with a seed value; the
second is loaded with an XOR bit mask constant (&1D872B41). The sequence produced
has a length of 4294967295. The random carry bit setting by the simple code fragment
outlined below allows conditional execution on carry set (or cleared):

Coding

MOVS R8,R8,LSL #1 ; set random carry
EORCS R8,R8,R9

xxxCC ; do this...

yyyCS ; ...or alternately this

4-75

Example program

Example program

This program shows a complete Voice Generator. It builds a wavetable containing a sine
wave at maximum amplitude. Scaling is performed when the table is read:

REM -> WaveVoice

DIM WaveTable% 255
DIM Code% 4095

SYS "Sound Volume",127 TO UserVolume
FOR s%=0 TO 255
SYS "Sound_SoundLog",&7FFFFFFF*SIN(2*PI*s%/256) TO WaveTable%?s%
NEXT 5% : REM build samples at full volume
SYS "Sound_Volume",UserVolume TO UserVolume
REM and restore volume to value on entry

FOR C=0 TO 2 STEP 2
P%=Code%
[OPT C

- 34 3fe 3fe >k 3k sie sfe sfe ok sk sk she sfe sk sk sk she sk sk sk sk ske sk sk sk skeske sk sk sk ksl sk sk skokokok
>

;* VOICE CO-ROUTINE CODE SEGMENT *
;**************************************

; On installation, point Channel Handler voice

; pointers to this voice control block

; (return address always on top of stack)

VoiceBase
B Fill
B Fill ; update entry
B GateOn
B GateOff
B Instance ; Instantiate entry
LDMFD R13!,{PC} ; Free entry
LDMFD R13!,{PC} ; Initialise

EQUD VoiceName - VoiceBase

.VoiceName EQUS "WaveVoice"
EQUB 0
ALIGN
;**************************************
.LogAmpPtr EQUD 0
.WaveBase EQUD WaveTable%
;**************************************
Instance ; any instance must use volume scaled log amp table
STMFD R13!,{R0-R4} ; save registers
MOV RO#0
MOV RI1#0
MOV R2#0
MOV R3#0
MOV R4,#0
SWI "XSound_Configure"
LDRVC RO,[R3,#12] ; get address of volume scaled log amp table
STRVC RO,LogAmpPtr ; and store

4-76

The Sound system

STRVS RO, [R13] ; return error pointer
LDMFD RI13!,{R0-R4,PC} ; restore registers and return

- 3k sfe sfe sfe 3 3k she sfe sfe 3 sk e she sfe sk sk e she sfe s sk e sk sfe sk sk sk sfe sk skoikosk sk sk kokok
>

;* VOICE BUFFER FILL ROUTINES *

;**************************************

, on entry:

; 10-r8 available

; 19 is SoundChannelControlBlock pointer

; r10 DMA buffer limit (+1)

; r11 DMA buffer interleave increment

; r12 DMA buffer base pointer

; 113 Sound system Stack with return address and flags

; on top (must LDMFD R13!,{....pc}

; NO r14 - IRQs are enabled and r14 is not usable

.GateOn
LDR RO0,WaveBase ; wavetable base
STR RO,[R9,#16] ; set up in SCCB as working register 5
LDR RO,LogAmpPtr ; volume scaled log amp table
STR RO,[R9,#20] ; set up as working register 6

- 3k 3fe sfe sfe 3 3k she sfe sfe s sk e she sfe sk sk e she sfe sk sk e sk sfe sk sk sk sfe sk skoikosk sk siokokok
>

JFill
LDMIA R9,{R1-R6} ; pick up working registers from SCCB
AND RI,R1#&7F ; mask R1 so only channel amplitude remains

; R1is amp (0-127) R2 is pitch phase acc
; R3 is timbre phase acc R4 is duration
; RS is wavetable base R6 is amp table base
; move sign bit -> VIDC format log
LDRB RI,[R6,R1,LSL #1] ; and lookup amp scaled to overall volume
MOV RI,RI,LSR #1 ; move sign bit back again
RSB RI,R1,#127 ; make attenuation factor
.FillLoop
ADD R2,R2,R2,LSL #16 ; advance waveform phase
LDRB RO,[R5,R2,LSR #24] ; get wave sample
SUBS RO,RO,RI,LSL #1 ; scale amplitude for overall & channel volumes
MOVMI RO,#0 ; and correct underflow
STRB RO,[R12],R11 ; generate output sample
ADD R2,R2,R2,LSL #16 ;repeated in line four times...
LDRB RO,[R5,R2,LSR #24]
SUBS RO,RO,R1,LSL #1
MOVMI RO,#0
STRB RO,[R12],R11
ADD R2,R2,R2,LSL #16
LDRB RO,[R5,R2,LSR #24]
SUBS RO,RO,R1,LSL #1
MOVMI RO,#0
STRB RO,[R12],R11
ADD R2,R2,R2,LSL #16
LDRB RO,[R5,R2,LSR #24]
SUBS RO,RO,R1,LSL #1

MOVMI RO,#0
STRB RO,[R12],R11 ; end of repeats...
CMP RI12,R10 ; check for end of buffer fill
BLT FillLoop ; loop if not
; check for end of note
SUBS R4,R4.#1 ; decrement centisec count

4-77

Example program

4-78

STMIB R9,{R2-R5} ; save registers to SCCB
MOVPL RO0,#%00001000 ; voice active if still duration left
MOVMI RO,#%00000010 ; else force flush

LDMFD R13!,{PC} ; return to level 1
;**************************************
.GateOff

MOV RO#0
.FlushLoop

STRB RO,[R12],R11 ; fill buffer with zeroes
STRB RO,[R12],R11
STRB RO,[R12],R11
STRB RO,[R12],R11
CMP RI2,RI10
BLT FlushLoop
; CAUSE level 1 TO FLUSH once more
MOV RO0,#%00000001 ; set flag to flush one more buffer
LDMFD RI13L{PC} ; return to level 1

]
NEXT C

DIM OldVoice%(8)
SYS "Sound InstallVoice",VoiceBase,0 TO a%,Voice%
FOR v%=1 TO 8
SYS "Sound_AttachVoice",v%,0 TO z%,01dVoice%(v%)
VOICE v%,"WaveVoice"
NEXT

ON ERROR PROCRestoreSound : END

VOICES 8

*voices

SOUND 1,&17F,53,10 :REM activate channel 1!
PRINT’’"any key to make a noise, <ESCAPE> to finish"

C%=1
REPEAT
K%=INKEY(1)
IF K%>0 THEN
SOUND C%,&17F,K%,100
C%+=1 : IF C%>8 THEN C%-=1
ENDIF
UNTIL 0

DEF PROCRestoreSound
ON ERROR OFF
REPORT:PRINT ERL
SYS "Sound RemoveVoice",0,Voice%
FOR v%=1TO 8
SYS "Sound_AttachVoice",v%,01dVoice%(v%)
NEXT
VOICES 1
*yoices
PRINT””
ENDPROC

73 WaveSynth

Introduction

WaveSynth is a module that provides a voice generator which is used for the default
system bell.

In RISC OS 2 WaveSynth provided a SWI for its own internal use. This has since been
removed.

For more information about the use of sound in RISC OS, refer to the chapter entitled
The Sound system on page 4-3.

4-79

Example programs

Example programs

You can create new wavetables for use with WaveSynth, for example:

REM > OrganVoice

OUTFILES="Organ01"

OUT=OPENOUT OUTFILES$
BPUT#OUT,"!WT:Organ"+STRING$(7,CHRS$0);
sizeptr=PTR#OUT

PROCW(0)

FORI%=1TO8:PROCW(8):NEXT
PROCW(13):PROCW(0):PROCW(0)

PROCHDR

size=EXT#OUT
PTR#OUT=sizeptr:PROCW(size)

CLOSE#OUT

REM Pass local name Orgel as parameter on command line
*RMREINIT WAVESYNTH ORGANO!1 Orgel
END

DEFPROCW(X%)

LOCALI%
FORI%=1T0O4:BPUT#OUT,X%:X%=X%>>8:NEXT
ENDPROC

DEFFNW

RESTORE

DATA 1,1, 0.8,2, 0.6,4, 0.4,8, 0.2,16: REM amplitude,frequency
DATA 0,0

M=0

REPEAT

READ A$,H$:A=EVALAS$

IF A>0 THEN M+=A

UNTIL A=0

M=&7FFFFFFF/M

RESTORE

B=0

REPEAT

READ A$,H$:A=EVALAS$:H=EVALH$
IF A>0 THEN B+=FNSIN(A*M,H)
UNTIL A=0

=B

DEFFNSIN(A,F)=A*SIN(F*2*PI*3%/256)

4-80

WaveSynth

DEFPROCHDR

MODEO0

ORIGINO,512

MOVEO,0

RESTORE+0
FORI%=1TO14:READJ$:PROCW(EVALIJ$):NEXT
PTR#OUT=256

FOR 5%=0 TO 255

B%=FNW

SYS "Sound_SoundLog",B% TO wave%
DRAW s%*4,B%>>22
BPUT#OUT,wave%

NEXT

ENDPROC

REM offset 64 (index 8)

REM descriptor 8 (ATTACK)
DATA &0000007F + (1<<9)
DATA &00090001

REM descriptor 9 (DECAY)
DATA &000000F0 + (31<<9)
DATA &000A0001

REM descriptor 10 (SUS a)
DATA &00000080 + (500<<9)
DATA &000E0001

REM descriptor 11 (SUS b)
DATA &000000DF + (25<<9)
DATA &000A0001

REM descriptor 12 (SUSTAIN)
DATA &00000000 + (&FFFFF<<9)
DATA &000D0002

REM descriptor 13 (release)
DATA &00000080 + (1<<9)
DATA &000E0001

REM descriptor 14 (Dead)
DATA 0

DATA 0.

4-81

Example programs

You can then load the new wavetable into WaveSynth as a module initialisation
parameter, eg:

REM > Source
0bj$="<Obey$Dir>.!Runlmage"
DIM MC%1000,L%-1
FOR 1%=8 TO 10 STEP 2
P%=MC%

[OPTI%

.start

MOV RO, #14

ADR R1, instantiation
SWI "XOS Module"
MOV PC, R14

.instantiation

; Pass local name Orgel as parameter on command line

EQUS "WaveSynth%Organ <Obey$Dir>.Organ01 Orgel"+CHR$0
J:NEXT

OSCLI "Save "+obj$+" "+STRS$~start+" "+STR$~P%

OSCLI "SetType "+obj$+" &FFC"

OSCLI "Stamp "+obj$

The facility shown in the above examples for specifying a local name was introduced in
RISC OS 3.

4-82

Part 12 — Utilities

4-83

4-84

74 The Buffer Manager

Introduction and Overview

The buffer manager acts as a global buffer managing system, providing a set of calls for
setting up a buffer, inserting and removing data from a buffer, and removing a buffer.
The buffer manager extends the InsV, RemV and CnpV vector calls to provide access to
these buffers and to allow block transfers.

The buffer manager is not available in RISC OS 2.

The buffer manager is used by DeviceFS to provide buffers for the various devices that
can be accessed. A device may be linked to a buffer, and may supply routines to be
called when data enters the buffer as well as a routine to be called when a buffer is
removed (or a new device is attached).

When registering or creating a buffer you can force a specific buffer handle, or request
that the buffer manager assign a unique handle. You should note that buffer handles are
no longer stored as eight bit quantities.

Block transfers are signalled by setting bit 31 of the buffer handle. Anything you can do
on a byte by byte basis you can also do to a block, such as examining the buffer contents.

A number of vectors, events, service calls and UpCalls have been extended or created to
enable the buffer manager to function efficiently.

See also the chapter entitled Buffers on page 1-163.

Vectors

The SWIs for the buffer manager module allow you to modify the actual buffer itself,
but do not supply a way of inserting and removing data from these buffers. Extensions
have been made to the following vectors to handle the inserting and removing of data
from the buffers, and to allow block inserts. For more details of these vector calls see the
chapter entitled Software vectors on page 1-63.

e InsV inserts a byte in a buffer
¢ RemV removes a byte from a buffer
e CnpV counts the number of entries or spaces in a buffer, or

purges the contents of a buffer

4-85

Introduction and Overview

4-86

Events

Because of the above changes to vectors, the following events have been extended so
they can indicate that a block transfer occurred. For more details of these events see the
chapter entitled Events on page 1-147.

e Event OutputEmpty issued when the last character is removed from a buffer
e Event InputFull generated when a character or block is inserted and it
failed

Service calls

The service call Service BufferStarting has been added to allow modules which wish to
register buffers with the buffer manager to do so. For more details of this service call see
page 4-87.

UpCalls

UpCalls are used by the buffer manager to communicate with buffer owners. For more
details of these UpCalls see the chapter entitled Communications within RISC OS on
page 1-181.

e OS UpCall 8 issued when data is inserted into the buffer causing the
free space to fall below the specified threshold

e« OS UpCall9 issued when the free space in the buffer becomes greater
than the current threshold.

The Buffer Manager

Service Calls

Service_BufferStarting
(Service Call &6F)

Notifies modules that the buffer manager is starting

On entry
R1 = &6F (reason code)

On exit

All registers preserved

Use

This call is passed around modules after the buffer manager has been initialised or reset.
Once modules have received this service call they can then register buffers with the
buffer manager, and use the Buffer ... SWIs.

4-87

SWi calls

SWI calls

Buffer_Create
(swi &42940)

Claims an area of memory from the RMA and registers it as a buffer

On entry

RO = buffer’s flags word:
bit 0: 0 = buffer is dormant, and wake up routine should be called
when data enters it
bit 1: 1= Event OutputEmpty should be generated for this buffer
bit2: 1= Event InputFull should be generated for this buffer
bit3: 1= UpCalls should be issued when this buffer’s free space
threshold is crossed
bits 4 - 31 reserved (should be set to 0 on creation)
R1 = size of buffer to be created
R2 =handle to be assigned to buffer (-1 = get buffer manager to generate handle)

On exit
RO = buffer handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call claims an area of memory from the RMA and registers it as a buffer. If you
register a buffer n bytes long, it can hold at most n — 1 bytes.

4-88

The Buffer Manager

If R2 =—1 the buffer manager will attempt to find a unique handle; else the buffer
manager will assign the specified handle to the buffer, after checking it is unique.

The buffer’s flags word is used to indicate what should happen when data is being
inserted and removed from the buffer:

Bit 0 s set if the buffer is not dormant, and its wake up routine (see the section
entitled The wake up routine on page 4-97) has been called.

If this bit is clear then the buffer is dormant; when data is then put into the
buffer this bit is set and its wake up routine (if any) is called.

Bit 1 is set if Event OutputEmpty should be generated for this buffer.
Bit2 issetif Event InputFull should be generated for this buffer.

Bit3 s set if UpCalls should be issued when this buffer’s free space thresholds
are crossed.

Bit 0 should be clear when calling this SWI. Bits 1 - 3 may have any value. The
remaining bits are reserved, and should be clear when calling this SWI.

On exit RO contains the buffer handle being used.

Related SWis

Buffer Remove (page 4-90), Buffer Register (page 4-91), Buffer LinkDevice (page
4-96)

Related vectors

None

4-89

Buffer_Remove (SWI &42941)

4-90

Deregisters a buffer and frees its memory

On entry
RO = handle of buffer to be removed

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

Buffer Remove
(swi &42941)

This call attempts to deregister the given buffer. If it succeeds, then any data held by the
buffer will be purged, and any future access to the buffer via InsV, RemV and CnpV will
be ignored; it will then attempt to free the memory that was claimed for that buffer.

You should only use this call for buffers created and registered using Buffer Create. If
you used Buffer Register to register the buffer, you should instead call

Buffer Deregister to deregister it.

Related SWis

Buffer Create (page 4-88), Buffer Deregister (page 4-91), Buffer LinkDevice (page

4-96)

Related vectors

None

The Buffer Manager

Buffer Register
(swi &42942)

Registers an area of memory as a buffer

On entry

RO = buffer’s flags word:

bit 0:

bit 1:
bit 2:
bit 3:

0 = buffer is dormant, and wake up routine should be called
when data enters it

1 = Event_OutputEmpty should be generated for this buffer

1 = Event InputFull should be generated for this buffer

1 = UpCalls should be issued when this buffer’s free space
threshold is crossed

bits 4 - 31 reserved (should be set to 0 on registration)
R1 = pointer to start of memory for buffer
R2 = pointer to byte following end of buffer
R3 = handle to be assigned to buffer (—1 = get buffer manager to generate handle)

On exit

RO = buffer handle

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call registers an area of memory as a buffer. The routine accepts similar parameters
to Buffer Create, but instead of the call claiming the memory for you, you must already
have done so yourself, and merely pass the buffer’s start and end. If you register a buffer
n bytes long, it can hold at most n — 1 bytes.

4-91

Buffer_Register (SWI &42942)

You should not put buffers in the application workspace, as this area of memory might
be switched out when someone else tries to access the buffer. However, you can do this
if your task will be the only one using the buffer, and it will only be accessed while your
task is paged in.

If R3 = —1 the buffer manager will attempt to find a unique handle; else the buffer
manager will assign the specified handle to the buffer, after checking it is unique.

The buffer’s flags word is used to indicate what should happen when data is being
inserted and removed from the buffer:

Bit 0 s set if the buffer is not dormant, and its wake up routine (see the section
entitled The wake up routine on page 4-97) has been called.

If this bit is clear then the buffer is dormant; when data is then put into the
buffer this bit is set and its wake up routine (if any) is called.

Bit 1 is set if Event_OutputEmpty should be generated for this buffer.
Bit2 issetif Event InputFull should be generated for this buffer.

Bit3 is set if UpCalls should be issued when this buffer’s free space thresholds
are crossed.

Bit 0 should be clear when calling this SWI. Bits 1 - 3 may have any value. The
remaining bits are reserved, and should be clear when calling this SWI.

On exit RO contains the buffer handle being used.

Related SWis

Buffer Create (page 4-88), Buffer Deregister (page 4-93), Buffer LinkDevice (page
4-96)

Related vectors

None

4-92

Deregisters a buffer

On entry
RO = handle of buffer to be deregistered

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

The Buffer Manager

Buffer_Deregister
(swi &42943)

This call attempts to deregister the given buffer. If it succeeds, then any data held by the
buffer will be purged, and any future access to the buffer via InsV, RemV and CnpV will

be ignored.

You should only use this call for buffers registered using Buffer Register. If you used
Buffer Create to create and register the buffer, you should instead call Buffer Remove

to deregister it.

Related SWis

Buffer Remove (page 4-90), Buffer Register (page 4-91), Buffer LinkDevice (page

4-96)

Related vectors

None

4-93

Buffer_ModifyFlags (SWI &42944)

Buffer_ModifyFlags
(swi &42944)

Modifies a buffer’s flags word

On entry

RO = handle of buffer to be modified
R1 = EOR mask
R2 = AND mask

On exit

R1 = old value
R2 = new value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call modifies a buffer’s flags word (see page 4-89) by applying an AND mask,
followed by an EOR mask. On exit it returns the old and new values of the flags word.

The new value is worked out as follows:
new = (old AND R2) EOR R1

You should not modify any reserved bits in the flags word when issuing this call (ie bits
4 - 31 should be set in R2 and clear in R1).

Related SWis
Buffer LinkDevice (page 4-96)

4-94

The Buffer Manager

Related vectors

None

4-95

Buffer_LinkDevice (SWI &42945)

4-96

Buffer_LinkDevice
(swi &42945)

Links a set of routines to the specified buffer

On entry

RO = buffer handle

R1 = pointer to routine to call when data enters the dormant buffer (0 = none)

R2 = pointer to routine to call when owner of buffer is to change (0 = cannot be
changed)

R3 = private word to be passed to above routines

R4 = pointer to workspace for above routines

On exit
RO - R4 preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use
This call links a set of routines to the specified buffer.

The routines are called with the same entry conditions. The processor may be in any
mode and interrupt state. The registers are as follows:

On entry

RO = buffer handle

R8 = private word (as specified in R3)

R12 = pointer to workspace for routine (as specified in R4)

The Buffer Manager

Such routines are typically used to wake up devices attached to a previously dormant
buffer so they can start processing data that has appeared, and to shutdown a device
when another wishes to access its buffer. In particular, DeviceFS uses this mechanism.

The wake up routine

R1 contains a pointer to a routine to be called when data enters the buffer and it is
currently marked dormant. Before calling this ‘wake up’ routine, the buffer manager
first sets bit 0 in the buffer’s flags word, marking it as no longer dormant. On exit from
the wake up routine you must preserve the entire state of the processor: ie the register
contents (including the PSR), the mode, and the state of IRQ and FIQ.

If this pointer (ie R1) is zero, the buffer manager does not attempt to call a wake up
routine for the specified buffer.

The owner change routine

R2 contains a pointer to a routine to be called whenever the owner of the buffer is about
to change. This occurs:

e when an attempt is made to remove or deregister the buffer by calling
Buffer Remove or Buffer Deregister respectively

o when an attempt is made to link to the buffer by another call of this SWI for the
same buffer

o when an attempt is made to kill the buffer manager.

On return from this ‘owner change’ routine you can return an error in the usual way (V
set, RO points to an error block) and thus halt the attempt to change the buffer’s owner;
you’ll also — coincidentally — halt whatever caused the attempt. For example, this SWI
may sometimes fail because the given buffer may already have an owner that is refusing
to detach itself. If you don’t return an error you must preserve the entire state of the
processor: ie the register contents (including the PSR), the mode, and the state of IRQ
and FIQ.

If this pointer (ie R2) is zero, the buffer manager will always return an error if an attempt
is made to change the buffer’s owner.

Related SWis

Buffer Remove (page 4-90), Buffer Deregister (page 4-93), Buffer ModifyFlags (page
4-94), Buffer UnlinkDevice (page 4-98)

Related vectors

None

4-97

Buffer_UnlinkDevice (SWI &42946)

4-98

Buffer_UnlinkDevice
(swi &42946)

Unlinks a set of routines from the specified buffer

On entry
RO = buffer handle

On exit
RO preserved

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call unlinks all routines that were previously linked to the specified buffer by
calling Buffer LinkDevice. No warning is given of this (ie the buffer’s change owner
routine is not called), and any data that is currently stored within the buffer is purged.

You should only make this call if it was you that initially linked the routines; anyone
else calling this SWI could confuse the system.

Related SWis
Buffer LinkDevice (page 4-96)

Related vectors

None

The Buffer Manager

Buffer _Getinfo
(swi &42947)

Returns data about the buffer

On entry

RO = buffer handle

On exit

RO = buffer’s flags word

R1 = pointer to start of buffer in memory
R2 = pointer to byte following end of buffer
R3 = offset within buffer of insertion point
R4 = offset within buffer of removal point
RS = remaining free space in buffer

R6 = number of characters in buffer

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This call returns data about the buffer: its flags word, position in memory, the offsets
within the buffer of its insertion and removal points, the amount of free space, and the
number of characters in the buffer.

The insertion and removal points wrap around from the end of the buffer to the start, so
you should not assume that the insertion point’s offset will be greater than that of the
removal point. Furthermore, you should not assume that the sum of RS and R6 (the free
space in the buffer and the number of characters in the buffer) will be the same as the
size of the buffer.

4-99

Buffer_GetlInfo (SWI &42947)

Related SWis

None

Related vectors

None

4-100

The Buffer Manager

Buffer _Threshold
(swi &429438)

Sets or reads the warning threshold of the buffer

On entry

RO = buffer handle
R1 = threshold (0 = none, —1 to read)

On exit

R1 = previous value

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call is used to set or read the warning threshold of the buffer. UpCalls are issued if
bit 3 of the buffer’s flags word is set, and the amount of free space in the buffer crosses
this threshold value. For details of the UpCalls see the chapter entitled Communications
within RISC OS on page 1-181.

Related SWis
Buffer Create (page 4-88), Buffer Register (page 4-91)

Related vectors

None

4-101

4-102

73

Squash

Introduction and Overview

This module provides general compression and decompression facilities of a lossless
nature through a SW1 interface. The algorithm is 12-bit LZW, however, this may change
in future releases.

The interface is designed to be restartable, so that compression or decompression can
occur from a variety of locations. Operations involving file I/O can easily be constructed
from the operations provided.

This module is not available in RISC OS 2.

The module is used by the Squash application to generate files of type Squash (&FCA).
The format of these files is documented in the section entitled Squash files on page
4-497.

Errors

The following errors can be returned by the Squash module:

Error number Error text

&921 Bad address for module Squash
&922 Bad input for module Squash
&923 Bad workspace for module Squash
&924 Bad parameters for module Squash

4-103

SWi calls

SWI calls

Squash_Compress
(swi &42700)

Provides general compression of a lossless nature

On entry

RO = flags:
bit 0: 0 = start new operation, | = continue existing operation (using
existing workspace contents)
bit 1: 0 = end of the input, | = more input after this
bit2: reserved (must be zero)
bit3: 0= no effect, 1 = return the work space size required and the
maximum output size in bytes (all other bits must be 0)
bits 4 - 31 reserved (must be zero)
R1 = input size (-1 => do not return maximum output size) — if bit 3 of RO is set;
or workspace pointer — if bit 3 of RO is clear
R2 = input pointer — if bit 3 of RO is clear
R3 = number of bytes of input available — if bit 3 of RO is clear
R4 = output pointer — if bit 3 of RO is clear
R5 = number of bytes of output space available — if bit 3 of RO is clear

On exit

RO = required work space size — if bit 3 of RO set on input; else
output status — if bit 3 of RO clear on input:
0 = operation completed
1 = operation ran out of input data (R3 = 0)
2 = operation ran out of output space (RS < 12)
R1 = maximum output size (—1 => don’t know or wasn’t asked) — if bit 3 of RO set
on input; else preserved — if bit 3 of RO clear on input
R2 updated to show first unused input byte — if bit 3 of RO clear on input
R3 updated to show number of input bytes not used — if bit 3 of RO clear on input
R4 updated to show first unused output byte — if bit 3 of RO clear on input
RS updated to show number of output bytes not used — if bit 3 of RO clear on input

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

4-104

Squash

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This call provides general compression of a lossless nature. It acts as a filter on a stream
of data. The call returns if either the input or the output is exhausted.

It is recommended that you use the following facility to determine the maximum output
size rather than attempting to calculate it yourself:

Call the SWI first with bit 3 of RO set and the input size placed in R1. The maximum
output size is then calculated and returned on exit in R1. You can use this value to
allocate the required amount of space and call the SWI again setting the registers as
appropriate.

If for any reason the SWI cannot calculate the maximum output size it will return —
1 inRI.

The workspace size required is returned in RO.

The algorithm used by this module is 12-bit LZW, as used by the UNIX ‘compress’
command (with —b 12 specified). If future versions of the module use different
algorithms, they will still be able to decompress existing compressed data.

If bits 0 and 1 of RO are clear, and the output is definitely big enough, a fast algorithm
will be used.

The performance of compression on an 8Mhz A420 with ARM?2 is approximately as
follows:

Store to store Fast case
24 Kbytes per second 68 Kbytes per second

where Fast case is store to store, with all input present, and with an output buffer large
enough to hold all output.

Related SWis

Squash_Decompress (page 4-106)

Related vectors

None

4-105

Squash_Decompress (SWI &42701)

Squash_Decompress
(swi &42701)

Provides general decompression of a lossless nature

On entry

RO = flags:
bit 0: 0 = start new operation, 1 = continue existing operation (using
existing workspace contents)
bit 1: 0 = end of the input, | = more input after this
bit2: 0= normal,] = you may assume that the output will all fit in
this buffer (allows a faster algorithm to be used, if bits 0
and 1 are both 0)
bit 3: 0 = no effect, 1 = return the work space size required and the
maximum output size in bytes (all other bits must be 0)
bits 4 - 31 reserved (must be zero)
R1 = input size (-1 => do not return maximum output size) — if bit 3 of RO is set;
or workspace pointer — if bit 3 of RO is clear
R2 = input pointer — if bit 3 of RO is clear
R3 = number of bytes of input available — if bit 3 of RO is clear
R4 = output pointer — if bit 3 of RO is clear
RS = number of bytes of output space available — if bit 3 of RO is clear

On exit

RO =required work space size — if bit 3 of RO set on input; else
output status — if bit 3 of RO clear on input:
0 = operation completed
1 = operation ran out of input data (R3 < 12)
2 = operation ran out of output space (R5 =0)
R1 = maximum output size (—1 => don’t know or wasn’t asked) — if bit 3 of RO set
on input; else preserved — if bit 3 of RO clear on input
R2 updated to show first unused input byte — if bit 3 of RO clear on input
R3 updated to show number of input bytes not used — if bit 3 of RO clear on input
R4 updated to show first unused output byte — if bit 3 of RO clear on input
R5 updated to show number of output bytes not used — if bit 3 of RO clear on input

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

4-106

Squash

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use
This SWI provides general decompression of a lossless nature.

Note: The current algorithm cannot predict what the size of the decompressed
output will be. This means that, currently, —1 is always returned on exit in R1. In
future releases this may change; it is therefore recommended that you call the SWI
first with bit 3 of RO set and the input size placed in R1.

IfR1 is not equal to —1 then you can use this value to allocate the required amount
of space and call the SWI again, setting the registers as appropriate. If R1 is equal to
—1 you must attempt to calculate the maximum output size yourself.

The workspace size required is returned in RO.
In the case where R3 < 12, the unused input must be resupplied.

The performance of decompression on an 8Mhz A420 with ARM?2 is approximately as
follows:

Store to store Fast case
48 Kbytes per second 280 Kbytes per second

where Fast case is store to store, with all input present, and with an output buffer large
enough to hold all output.

Related SWis
Squash_Compress (page 4-104)

Related vectors

None

4-107

4-108

76 ScreenBlank

Introduction and Overview

The ScreenBlank module provides the facilities needed to support screen blanking.
There are two service calls so that applications can tell when the screen is blanked and
when it is restored.

There is also a * Command with which you can override the default time of inactivity
before the screen blanks. The default time itself is set using the Configure application;
there is no defined programmers’ interface to do so.

The ScreenBlank module also provides a SWI for internal use by the Portable module;
you must not use it in your own code.

This module is not available in RISC OS 2.

4-109

Service Calls

Service Calls

Service _ScreenBlanked
(Service Call &7A)

Screen blanked by screen blanker

On entry
R1 = &7A (reason code)

On exit

All registers must be preserved.

Use

This service call is issued by the screen blanker, after the screen has been blanked This
service call should not be claimed.

4-110

ScreenBlank

Service_ScreenRestored
(Service Call &7B)

Screen restored by screen blanker

On entry

RO =0, or flags passed in R4 to ScreenBlanker Control 2
R1 = &7B (reason code)

On exit

All registers must be preserved.

Use

This service call is issued by the screen blanker, after the screen has been restored. This
service call should not be claimed.

RO is normally zero. If however the call results from a flash cycle, then it will be set to
the value of R4 that was passed to ScreenBlanker Control 2.

4-111

SWi calls

SWI calls

ScreenBlanker_Control
(swi &43100)

This SWI is for internal use by the Portable module. You must not use it in your own
code.

4-112

ScreenBlank

* Commands

* .
BlankTime
Sets the time of inactivity before the screen blanks
Syntax
*BlankTime [W|O] [time]
Parameters
" writing to the screen finishes screen blanking
O writing to the screen does not finish screen blanking
time time of inactivity before the screen blanks
Use

*BlankTime sets the time in seconds before the screen blanks. If, during this time, there
is no activity (ie no keyboard or mouse input is received, and — with the W option — there
is no writing to the screen) the screen then blanks. This saves ‘burn in’ on the phosphor
of your monitor, which occurs when the monitor consistently displays a particular
image, such as the desktop.

Screen blanking finishes as soon as there is activity (see above).
If no option is specified, O is assumed.

The blank time is only retained until the next reset.

Example

*BlankTime W 600 blanks the screen if neither input nor output occur for 10
minutes

Related commands

None

Related SWis

None

4-113

Related vectors
WrchV (claimed by W option)

4-114

Part 13 — Hardware support

4-115

4-116

77 Expansion Cards and Extension
ROMs

Introduction

Expansion Cards provide you with a way to add hardware to your RISC OS computer.
They plug into slots provided in the computer, typically in the form of a backplane
(these are an optional extra on some models).

Extension ROMs are ROMs fitted in addition to the main ROM set, which provide
software modules which are automatically loaded by RISC OS on power-on. Note that
RISC OS 2 does not support extension ROMs. Extension ROMs are provided so that
Acorn can add extra modules to RISC OS, or provide replacement modules for those
already in RISC OS. You must not use them.

This chapter gives details of the software that RISC OS provides to manage and
communicate with expansion cards. It also gives details of what software and data needs
to be provided by expansion cards for RISC OS to communicate with them; in short, all
you need to know to write their software. For completeness, it gives the same
information for extension ROMs; but — of course — this is irrelevant to you, as you
shouldn’t use extension ROMs.

The two topics are covered together because both use substantially the same layout of
code and data, and the same SWIs. For more details on writing modules, see the chapter
entitled Modules on page 1-203.

One thing this chapter does not tell you is how to design expansion card hardware. This
is because:

o the range of hardware that can be added to a RISC OS computer is so large that we
can’t examine them all

e we don’t have the space to describe every RISC OS computer that Acorn makes

Instead, you should see the further sources of information to which we refer you.

4-117

Overview

Overview

Software

4-118

RISC OS computers can support internal slots for expansion cards. If you wish to add
more cards than can be fitted to the supplied slots, you must use one of the slots to
support an expansion card that buffers the signals on the expansion card bus before
passing them on to external expansion cards.

Some RISC OS computers can also support extension ROMs. The availability, size and
number of extension ROM sockets depends on which type of RISC OS computer you
are using. For example, the A5000 has a single socket for an 8 bit wide ROM.

Expansion cards

Expansion cards can have some or all of the following software included:

an Expansion Card Identity, to give RISC OS information about the card (see page
4-120 and page 4-122)

Interrupt Status Pointers, to tell RISC OS where to look to find out if the card is
generating interrupts (see page 4-127)

a Chunk Directory, that defines what separate parts of the card’s memory space are
used for (see page 4-128)

a Loader, to access paged memory held outside the card’s address space (see page
4-130)

A wide range of different types of code and data is supported by the Chunk Directories.

The use of the Loader and paged memory has been made as transparent to the end user
as possible.

Extension ROMs

Extension ROMs must include the following software:

an Extension ROM Header, to give RISC OS information about the ROM and to
differentiate it from an expansion card (see page 4-119)

an Extended Expansion Card Identity, to give RISC OS information about the ROM
(see page 4-122)

null Interrupt Status Pointers, because a ROM cannot generate interrupts (see page
4-127)

a Chunk Directory, that defines what each part of the ROM’s memory space is used
for (see page 4-128).

Expansion Cards and Extension ROMs

Technical Details

In general, RISC OS recognises extension ROMs or ROM sets which are 8, 16 or 32 bits
wide, provided the ROM adheres to the specification below. 32 bit wide extension ROM
sets are directly executable in place, saving on user RAM. 8 or 16 bit wide sets have to
be copied into RAM to execute.

An extension ROM set must end on a 64K boundary or at the start of another extension
ROM. This is normally not a problem as it is unlikely you would want to use a ROM
smaller than a 27128 (16K), and the normal way of addressing this would mean that the
ROM would be visible in 1 byte out of each word, ie within a 64K addressable area.

Extension ROM Headers

Extension ROMs must have a 16 byte Extension ROM Header at the end of the ROM
image, which indicates the presence of a valid extension ROM. The ‘header’ is at the
end because RISC OS scans the ROM area downwards from the top.

For a ROM image of size n bytes, the format of the header at the end is as follows:

Byte address Contents

n-16 1-word field containing n

n-12 1-word checksum (bottom 32 bits of the sum of all words from
addresses 0 to n-16 inclusive)

n-8 2-word id ‘ExtnROMO’ indicating a valid extension ROM, ie:

n-8 &45 ‘E’
n-7 &78 x’
n-6 &74 ‘t
n-5 &6E ‘n’
n-4 &52 ‘R’
n-3 &A4F ‘O’
n-2 &4D ‘M’
n-1 &30 ‘0’

Extension ROM width

Note that this header will not necessarily appear in the memory map in the last 16 bytes
if the ROM set is 8 or 16 bits wide. In the 8-bit case, the header will appear in one of the
four byte positions of the last 16 words, and in the 16-bit case, in one of the two
half-word positions of the last 8§ words. However, RISC OS copes with this, and uses the
mapping of the ID field into memory to automatically derive the width of the extension
ROM.

4-119

Introduction to Expansion Card Identities

Introduction to Expansion Card Identities

Expansion cards

Each expansion card must have an Expansion Card Identity (or ECId) so that RISC OS
can tell whether an expansion card is fitted in a backplane slot, and if so, identify it. The
ECId may be:

o asimple ECId of only one byte — the low one of a word (see below)

« an extended ECId of eight bytes, which may be followed by other information (see
page 4-122).

The ECId (whether extended or not) must appear at the bottom of the expansion card
space immediately after a reset. However, it does not have to remain readable at all
times, and so it can be in a paged address space so long as the expansion card is set to the
page containing the ECId on reset.

The ECId is read by a synchronous read of address 0 of the expansion card space. You
may only assume it is valid from immediately after a reset until when the expansion card
driver is installed.

Extension ROMs

As well as the Extension ROM header at the end of the ROM image, Extension ROMs
must also have a header at the start of the ROM image. This header is identical in
format to an Extended Expansion Card Identity, and is present for the use of the
Expansion Card Manager, which handles much of the extension ROM processing. See
page 4-122 onwards, paying particular attention to the section entitled Mandatory values
for extension ROMs.

Simple Expansion Card Identity

4-120

Expansion cards can use a simple ECId, which is one byte long. You should only use
one for the very simplest of expansion cards, or temporarily during development.

e Most expansion cards should instead implement the extended ECId, which
eliminates the possibility of expansion card IDs clashing.

« Extension ROMs must use an extended ECId, rather than a simple ECId.

Expansion Cards and Extension ROMs

Restrictions imposed by a Simple ECId

If you do use a simple ECId, your expansion card must be 8 bits wide. The only
operations that you may perform on its ROM are Podule RawRead (see page 4-151) or
Podule_RawWrite (see page 4-153).

Format of a simple ECId
A simple ECId shares many of the features of the low byte of an extended ECId, and is

as follows:
7 6 5 4 3 2 1 0
A ID[3] | ID[2] | ID[1] | ID[O] | FIQ 0 IRQ
Bit(s) Value Meaning
A 0 Acorn conformant expansion card
1 non-conformant expansion card
ID[3:0] not 0 ID field
0 extended ECId used)
FIQ 0 not requesting FIQ
1 requesting FIQ
IRQ 0 not requesting IRQ
1 requesting IRQ

Acorn conformance bit (A)

This bit must be zero for expansion cards that conform to this Acorn specification.

ID field (ID [3:0])

If you are using a simple ECId, the four ID bits may be used for expansion card
identification. They must be non-zero, as a value of zero shows that you are instead
using an extended ECId.

Interrupt status bits (IRQ and FIQ)

The interrupt status bits are discussed below in the section entitled Generating interrupts
from expansion cards on page 4-126.

Expansion card presence (bit 1)

This must be zero, as shown above. For more information, see the section entitled
Expansion card and extension ROM presence on page 4-125.

4-121

Extended Expansion Card Identity

Extended Expansion Card Identity

4-122

An expansion card’s ECId is extended if the ID field of its ECId low byte is zero. This
means that RISC OS will read the next seven bytes of the ECId. The extended ECId
starts at the bottom of the expansion card space, and consists of the eight bytes defined
below.

Expansion card width

If an expansion card has an extended ECId, the first 16 bytes of its address space are
always assumed to be bytewide. These 16 bytes contain the 8 byte extended ECId itself,
and a further 8 bytes (typically the Interrupt status pointers — see below). If the ECId is
included in a ROM which is 16 or 32 bits wide, then only the lowest byte in each
half-word or word must be used for the first 16 (half) words.

If you use an extended ECId, you may specify the space after this as 8, 16 or 32 bits
wide. When you access this space

o ifyou are using the 8 bit wide mode, you should use byte load and store instructions

e if you are writing using the 16 bit wide mode, you should use word store
instructions, putting your half word in both the low and high half words of the
register you use

e if you are reading using the 16 bit wide mode, you should use word load
instructions, and ignore the upper half word returned

e if you are using the 32 bit wide mode, you should use word load and store
instructions.

Synchronous cycles are used by the operating system to read and write any locations
within this space (to simplify the design of synchronous expansion cards).

Current restrictions

You should note however that there are currently some restrictions on the widths you
can use. These are imposed both by current hardware and software:
o the I/O data bus is only 16 bits wide

o the current version of the RISC OS Expansion Card Manager only supports the 8 bit
wide mode; future versions may support the wider modes.

Format of an extended ECId

Expansion Cards and Extension ROMs

The format of an extended ECId is as follows:

7 6 5 4 3 2 1 0
CI7] CI6] CI5] Cl4] CI[3] Cl2] CI1] CI0] &1C
M[15] | M[14] | M[13] | M[12] | M[11] | M[10] | M[9] | M[8] | &18
M[7] M[6] M[5] M[4] M[3] M[2] M[1] M[O] &14
P[15] | P[14] | P[13] | P[12] P[11] P[10] P[9] P[8] &10
P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[O] &0C
R R R R R R R R &08
R R R R WI[1] WIO0] IS CD &04
A 0 0 0 0 FIQ 0 IRQ &00
Bit(s) Value Meaning
C[7:0] Country (see below)
M[15:0] Manufacturer (see below)
P[15:0] Product Type (see below)
R 0 mandatory at present
1 reserved for future use
W[1:0] 0 8-bit code follows after byte 15 of Id space
1 16-bit code follows after byte 15 of Id space
2 32-bit code follows after byte 15 of Id space
3 reserved
IS 0 no Interrupt Status Pointers follow ECId
1 Interrupt Status Pointers follow ECId
CD 0 no Chunk Directory follows
1 Chunk Directory follows Interrupt Status
pointers
A 0 Acorn conformant expansion card
1 non-conformant expansion card
FIQ 0 not requesting FIQ (or FIQ relocated)
1 requesting FIQ
IRQ 0 not requesting IRQ (or IRQ relocated)
1 requesting IRQ

4-123

Extended Expansion Card Identity

4-124

Country code (C[7:0])

Every expansion card should have a code for the country of origin. These match those
used by the International module, save that the UK has a country code of 0 for expansion
cards. If you do not already know the correct country code for your country, you should
consult Acorn.

Manufacturer code (M[15:0])

Every expansion card should have a code for manufacturer. If you have not already been
allocated one, you should consult Acorn.

Product type code (P[15:0])

Every expansion card type must have a unique number allocated to it. Consult Acorn if
you need to be allocated a new product type code.

Reserved fields (R)

Reserved fields must be set to zero to cater for future expansion.

Width field (W[1:0])

This field must currently be set to zero (expansion card is 8 bits wide). For more
information, see the earlier section entitled Expansion card width on page 4-122.

Interrupt Status Pointers presence (IS)

See the sections entitled Generating interrupts from expansion cards on page 4-126, and
Interrupt Status Pointers on page 4-127.

Chunk directory presence (CD)

See the section entitled Chunk directory structure on page 4-128.

Acorn conformance bit (A)

This bit must be zero for expansion cards that conform to this Acorn specification.

ID field (bits 6 - 3 of low byte)

If you are using an extended ECId, these bits must be zero, as shown above. A non-zero
value shows that you are instead using a simple ECId; for more information see page
4-121.

Interrupt status bits (IRQ and FIQ)

The interrupt status bits are discussed below in the section entitled Generating interrupts

from expansion cards on page 4-126.

Expansion Cards and Extension ROMs

Expansion card presence (bit 1 of low byte)

This must be zero, as shown above. For more information, see the section entitled
Expansion card and extension ROM presence on page 4-125.

Mandatory values for extension ROMs

An extension ROM must include an extended ECId. This starts at the bottom of the
ROM image, and consists of eight bytes as defined above.

For an extension ROM, certain fields within the extended ECId must have particular
values:
e The product type code must be &87 (ie the product type is an extension ROM).

e The width field must always be 0 (8 bits wide), irrespective of the ROM’s actual
width, which RISC OS automatically derives (see the section entitled Extension
ROM width on page 4-119).

Because the width field does not vary, you do not need to change the image of an
extension ROM if you change the width of ROM in which it is placed.

o Both the Interrupt Status Pointer field and the Chunk Directory field must be 1,
showing the ECId is followed by Interrupt Status Pointers, then by a Chunk
Directory.

e The Acorn conformant field must be 0, to show that the extension ROM is Acorn
conformant.

o The interrupt status bits (FIQ and IRQ) must both be clear, to show that the
extension ROM is not requesting an interrupt.

Expansion card and extension ROM presence

All expansion cards and extension ROMs must have bit 1 low in the low byte of an
ECId (whether simple or extended), so that RISC OS can tell if there are any of them
present.

Normally bit 1 of the I/O data bus is pulled high by a weak pullup. Therefore:

e Ifno expansion card is present and RISC OS tries to read the ECId low byte, bit 1
will be set.

o Ifanexpansion card is present, and the ECId is mapped into memory (which it must
be immediately after a reset), the bit will instead be clear.

4-125

Generating interrupts from expansion cards

Generating interrupts from expansion cards

Expansion cards must provide two status bits to show if the card is requesting IRQ or

FIQ.

with a simple ECId

If an expansion card only has a simple ECId, then the FIQ and IRQ status bits are bits 2
and 0 respectively in the ECId. If the card does not generate one or both of these
interrupts then the relevant bit(s) must be driven low.

with an extended ECId

If an expansion card has an extended ECId, you must set the IS bit of the ECId and
provide Interrupt Status Pointers (see below) if either of the following applies:

e you are also using Chunk Directories (see below)

e you want to relocate the interrupt status bits from the low byte of the ECId.

If neither of the above apply, then you can omit the Interrupt Status Pointers. The
interrupt status bits are located in the low byte of the ECId, and are treated in exactly the
same way as for a simple ECId (see above).

Finding out more

To find out more about generating interrupts from expansion cards under RISC OS, you
can:

o sce the chapters entitled ARM Hardware on page 1-9 and Interrupts and handling
them on page 1-119.

e consult the Acorn RISC Machine family Data Manual. VLSI Technology Inc.
(1990) Prentice-Hall, Englewood Cliffs, NJ, USA: ISBN 0-13-781618-9.

o consult the datasheets for any components you use

e contact Customer Support and Services for further hardware-specific details.

4-126

Expansion Cards and Extension ROMs

Interrupt Status Pointers

Expansion cards

An Interrupt Status Pointer has two 4 byte numbers, each consisting of a 3 byte address
field and a 1 byte position mask field. These numbers give the locations of the FIQ and
IRQ status bits:

&40
IRQ Status Bit address (24 bits)

&34
IRQ Status Bit position mask

&30
FIQ Status Bit address (24 bits)

&24
IRQ Status Bit position mask

&20

The 24-bit address field must contain a signed 2’s-complement number giving the offset
from &3240000 (the base of the area of memory into which podules are mapped). Hence
the cycle speed to access the status register can be included in the offset (encoded by bits
19 and 20). Bits 14 and 15 (that encode the slot number) should be zero. If the status
register is in module space then the offset should be negative: eg &DC0000, which is —
&240000.

The 8-bit position mask should only have a single bit set, corresponding to the position
of the interrupt status bit at the location given by the address field.

Note that these eight bytes are always assumed to be bytewide. Only the lowest byte in
each word should be used.

The addresses may be the same (ie the status bits are in the same byte), so long as the
position masks differ. An example of this is if you have had to provide an Interrupt
Status Pointer, but do not want to relocate the status bits from the low byte of the ECId;
the address fields will both point to the low byte of the ECId, the IRQ mask will be 1,
and the FIQ mask will be 4.

If the card does not generate FIQ or IRQ

If the card does not generate one or both of these interrupts then you must set to zero:
« the corresponding address field(s) of the Interrupt Status Pointer

o the corresponding position mask field(s) of the Interrupt Status Pointer

o the corresponding status bit(s) in the low byte of the ECId.

4-127

Chunk directory structure

Extension ROMs

Extension ROMs must have a Chunk Directory, hence they must also provide Interrupt
Status Pointers. However, extension ROMs generate neither FIQ nor IRQ; consequently
their Interrupt Status Pointers always consist of eight zero bytes.

Chunk directory structure

4-128

If the CD bit of an extended ECId is set, then:
o the IS bit of the ECId must also be set
e Interrupt Status Pointers must be defined

e adirectory of Chunks follow the Interrupt Status Pointers.

The chunks of data and/or code are stored in the expansion card’s ROM, or in the
extension ROM.

The lengths and types of these Chunks and the manner in which they are loaded is
variable, so after the eight bytes of Interrupt Status Pointers there follow a number of
entries in the Chunk Directory. The Chunk Directory entries are eight bytes long and all
follow the same format. There may be any number of these entries. This list of entries is
terminated by a block of four bytes of zeros.

You should note that, from the start of the Chunk Directory onwards, the width of the
expansion card space is as set in the ECId width field. From here on the definition is in
terms of bytes:

n+8
Start address: 4 bytes (32 bits)

n+4
Size in bytes: 3 bytes (24 bits) ;

n+
Operating System identity byte

n

The start address is an offset from the base of the expansion card’s address space.

Expansion Cards and Extension ROMs

Operating System Identity Byte

The Operating System Identity Byte forms the first byte of the Chunk Directory entry,
and determines the type of data which appears in the Chunk to which the Chunk
Directory refers. It is defined as follows:

7 6 5 4 3 2 1 0
0S[3] | 0S[2] | 0S[1] | os[0] | D3] | Dl2] | D[1] | DIo]
0OSJ[3] 0 reserved
OS[3] 1 mandatory at present
0OS[2:0] O Acorn Operating System 0: Arthur/RISC OS
D[3:0] O Loader
1 Relocatable Module
2 BBC ROM
3 Sprite
4-15 reserved
1 reserved
D[3:0] 0-15 reserved
2 Acorn Operating System 2: UNIX
D[3:0] O Loader
1-15 reserved
3-5 reserved
D[3:0] 0-15 reserved
6 manufacturer defined
D[3:0] 0-15 manufacturer specific
7 device data

D[3:0] O link

(for 0, the object pointed to is another
directory)

serial number

date of manufacture

modification status

place of manufacture

description

part number

(for 1 - 6, the data in the location pointed to
contains the ASCII string of the
information.)

7 Ethernet binary ID (length is always 6 bytes)

AN N B W~

4-129

Binding a ROM image

Binding a ROM

Expansion card

8 PCB revision (length is always 4 bytes,
treated as a word)

9-14 reserved

15 empty chunk

Those Chunks with OS[2:0] = 7, are operating system independent and are mostly
treated as ASCII strings terminated with a zero byte. They are not intended to be read by
programs, but rather inspected by users. It is expected that even minimum expansion
cards will have an entry for D[3:0] =5 (description), and it is this string which is printed
out by the command *Podules.

image

For a ROM to be read by the Expansion Card Manager it must conform to the
specification, even if only minimally. The simplest way to generate ROM images is to
use a BASIC program to combine the various parts together and to compute the header
and Chunk Directory structure.

An example program used with an expansion card is shown at the end of this chapter. Its
output is a file suitable for programming into a PROM or an EPROM.

Code Space

The above forms the basis of storing software and data in expansion cards. However,
there is an obvious drawback in that the expansion card space is only 4 Kbytes (at word
boundaries), and so its usefulness is limited as it stands. To allow expansion cards to
accommodate more than this 4 Kbytes an extension of the addressing capability is used.
This extension is called the Code Space.

The Code Space is an abstracted address space that is accessed in an expansion card
independent way via a software interface. It is a large linear address space that is
randomly addressable to a byte boundary. This will typically be used for driver code for
the expansion card, and will be downloaded into system memory by the operating
system before it is used. The manner in which this memory is accessed is variable and so
it is accessed via a Loader.

Writing a Loader for an expansion card

4-130

The purpose of the Loader is to present to the Expansion Card Manager a simple
interface that allows the reading (and writing) of the Code Space on a particular
expansion card. The usual case is a ROM paged to appear in 2 Kbyte pages at the bottom
of the expansion card space, with the page address stored in a latch. This then permits

Expansion Cards and Extension ROMs

the Expansion Card Manager to load software (Relocatable Modules) or data from an
expansion card without having to know how that particular expansion card’s hardware is

arranged.

The Loader is a simple piece of relocatable code with four entry points and clearly
defined entry and exit conditions. The format of the Loader is optimised for ease of
implementation and small code size rather than anything else.

Registers

The register usage is the same for each of the four entry points.

Input/Output
RO Write/Read data
R1 Address
R2-R3
R4-R9
R10

R11 Hardware

R12
R13 sp
R14
R15

Comments

Treated as a byte

Must be preserved

May be used

Must be preserved

May be used

Combined hardware address: must be
preserved

Private: must be preserved

Stack pointer (FD): must be preserved
Return address: use BICS pc, Ir, #V_bit
PC

The exception to this is the CallLoader entry point where RO - R2 are the user’s entry

and exit data.

Entry points

All code must be relocatable and position independent. It can be assumed that the code

will be run in RAM in SVC mode.

Origin + &00 Read a byte
Origin + &04 Write a byte

Origin + &08 Reset to initial state
Origin + &0C ~ SWI Podule CallLoader

Initialisation

The first call made to the Loader will be to Read address 0, the start of a Chunk directory

for the Code Space.

4-131

Writing a Loader for an expansion card

4-132

Errors

Errors are returned in the usual way; V is set and RO points at a word-aligned word
containing the error number, which is followed by an optional error string, which in turn
must be followed by a zero byte. ReadByte and WriteByte may be able to return errors
like ‘Bad address’ if the device is not as big as the address given, or ‘Bad write’ if using
read after write checks on the WriteByte call. If the CallLoader entry is not supported
then don’t return an error. If Reset fails then return an error.

Since your device drivers may well be short of space, you can return an error with R0=0.
The Expansion Card Manager will then supply a default message. Note that this is not
encouraged, but is offered as a suggestion of last resort. Errors are returned to the caller
by using ORRS pc, Ir, #V_bit rather than the usual BICS exit.

Example

Here is an example of a Loader (this example, like all others in this chapter, uses the
ARM assembler rather than the assembler included with BBC BASIC V — there are
subtle syntax differences):

00 LEADR &FFFFFD00 ; Data

00 00003000 PageReg * &3000

00 0000000B PageSize * 11 ; Bits

00 EA00000B Origin B ReadByte

04 EA000019 B WriteByte

08 EA000001 B Reset

0C E3DEF201 BICS pc, Ir, #V_bit

10 ES9FAOE4 Reset LDR rl10,=2_00000011111111111111000000000000
14 EOOBAOOA AND r10,r11,r10 ; Get hardware address from combined one
18 E28AAA03 ADD 10, r10, #PageReg

1C E3A02000 MOV 12, #0

20 E4CA2000 STRB 12,[rl0]

24 E3DEF201 BICS pc, Ir, #V_bit

28 E59F40C4 ReadByte LDR r3,=2_00000011111111111111000000000000
2C E00B4004 AND 13,rl1,1r3 ; Get hardware address from combined one
30 E284AA03 ADD rl0, r3, #PageReg

34 E3510B3E CMP rl, #&F800 ; Last page

38 228F0048 ADRHS 10, ErrorATB

3C 239EF201 ORRHSS pe, Ir, #V_bit

40 E2812B02 ADD r2,rl, #1 :SHL: PageSize

44 E1A025C2 MOV 12,12, ASR #PageSize

48 E4CA2000 STRB r2,[rl0]

4C E3C12BFE BIC 12, rl, #&7F :SHL: PageSize

50 E7D40102 LDRB 10, [13, 12, ASL #2] ; Word addressing

54 E3DEF201 BICS pc, Ir, #V_bit

58 E28F0000 WriteByte ADR 10, ErrorNW

5C E39EF201 ORRS pc, Ir, #V_bit

60 00000580 ErrorNW DCD ErrorNumber_NotWriteable

64 DCB ErrorString_NotWriteable,0

92 00 00 ALIGN

94 00000584 ErrorATB DCD ErrorNumber_AddressTooBig

98 DCB ErrorString_AddressTooBig,0

AC END

Expansion Cards and Extension ROMs

The bit masks are used to separate the fields of a combined hardware address — see the
description of Podule HardwareAddress (page 4-155) for details of these.

Loading the Loader

CMOS RAM

ROM sections

If the Expansion Card Manager is ever asked to ‘EnumerateChunk’ a Chunk containing
a Loader, it will automatically load the Loader. Since RISC OS enumerates all Chunks
from all expansion cards at a hard reset this is achieved by default.

If no Loader is loaded then Podule EnumerateChunks will terminate on the zero at the
end of the Chunk Directory in the expansion card space. If, however, when the end of

the expansion card space Chunk Directory is reached a Loader has been loaded, then a
second Chunk Directory, stored in the Code Space, will appear as a continuation of the
original Chunk Directory. This is transparent to the user.

This second Chunk Directory is in exactly the same format as the original Chunk
Directory. Addresses in the Code Space Chunk Directory refer to addresses in the Code
Space. The Chunk Directory starts at address 0 of the Code Space (rather than address
16 as the one in expansion card Space does).

Each of the four possible internal expansion card slots has four bytes of CMOS RAM
reserved for it. These bytes can be used to store status information, configuration, and so
on.

You can find the base address of these four bytes by calling Podule HardwareAddress
(page 4-155) or Podule_HardwareAddresses (page 4-159).

Most of the SWIs provided by the Expansion Card Manager take a ROM section as a
parameter. This identifies the expansion card or extension ROM upon which the
command acts. ROM sections used by RISC OS are:

ROM section Meaning
-1 System ROM

0 Expansion card 0
1 Expansion card 1
2 Expansion card 2
3 Expansion card 3
-2 Extension ROM 1 (not in RISC OS 2)
-3 Extension ROM 2 (not in RISC OS 2)
—4 Extension ROM 3 (etc) (not in RISC OS 2)

4-133

‘Podules’

None of the SWIs described in this chapter will act upon the system ROM.

‘Podules’

In the Arthur operating system, expansion cards were known as Podules. The word
‘Podule’ was used in all the names of SWIs and * Commands.

These old names have been retained, so that software written to run under Arthur will
still run under RISC OS.

4-134

Expansion Cards and Extension ROMs

Service Calls

Service PreReset
(Service Call &45)

Pre-reset

On entry
R1 = &45 (reason code)

On exit

R1 preserved to pass on (do not claim)

Use

This call is made just before a software generated reset takes place, when the user
releases Break. This gives a chance for expansion card software to reset its devices, as
this type of reset does not actually cause a hardware reset signal to appear on the
expansion card bus. This call must not be claimed.

4-135

Service_ADFSPodule (Service Call &10800)

4-136

Service ADFSPodule
(Service Call &10800)

Issued by ADFS to locate an ST506 expansion card

On entry

R1 = &10800 (reason code)

R2 = address of current ST506 hard disc controller

R3 = address of IRQ status register for current hard disc controller

R4 = mask which, when ANDed with IRQ status register, gives non-zero value if
IRQs are enabled

RS = address of IRQ mask register for current hard disc controller

R6 = mask which, when ORd with IRQ mask register, enables IRQ

On exit

Use

All registers preserved to pass on, else:

R1 =0 to claim

R2 = address of new ST506 hard disc controller

R3 = address of IRQ status register for new hard disc controller

R4 = mask which, when ANDed with IRQ status register, gives non-zero value if
IRQs are enabled

R5 = address of IRQ mask register for new hard disc controller

R6 = mask which, when ORd with IRQ mask register, enables IRQ

This call is issued by ADEFS to enable ST506 hard disc expansion cards to intercept
ADFS and use their own hardware rather than the hardware built into the machine. The
expansion card should claim the service call, updating the passed registers to the values
for its own hardware.

Expansion Cards and Extension ROMs

Service_ ADFSPodulelDE
(Service Call &10801)

Issued by ADFS to locate an IDE expansion card

On entry

R1=&10801 (reason code)

R2 = address of current IDE hard disc controller

R3 = address of IRQ status register for current hard disc controller

R4 = mask which, when ANDed with IRQ status register, gives non-zero value if
IRQs are enabled

RS = address of IRQ mask register for current hard disc controller

R6 = mask which, when ORd with IRQ mask register, enables IRQ

R7= address of data read routine for current hard disc controller (0 for default)

R8 = address of data write routine for current hard disc controller (0 for default)

On exit

Use

All registers preserved to pass on, else:

R1=0to claim

R2 = address of new IDE hard disc controller

R3 = address of IRQ status register for new hard disc controller

R4 = mask which, when ANDed with IRQ status register, gives non-zero value if
IRQs are enabled

R5 = address of IRQ mask register for new hard disc controller

R6 = mask which, when ORd with IRQ mask register, enables IRQ

R7= address of data read routine for new hard disc controller (0 for default)

R8 = address of data write routine for new hard disc controller (0 for default)

This call is issued by ADFS to enable IDE hard disc expansion cards to intercept ADFS
and use their own hardware rather than the hardware built into the machine. The
expansion card should claim the service call, updating the passed registers to the values
for its own hardware.

4-137

Service_ADFSPoduleIDEDying (Service Call &10802)

Service_ ADFSPodulelDEDying
(Service Call &10802)

IDE expansion card dying

On entry
R1 = &10802 (reason code)

On exit

All registers preserved

Use

This call is issued by an IDE expansion card module to warn ADFS of its imminent
demise.

4-138

Expansion Cards and Extension ROMs

SWI calls

Podule ReadID
(swi &40280)

Reads an expansion card or extension ROM’s identity byte

On entry
R3 = ROM section (see page 4-133)

On exit
RO = expansion card identity byte (ECId)

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use
This call reads into RO a simple Expansion Card Identity, or the low byte of an extended
Expansion Card Identity. It also resets the Loader — if one is present, and has been
loaded.

Related SWis

Podule ReadHeader (page 4-140)

Related vectors

None

4-139

Podule_ReadHeader (SWI &40281)

4-140

Podule ReadHeader
(swi &40281)

Reads an expansion card or extension ROM’s header

On entry

R2 = pointer to buffer of 8 or 16 bytes
R3 = ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This call reads an extended Expansion Card Identity into the buffer pointed to by R2. If
the IS bit is set (bit 1 of byte 1) then the expansion card also has Interrupt Status
Pointers, and these are also read into the buffer. This call also resets the Loader — if one
is present, and has been loaded.

If you do not know whether the card has Interrupt Status Pointers, you should use a 16
byte buffer. Extension ROMs always have Interrupt Status Pointers (although they’re
always zero), so you should always use a 16 byte buffer for them.

Related SWis
Podule ReadID (page 4-139)

Expansion Cards and Extension ROMs

Related vectors

None

4-141

Podule_EnumerateChunks (SWI &40282)

4-142

Podule EnumerateChunks
(swi &40282)

Reads information about a chunk from the Chunk Directory

On entry

RO = chunk number (zero to start)
R3 = ROM section (see page 4-133)

On exit

RO = next chunk number (zero if final chunk enumerated)

R1 =size (in bytes) if RO # 0 on exit

R2 = operating system identity byte if RO # 0 on exit

R4 = pointer to a copy of the module’s name if the chunk is a relocatable module
(ie if R2 = &81), else preserved

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads information about a chunk from the Chunk Directory. It returns its size
and operating system identity byte. If the chunk is a module it also returns a pointer to a
copy of its name; this is held in the Expansion Card Manager’s private workspace and
will not be valid after you have called the Manager again.

If the chunk is a Loader, then RISC OS also loads it.

To read information on all chunks you should set RO to 0 and R3 to the correct ROM
section. You should then repeatedly call this SWI until RO is set to 0 on exit.

Expansion Cards and Extension ROMs

RISC OS 2 automatically does this on a reset for all expansion cards; if there is a Loader
it will be transparently loaded, and any chunks in the code space will also be
enumerated. Later versions of RISC OS use Podule_ EnumerateChunksWithInfo.

Related SWis
Podule_ReadChunk (page 4-144), Podule EnumerateChunksWithInfo (page 4-157)

Related vectors

None

4-143

Podule_ReadChunk (SWI &40283)

4-144

Podule ReadChunk
(swi &40283)

Reads a chunk from an expansion card or extension ROM

On entry

RO = chunk number
R2 = pointer to buffer (assumed large enough)
R3 = ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use
This call reads the specified chunk from an expansion card. The buffer must be large
enough to contain the chunk; you can use Podule EnumerateChunks (see page 4-142) to
find the size of the chunk.

Related SWis

Podule EnumerateChunks (page 4-142)

Related vectors

None

Expansion Cards and Extension ROMs

Podule ReadBytes
(swi &40284)

Reads bytes from within an expansion card’s code space

On entry

RO = offset from start of code space
R1 = number of bytes to read

R2 = pointer to buffer

R3 = expansion card slot number

On exit

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call reads bytes from within an expansion card’s code space. It does so using
repeated calls to offset O (read a byte) of its Loader. RISC OS must already have loaded
the Loader; note that the kernel does this automatically on a reset when it enumerates all
expansion cards’ chunks.

This command returns an error for extension ROMs, because they have neither code
space nor a Loader.

Related SWis
Podule_WriteBytes (page 4-147)

4-145

Podule_ReadBytes (SWI &40284)

Related vectors

None

4-146

Expansion Cards and Extension ROMs

Podule WriteBytes
(swi &40285)

Writes bytes to within an expansion card’s code space

On entry

RO = offset from start of code space
R1 = number of bytes to write

R2 = pointer to buffer

R3 = expansion card slot number

On exit

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call writes bytes to within an expansion card’s code space. It does so using repeated
calls to offset 4 (write a byte) of its Loader. RISC OS must already have loaded the
Loader; note that the kernel does this automatically on a reset when it enumerates all
expansion cards’ chunks.

This command returns an error for extension ROMs, because they have neither code
space nor a Loader.

Related SWis
Podule ReadBytes (page 4-145)

4-147

Podule_WriteBytes (SWI &40285)

Related vectors

None

4-148

Expansion Cards and Extension ROMs

Podule CallLoader
(swi &40286)

Calls an expansion card’s Loader

On entry

RO - R2 = user data
R3 = expansion card slot number

On exit
RO - R2 = user data

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Depends on Loader

Use

This call enters an expansion card’s Loader at offset 12. Registers RO - R2 can be used
to pass data.

The action the Loader takes will vary from card to card, and you should consult your
card’s documentation for further details.

If you are developing your own card, you can use this SWI as an entry point to add extra
features to your Loader. You may use RO - R2 to pass any data you like. For example,
RO could be used as a reason code, and R1 and R2 to pass data.

In some hardware designs it may be important to share hardware between the Loader
and the driver. You can do so by using this call to call the Loader, which can do
hardware accesses for the driver and maintain its own state. For example, if your

4-149

Podule_CallLoader (SWI &40286)

hardware has a 7 bit page register and a 1 bit output port shared within a single 8 bit
latch, the Loader could maintain a flag for the state of the port, and write that bit
correctly whenever it writes to the page register.

This command returns an error for extension ROMs, because they have neither code
space nor a Loader.

Related SWis

None

Related vectors

None

4-150

Expansion Cards and Extension ROMs

Podule RawRead
(swi &40287)

Reads bytes directly within an expansion card or extension ROM’s address space

On entry

RO = offset from base of a podule’s address space (0...&FFF)
R1 = number of bytes to read

R2 = pointer to buffer

R3 = ROM section (see page 4-133)

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call reads bytes directly within an expansion card or extension ROM’s address
space. It is typically used to read from the registers of hardware devices on an expansion
card, or to read successive bytes from an extension ROM.

You should use Podule ReadBytes (page 4-145) to read from within an expansion
card’s code space.

Related SWis
Podule RawWrite (page 4-153)

4-151

Podule_RawRead (SWI &40287)

Related vectors

None

4-152

Expansion Cards and Extension ROMs

Podule RawWrite
(swi &40288)

Writes bytes directly within an expansion card’s address space

On entry

RO = offset from base of a podule’s address space (0...&FFF)
R1 = number of bytes to write

R2 = pointer to buffer

R3 = expansion card slot number

On exit

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call writes bytes directly within an expansion card’s address space. It is typically
used to write to the registers of hardware devices on an expansion card.

You should use Podule WriteBytes (see page 4-147) to write within an expansion card’s
code space.

Obviously you cannot write to an extension ROM. You must not use this call to try to
write to the ROM area; if you do so, you risk reprogramming the memory and video
controllers.

Related SWis
Podule RawRead (page 4-151)

4-153

Podule_RawWrite (SWI &40288)

Related vectors

None

4-154

Expansion Cards and Extension ROMs

Podule HardwareAddress
(swi &40289)

Returns an expansion card or extension ROM’s base address, and the address of an
expansion card’s CMOS RAM

On entry

R3 = ROM section (see page 4-133), or base address of expansion card/extension
ROM

On exit

R3 = combined hardware address

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call returns an expansion card or extension ROM’s combined hardware address:

Bits Meaning

0-11 base address of CMOS RAM — expansion cards only (4 bytes)
12 -25 bits 12 - 25 of base address of expansion card/extension ROM
26 - 31 reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS Byte 161 and 162.

In practice there is little point in finding the combined hardware address of an extension
ROM. The base address of the extension ROM is of little use, as the width of the ROM
can vary; and extension ROMs do not have CMOS RAM reserved for them.

4-155

Podule_HardwareAddress (SWI &40289)

Related SWis

OS_Byte 161 (page 1-371), OS_Byte 162 (page 1-373),
Podule HardwareAddresses (page 4-159)

Related vectors

None

4-156

Expansion Cards and Extension ROMs

Podule EnumerateChunksWithInfo
(swi &4028A)

Reads information about a chunk from the Chunk Directory

On entry

RO = chunk number (zero to start)
R3 = ROM section (see page 4-133)

On exit

RO = next chunk number (zero if final chunk enumerated)

R1 =size (in bytes) if RO # 0 on exit

R2 = operating system identity byte if RO # 0 on exit

R4 = pointer to a copy of the module’s name if the chunk is a relocatable module, else
preserved

R5 = pointer to a copy of the module’s help string if the chunk is a relocatable module,
else preserved

R6 = address of module if the chunk is a directly executable relocatable module, or 0 if
the chunk is a non-directly-executable relocatable module, else preserved

Interrupts

Interrupt status is unaltered by the SWI, but may be altered by the Loader
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is not re-entrant

This call reads information about a chunk from the Chunk Directory. It returns its size
and operating system identity byte. If the chunk is a module it also returns pointers to
copies of its name and its help string, and its address if it is executable. These are held in
the Expansion Card Manager’s private workspace and will not be valid after you have
called the Manager again.

4-157

Podule_EnumerateChunksWithinfo (SWI &4028A)

If the chunk is a Loader, then RISC OS also loads it.

To read information on all chunks you should set RO to 0 and R3 to the correct ROM
section. You should then repeatedly call this SWI until RO is set to 0 on exit.

RISC OS automatically does this on a reset for all expansion cards; if there is a Loader
it will be transparently loaded, and any chunks in the code space will also be
enumerated.

This call is not available in RISC OS 2, which uses Podule_EnumerateChunks instead.

Related SWis
Podule EnumerateChunks (page 4-142), Podule_ReadChunk (page 4-144)

Related vectors

None

4-158

Expansion Cards and Extension ROMs

Podule HardwareAddresses
(swi &4028B)

Returns an expansion card or extension ROM’s base address, and the address of an
expansion card’s CMOS RAM

On entry
R3 = ROM section (see page 4-133)

On exit

RO = base address of expansion card/extension ROM
R1 = combined hardware address

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call returns an expansion card or extension ROM’s base address, and its combined
hardware address:

Bits Meaning

0-11 base address of CMOS RAM - expansion cards only (4 bytes)
12 -25 bits 12 - 25 of base address of expansion card/extension ROM
26 - 31 reserved

You can use a mask to extract the relevant parts of the returned value. The CMOS
address in the low 12 bits is suitable for passing directly to OS Byte 161 and 162.

In practice there is little point in finding the combined hardware address of an extension
ROM. The base address of the extension ROM is of little use, as the width of the ROM
can vary; and extension ROMs do not have CMOS RAM reserved for them.

4-159

Podule_HardwareAddresses (SWI &4028B)

This call is not available in RISC OS 2.

Related SWis
OS_Byte 161 (page 1-371), OS_Byte 162 (page 1-373),
Podule HardwareAddress (page 4-155)

Related vectors

None

4-160

Expansion Cards and Extension ROMs

Podule ReturnNumber
(swi &4028C)

Returns the number of expansion cards and extension ROMs

On entry

On exit

RO = number of expansion cards
R1 = number of extension ROMs

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This call returns the number of expansion cards and extension ROMs. The number of
expansion cards returned is currently always 4, but you must be prepared to handle any
other value, including 0.

This call is used by the *Podules command.

This call is not available in RISC OS 2.

Related SWis

None

Related vectors

None

4-161

* Commands

* Commands
*PoduleLoad

Copies a file into an expansion card’s RAM

Syntax

*PoduleLoad expansion_card number filename [offset]

Parameters
expansion_card_number the expansion card’s number, as given by *Podules
filename a valid pathname, specifying a file
offset offset (in hexadecimal by default) into the Code
Space
Use

*PoduleLoad copies the contents of a file into an installed expansion card’s RAM,
starting at the specified offset. If no offset is given, then a default value of 0 is used.

Example
*PoduleLoad 1 $.Midi.Data 100

Related commands

*Podules, *PoduleSave

Related SWis
Podule WriteBytes (page 4-147)

Related vectors

None

4-162

Expansion Cards and Extension ROMs

*Podules

Displays a list of the installed expansion cards and extension ROMs

Syntax

*Podules

Parameters

None

Use

*Podules displays a list of the installed expansion cards and extension ROMs, using the
description that each one holds internally. Some expansion cards and/or extension
ROMs — such as one that is still being designed — will not have a description; in this
case, an identification number is displayed.

This command still refers to expansion cards as podules, to maintain compatibility with
earlier operating systems. This command does not show extension ROMs under
RISC OS 2.

Example

*Podules

Podule 0: Midi and BBC I/0 podule
Podule 1: Simple podule &8

Podule 2: No installed podule
Podule 3: No installed podule

Related commands

None

Related SWis
Podule EnumerateChunks (page 4-142)

Related vectors

None

4-163

*PoduleSave

4-164

*PoduleSave

Copies the contents of an expansion card’s ROM into a file

Syntax

*PoduleSave expansion_card _number filename size [offset]

Parameters
expansion_card_number the expansion card’s number, as given by *Podules
filename a valid pathname, specifying a file
size in bytes
offset offset (in hexadecimal by default) into the Code
Space
Use

*PoduleSave copies the given number of bytes of an installed expansion card’s ROM
into a file. If no offset is given, then a default value of 0 is used.

Example
*PoduleSave 1 $.Midi.Data 200 100

Related commands
*Podules, *PoduleLoad

Related SWis
Podule ReadBytes (page 4-145)

Related vectors

None

Expansion Cards and Extension ROMs

Example program

This program is an example of how to combine the various parts of an expansion card
ROM. It also computes the header and Chunk Directory structure. The file it outputs is
suitable for programming into a PROM or EPROM:

4-165

Example program

4-166

10 REM > &.arm.MidiAndl/O.MidiJoiner

20 REM Author : RISC OS

30 REM Last edit : 06-Jan-87

40 PRINT"Joiner for expansion card ROMs"*"Version 1.05."

50 PRINT"For Midi board.": DIM Buffer% 300, Block% 20

70 INPUT"Enter name of output file : "OutName$

75 H%=OPENOUT(OutNameS$)

80 IF H%=0 THEN PRINT"Could not create *";OutName$;"".":END

90 ONERRORONERROROFF:CLOSE#H%:REPORT:PRINT" at line ";ERL:END

100 Device%=0:L%=TRUE:REPEAT

120 Max%=&800:REM Max% is the size of the normal area

130 Low%=&100:REM Low% is the size of the pseudo directory

140 Base%=0:REM The offset for file address calculations

150 Rom%=&4000:REM Rom% is the size of BBC ROMs

170 PROCByte(0):PROCHalf(3):PROCHalf(19):PROCHalf(0): PROCByte(0)

180 PROCByte(0):PROC3Byte(0):PROCByte(0):PROC3Byte(0)

190 TIF PTR#H% <> 16 STOP

200 Bot%=PTR#H%:REM Bot% is where the directory grows from

210 Top%=Max%:REM Top% is where normal files decend from

230 INPUT"Enter filename of loader : "Loader$

240 IF Loader$ <> "" THEN K%=FNAddFile(&80, Loader$)

250 IF K% ELSE PRINT"No room for loader.":
PTR#H%=Bot%:PROCByte(0): CLOSE#H%:END

270 INPUTLINE’"Enter product description : "Dat$

280 IF Dat$ <> "" THEN PROCAddString(&F5, Dat$)

300 PRINT:REPEAT

310 INPUT"Enter name of file to add : "File$

320 IF File$ <> "" THEN T%=FNType(File$) ELSE T%=0

330 IF T%=0 ELSE K%=FNAddFile(T%, File$)

340 IF K% ELSE PRINT"No more room."

350 UNTIL (File$ ="") OR (K%=FALSE)

360 IF K% ELSE PTR#H%=Bot%:PROCByte(0): CLOSE#H%:END

370 IF L% PROCChange

390 INPUTLINE"Enter serial number : "Dat$

400 IF Dat$ <> "" THEN PROCAddString(&F1, Dat$)

410 INPUTLINE"Enter modification status : "Dat$

420 IF Dat$ <> "" THEN PROCAddString(&F3, Dat$)

430 INPUTLINE"Enter place of manufacture : "Dat$

440 IF Dat$ <> "" THEN PROCAddString(&F4, Dat$)

450 INPUTLINE"Enter part number : "Dat$

460 IF Dat$ <> "" THEN PROCAddString(&F6, Dat$)

480 Date$=TIME$

490 Date$=MID$(Date$,5,2)+"-"+MID$(Date$,8,3)+"-"+MID$(Date$,14,2)

500 PROCAddString(&F2, Date$)

530 REM PROCHeader(&F0, Z%+W%*Rom%-Base%, 0):REM Link

550 PTR#H%=Bot%:PROCByte(0)

570 CLOSE#H%: END

590 DEF PROCByte(D%):BPUT#H%,D%:ENDPROC

610 DEF PROCHalf(D%):BPUT#H%,D%:BPUT#H%,D%DIV256:ENDPROC

630 DEF PROC3Byte(D%)

640 BPUT#H%,D%:BPUT#H%,D%DIV256:BPUT#H%,D%DIV65535:ENDPROC

660 DEF PROCWord(D%)

670 BPUT#H%,D%:BPUT#H%,D%DIV256:BPUT#H%,D%DIV65535

680 BPUT#H%,D%DIV16777216:ENDPROC

700 DEF PROCAddString(T%, S$)

Expansion Cards and Extension ROMs

710 S$=S$+CHRS$0

720 IF L% THEN PROCAddNormalString ELSE PROCAddPsuedoString

730 ENDPROC

750 DEF PROCAddNormalString

760 IF Top%-Bot% < 10+LEN(SS$) THEN STOP

770 PROCHeader(T%, Top%-LEN(S$)-Base%, LEN(S$))

780 Top%=Top%-LEN(S$):PTR#H%=Top%:FOR 1%=1 TO LEN(S$)

790 BPUT#H%,ASC(MID$(S$,1%,1)):NEXTI%:ENDPROC

810 DEF PROCAddPsuedoString

820 IF Max%+Low%-Bot% < 9 THEN STOP

830 PROCHeader(T%, Top%-Base%, LEN(S$))

840 PTR#H%=Top%:FOR 1%=1 TO LEN(S$)

850 BPUT#H%,ASC(MID$(S$,1%,1)):NEXTI%

860 Top%=Top%+LEN(SS$):ENDPROC

880 DEF PROCHeader(Type%, Address%, Size%)

890 PTR#H%=Bot%

900 PROCByte(Type%)

910 PROC3Byte(Size%)

920 PROCWord(Address%)

930 Bot%=Bot%+8:ENDPROC

950 DEF FNAddFile(T%, N$)

960 F%=OPENIN(N$)

970 IF F%=0 THEN PRINT"File *";N$;"” not found.":=FALSE

980 S%=EXT#F%

990 IF L% THEN =FNAddNormalFile ELSE =FNAddPsuedoFile

1010 DEF FNAddNormalFile

1020 E%=S%+9-(Top%-Bot%)

1030 IF E%>0 THEN PRINT"Oversize by ";E%;" bytes."’:
PROCChange:=FNAddPsuedoFile

1040 PROCHeader(T%, Top%-S%-Base%, S%)

1050 Top%=Top%-S%:PTR#H%=Top%:FOR 1%=1 TO S%

1060 BPUT#H%,BGET#F%:NEXTI%:CLOSE#F%:=TRUE

1080 DEF FNAddPsuedoFile

1090 IF Max%+Low%-Bot% < 9 THEN =FALSE

1100 PROCHeader(T%, Top%-Base%, S%)

1110 PTR#H%=Top%

1120 FOR 1%=1 TO S%:BPUT#H%,BGET#F%:NEXTI%

1130 Top%=Top%+S%:CLOSE#F%:=TRUE

1150 DEF PROCChange

1160 PRINT"Changing up. Wasting ";Top%-Bot%:;" bytes."

1170 PTR#H%=Bot%:PROCByte(0):REM Terminate bottom directory

1180 Bot%=Max%:Top%=Max%+Low%:Base%=Max%:L%=FALSE

1190 REM In the pseudo area files grow upward from Top%

1200 ENDPROC

1220 DEF FNType(N$)

1230 $Buffer%=N$:X%=Block%:Y %=X%/256:A%=5:X%!0=Buffer%

1240 B%=USR&FFDD:IF (B%AND255) <> 1 THEN PRINT"Not a file":=0

1250 V%=(Block%!3)AND&FFFFFF

1260 IFV%=&FFFFFA THEN =&81

1270 IF((Block%!2AND&FFFF)=&8000)AND((Block%!6AND&FFFF)=&8000) THEN=&82

1280 IFV%=&FFFFF9 THEN =&83

1290 =0

4-167

Example program

4-168

/8 Floating point emulator

Introduction

The Acorn RISC machine has a general coprocessor interface. The first coprocessor
available is one which performs floating point calculations to the IEEE standard. To
ensure that programs using floating point arithmetic remain compatible with all
Archimedes machines, a standard ARM floating point instruction set has been defined.
This can be implemented invisibly to the customer program by one of several systems
offering various speed performances at various costs. The current ‘bundled’ floating
point system is the software-only floating point emulator module. Floating point
instructions may be incorporated into any assembler text, provided they are called from
user mode. These instructions are recognised by the Assembler and converted into the
correct coprocessor instructions. However, these instructions are not supported by the
assembler in the BASIC interpreter.

Because this module doesn’t present any SWIs or other usual interface to programs
(apart from a SWI to return the version number), this chapter is structured differently
from most others. First, there is a discussion of the programmer’s model of the IEEE 754
floating point system. This is followed by the floating point instruction set. Finally the
SWl is detailed.

Generally, programs do not need to know whether a coprocessor is fitted; the only
effective difference is in the speed of execution. Note that there may be slight variations
in accuracy between hardware and software — refer to the instructions supplied with the
coprocessor for details of these variations.

4-169

Programmer’s model

Programmer’s model

The ARM IEEE floating point system has eight ‘high precision’ floating point registers,
FO to F7. The format in which numbers are stored in these registers is not specified.
Floating point formats only become visible when a number is transferred to memory,
using one of the formats described below.

There is also a floating point status register (FPSR) which, like the ARM’s combined
PC and PSR, holds all the necessary status and control information that an application is
intended to be able to access. It holds flags which indicate various error conditions, such
as overflow and division by zero. Each flag has a corresponding trap enable bit, which
can be used to enable or disable a ‘trap’ associated with the error condition. Bits in the
FPSR allow a client to distinguish between different implementations of the floating
point system.

There may also be a floating point control register (FPCR); this is used to hold status
and control information that an application is not intended to access. For example, there
are privileged instructions to turn the floating point system on and off, to permit efficient
context changes. Typically, hardware based systems have an FPCR, whereas software
based ones do not.

Available systems

4-170

Floating point systems may be built from software only, hardware only, or some
combination of software and hardware. The following terminology will be used to
differentiate between the various ARM floating point systems already in use or planned:

System name System components

Old FPE Versions of the floating point emulator up to (but not including)
4.00
FPPC Floating Point Protocol Convertor (interface chip between ARM

and WE32206), WE32206 (AT&T Math Acceleration Unit chip),
and support code

FPE 400 Versions of the floating point emulator from 4.00 onwards

FPA ARM Floating Point Accelerator chip, and support code

The results look the same to the programmer. However, if clients are aware of which
system is in use, they may be able to extract better performance.

The old FPE has two different variants. Versions up to (but not including) 3.40 do not
provide any hardware support, whereas versions 3.40 to 3.99 inclusive provide support
for the FPPC hardware — if it is fitted. All versions of the FPE 400 provide support for
the FPA hardware.

Precision

Floating point emulator

All basic floating point instructions operate as though the result were computed to
infinite precision and then rounded to the length, and in the way, specified by the
instruction. The rounding is selectable from:

e Round to nearest

¢ Round to +infinity (P)
¢ Round to —infinity (M)
e Round to zero (Z).

The default is ‘round to nearest’; in the event of a tie, this rounds to ‘nearest even’. If any
of the others are required they must be given in the instruction.

The working precision of the system is 80 bits, comprising a 64 bit mantissa, a 15 bit
exponent and a sign bit. Specific instructions that work only with single precision
operands may provide higher performance in some implementations, particularly the
fully software based ones.

Floating point number formats

Like the ARM instructions, the floating point data processing operations refer to
registers rather than memory locations. Values may be stored into ARM memory in one
of five formats (only four of which are visible at any one time, since P and EP are
mutually exclusive):

4-171

Floating point number formats

4-172

IEEE Single Precision (S)

31 30 2322 0

Sign Exponent msb Fraction Isb

Figure 78.1 Single precision format
If the exponent is 0 and the fraction is 0, the number represented is £0.

If the exponent is 0 and the fraction is non-zero, the number represented is
10.fraction x 27126,

If the exponent is in the range 1 to 254, the number represented is

+1 fraction x 2€ponent =127,

If the exponent is 255 and the fraction is 0, the number represented is oo.

If the exponent is 255 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

IEEE Double Precision (D)

31 30 2019 0
First word | Sign Exponent msb Fraction Isb
Second word | msb Fraction Isb

Figure 78.2 Double precision format
If the exponent is 0 and the fraction is 0, the number represented is £0.

If the exponent is 0 and the fraction is non-zero, the number represented is
10.fraction x 271022

If the exponent is in the range 1 to 2046, the number represented is
*1 fraction x 2€POnent - 1023,

If the exponent is 2047 and the fraction is 0, the number represented is tco.

If the exponent is 2047 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Floating point emulator

Double Extended Precision (E)

31 30 1514 0

First word | Sign zeros Exponent
Second word | J msb Fraction Isb
Third word | msb Fraction Isb

Figure 78.3 Double extended precision format
o Ifthe exponent is 0, J is 0, and the fraction is 0, the number represented is 0.

o Ifthe exponent is 0, J is 0, and the fraction is non-zero, the number represented is
*0.fraction x 2716382

o Ifthe exponent is in the range 0 to 32766, J is 1, and the fraction is non-zero, the
number represented is +1 fraction x 2¢Ponent— 16383,

o Ifthe exponent is 32767, J is 0, and the fraction is 0, the number represented is +oo.

o Ifthe exponent is 32767 and the fraction is non-zero, a NaN (not-a-number) is
represented. If the most significant bit of the fraction is set, it is a non-trapping
NaN; otherwise it is a trapping NaN.

Other values are illegal and shall not be used (ie the exponent is in the range 1 to 32766
and J is 0; or the exponent is 32767, J is 1, and the fraction is 0).

The FPPC system stores the sign bit in bit 15 of the first word, rather than in bit 31.

Storing a floating point register in ‘E’ format is guaranteed to maintain precision when
loaded back by the same floating point system in this format. Note that in the past the
layout of E format has varied between floating point systems, so software should not
have been written to depend on it being readable by other floating point systems. For
example, no software should have been written which saves E format data to disc, to
have then been potentially loaded into another system. In particular, E format in the
FPPC system varies from all other systems in its positioning of the sign bit. However,
for the FPA and the FPE 400, the E format is now defined to be a particular form of
IEEE Double Extended Precision and will not vary in future.

4-173

Floating point number formats

Packed Decimal (P)
31 0

First word | Sign e3 e2 el el d18 d17 d16

Second word| d15 d14 d13 d12 d11 d10 do ds

Third word| d7 dé ds d4 d3 d2 d1 do

Figure 78.4 Packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sign
(next bit); the other two bits are zero.

d18 is the most significant digit of the significand d, and e3 of the exponent e. The
significand has an assumed decimal point between d18 and d17, and is normalised so
that for a normal number 1 < d18 < 9. The guaranteed ranges for d and e are 17 and 3
digits respectively; dO, d1 and e3 may always be zero in a particular system. (By
comparison, an S format number has 9 digits of significand and a maximum exponent of
53; a D format number has 17 digits in the significand and a maximum exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of oo or a NaN (see below).

e Ifthe exponent’s sign is 0, the exponent is 0, and the significand is 0, the number
represented is £0.

Zero will always be output as +0, but either +0 or —0 may be input.

e Ifthe exponent is in the range 0 to 9999 and the significand is in the range 1 to
9.999999999999999999, the number represented is +d x 10*¢.

e Ifthe exponent is &FFFF (ie all the bits in €3 - €0 are set) and the significand is 0,
the number represented is oo.

o Ifthe exponent is &FFFF and dO - d17 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d18 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

4-174

Floating point emulator

Expanded Packed Decimal (EP)
31 0

First word| Sign €6 e5 e4 e3 e2 el el

Second word| d23 d22 d21 d20 d19 d18 d17 d16

Third word| d15 d14 d13 d12 d11 d10 do ds

Fourth word| d7 dé d5 d4 d3 d2 d1 do

Figure 78.5 Expanded packed decimal format

The sign nibble contains both the significand’s sign (top bit) and the exponent’s sign
(next bit); the other two bits are zero.

d23 is the most significant digit of the significand d, and e6 of the exponent e. The
significand has an assumed decimal point between d23 and d22, and is normalised so
that for a normal number 1 < d23 < 9. The guaranteed ranges for d and e are 21 and 4
digits respectively; d0, d1, d2, e4, e5 and e6 may always be zero in a particular system.
(By comparison, an S format number has 9 digits of significand and a maximum
exponent of 53; a D format number has 17 digits in the significand and a maximum
exponent of 340.)

The result is undefined if any of the packed digits is hexadecimal A - F, save for a
representation of +oo or a NaN (see below).

o Ifthe exponent’s sign is 0, the exponent is 0, and the significand is 0, the number
represented is 0.
Zero will always be output as +0, but either +0 or —0 may be input.

o Ifthe exponent is in the range 0 to 9999999 and the significand is in the range 1 to
9.99999999999999999999999, the number represented is +d x 107,

o Ifthe exponent is &FFFFFFF (ie all the bits in 6 - €0 are set) and the significand is
0, the number represented is tco.

e Ifthe exponent is &FFFFFFF and d0 - d22 are non-zero, a NaN (not-a-number) is
represented. If the most significant bit of d23 is set, it is a non-trapping NaN;
otherwise it is a trapping NaN.

All other combinations are undefined.

This format is not available in the old FPE or the FPPC. You should only use it if you
can guarantee that the floating point system you are using supports it.

4-175

Floating point status register

Floating point status register

4-176

There is a floating point status register (FPSR) which, like ARM’s combined PC and
PSR, has all the necessary status for the floating point system. The FPSR contains the
IEEE flags but not the result flags — these are only available after floating point compare
operations.

The FPSR consists of a system ID byte, an exception trap enable byte, a system control
byte and a cumulative exception flags byte.

31 2423 1615 87 0

FPSR System ID Trap Enable System Control | Exception Flags

Figure 78.6 Floating point status register byte usage

System ID byte

The System ID byte allows a user or operating system to distinguish which floating
point system is in use. The top bit (bit 31 of the FPSR) is set for hardware (ie fast)
systems, and clear for software (ie slow) systems. Note that the System ID is read-only.

The following System IDs are currently defined:

System System ID
Old FPE &00
FPPC &80
FPE 400 &01
FPA &81

Exception Trap Enable Byte

Each bit of the exception trap enable byte corresponds to one type of floating point
exception, which are described in the section entitled Cumulative Exception Flags Byte
on page 4-178.

23 22 21 20 19 18 17 16

FPSR Reserved INX UFL OFL Dvz IVO

Figure 78.7 Exception trap enable byte

If a bit in the cumulative exception flags byte is set as a result of executing a floating
point instruction, and the corresponding bit is also set in the exception trap enable byte,
then that exception trap will be taken.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

Floating point emulator

System Control Byte

These control bits determine which features of the floating point system are in use.

15 14 13 12 1" 10 9 8

FPSR Reserved AC EP SO NE ND

Figure 78.8 System control byte

By placing these control bits in the FPSR, their state will be preserved across context
switches, allowing different processes to use different features if necessary. The
following five control bits are defined for the FPA system and the FPE 400:

ND No Denormalised numbers

NE NaN Exception

SO Select synchronous Operation of FPA

EP Use Expanded Packed decimal format

AC Use Alternative definition for C flag on compare operations

The old FPE and the FPPC system behave as if all these bits are clear.

Currently, the reserved bits shall be written as zeros and will return 0 when read. Note
that all bits (including bits 8 - 12) are reserved on FPPC and early FPE systems.

ND — No denormalised numbers bit

If this bit is set, then the software will force all denormalised numbers to zero to prevent
lengthy execution times when dealing with denormalised numbers. (Also known as
abrupt underflow or flush to zero.) This mode is not IEEE compatible but may be
required by some programs for performance reasons.

If this bit is clear, then denormalised numbers will be handled in the normal
IEEE-conformant way.
NE - NaN exception bit

If this bit is set, then an attempt to store a signalling NaN that involves a change of
format will cause an exception (for full IEEE compatibility).

If this bit is clear, then an attempt to store a signalling NaN that involves a change of
format will not cause an exception (for compatibility with programs designed to work
with the old FPE).

4-177

Floating point status register

4-178

SO — Select synchronous operation of FPA

If this bit is set, then all floating point instructions will execute synchronously and ARM
will be made to busy-wait until the instruction has completed. This will allow the precise
address of an instruction causing an exception to be reported, but at the expense of
increased execution time.

If this bit is clear, then that class of floating point instructions that can execute
asynchronously to ARM will do so. Exceptions that occur as a result of these
instructions may be raised some time after the instruction has started, by which time the
ARM may have executed a number of instructions following the one that has failed. In
such cases the address of the instruction that caused the exception will be imprecise.

The state of this bit is ignored by software-only implementations, which always operate
synchronously.

EP - Use expanded packed decimal format

If this bit is set, then the expanded (four word) format will be used for Packed Decimal
numbers. Use of this expanded format allows conversion from extended precision to
packed decimal and back again to be carried out without loss of accuracy.

If this bit is clear, then the standard (three word) format is used for Packed Decimal
numbers.

AC — Use alternative definition for C flag on compare operations

If this bit is set, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal or Unordered’. This interpretation allows more of the IEEE predicates to be tested
by means of single ARM conditional instructions than is possible using the original
interpretation of the C flag (as shown below).

If this bit is clear, the ARM C flag, after a compare, is interpreted as ‘Greater Than or
Equal’.

Cumulative Exception Flags Byte

7 6 5 4 3 2 1 0

FPSR Reserved INX UFL OFL Dvz IVO

Figure 78.9 Cumulative exception flags byte

Whenever an exception condition arises, the appropriate cumulative exception flag in
bits 0 to 4 will be set to 1. If the relevant trap enable bit is set, then an exception is also
delivered to the user’s program in a manner specific to the operating system. (Note that

Floating point emulator

in the case of underflow, the state of the trap enable bit determines under which
conditions the underflow flag will be set.) These flags can only be cleared by a WES
instruction.

Currently, the reserved bits shall be written as zeros and will return 0 when read.

IVO - invalid operation

The IVO flag is set when an operand is invalid for the operation to be performed. Invalid
operations are:

e Any operation on a trapping NaN (not-a-number)
e Magnitude subtraction of infinities, eg +oo + —0
e Multiplication of 0 by +oo
e Division of 0/0 or co/c0
e XxREMywherex=wory=0
(REM is the ‘remainder after floating point division’ operator.)
« Square root of any number < 0 (but \(-0) = —0)

o Conversion to integer or decimal when overflow, o or a NaN operand make it
impossible
If overflow makes a conversion to integer impossible, then the largest positive or
negative integer is produced (depending on the sign of the operand) and IVO is
signalled

e Comparison with exceptions of Unordered operands
¢ ACS, ASN when argument’s absolute value is > 1

e SIN, COS, TAN when argument is £

e LOG, LGN when argument is < 0

o POW when first operand is < 0 and second operand is not an integer, or first
operand is 0 and second operand is < 0

e RPW when first operand is not an integer and second operand is < 0, or first
operand is < 0 and second operand is 0.

DVZ - division by zero

The DVZ flag is set if the divisor is zero and the dividend a finite, non-zero number. A
correctly signed infinity is returned if the trap is disabled.

The flag is also set for LOG(0) and for LGN(0). Negative infinity is returned if the trap
is disabled.

4-179

Floating Point Control Register

OFL - overflow

The OFL flag is set whenever the destination format’s largest number is exceeded in
magnitude by what the rounded result would have been were the exponent range
unbounded. As overflow is detected after rounding a result, whether overflow occurs or
not after some operations depends on the rounding mode.

If the trap is disabled either a correctly signed infinity is returned, or the format’s largest
finite number. This depends on the rounding mode and floating point system used.

UFL - underflow

Two correlated events contribute to underflow:

e Tininess — the creation of a tiny non-zero result smaller in magnitude than the
format’s smallest normalised number.

e Loss of accuracy — a loss of accuracy due to denormalisation that may be greater
than would be caused by rounding alone.

The UFL flag is set in different ways depending on the value of the UFL trap enable bit.
If the trap is enabled, then the UFL flag is set when tininess is detected regardless of loss
of accuracy. If the trap is disabled, then the UFL flag is set when both tininess and loss
of accuracy are detected (in which case the INX flag is also set); otherwise a correctly
signed zero is returned.

As underflow is detected after rounding a result, whether underflow occurs or not after
some operations depends on the rounding mode.

INX —inexact

The INX flag is set if the rounded result of an operation is not exact (different from the
value computable with infinite precision), or overflow has occurred while the OFL trap
was disabled, or underflow has occurred while the UFL trap was disabled. OFL or UFL
traps take precedence over INX.

The INX flag is also set when computing SIN or COS, with the exceptions of SIN(0) and
COS(1).

The old FPE and the FPPC system may differ in their handling of the INX flag. Because
of this inconsistency we recommend that you do not enable the INX trap.

Floating Point Control Register

4-180

The Floating Point Control register (FPCR) may only be present in some
implementations: it is there to control the hardware in an implementation-specific
manner, for example to disable the floating point system. The user mode of the ARM is
not permitted to use this register (since the right is reserved to alter it between
implementations) and the WFC and RFC instructions will trap if tried in user mode.

Floating point emulator

You are unlikely to need to access the FPCR; this information is principally given for
completeness.

The FPPC system
The FPCR bit allocation in the FPPC system is as shown below:

FPCR

Bit
31-8

S = N WA

31 8 7 6 5 4 3 2 1 0
— PR |SBd|SBn|SBm| — | AS | EX | DA
Figure 78.10 FPCR bit allocation in the FPPC system
Meaning
Reserved — always read as zero
PR Last RMF instruction produced a partial remainder
SBd Use Supervisor Register Bank ‘d’
SBn Use Supervisor Register Bank ‘n’
SBm Use Supervisor Register Bank ‘m’
Reserved — always read as zero
AS Last WE32206 exception was asynchronous
EX Floating point exception has occurred
DA Disable

Reserved bits are ignored during write operations (but should be zero for future
compatibility.) The reserved bits will return zero when read.

The FPA system

In the FPA, the FPCR will also be used to return status information required by the

support code when an instruction is bounced. You should not alter the register unless
you really know what you’re doing. Note that the register will be read sensitive; even
reading the register may change its value, with disastrous consequences.

The FPCR bit allocation in the FPA system is provisionally as follows:

FPCR

(cont'd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RU[— IE [MO|EO| — OoP — S1

%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
OoP DS SB|AB|RE|EN|(PR| RM |OP S2

Figure 78.11 FPCR bit allocation in the FPA system

4-181

Floating Point Control Register

4-182

Bit
31

30

29

28

27

26
25,24
23-20
19
18-16
15
14-12
11

10

b)-lkvO\\]OO
[V}

-0

RU

IE
MO
EO

oP
PR
S1

OoP
DS
SB
AB
RE

EN

PR

RM
oP

S2

Meaning

Rounded Up Bit

Reserved

Reserved

Inexact bit

Mantissa overflow

Exponent overflow

Reserved

AU operation code

AU precision

AU source register 1

AU operation code

AU destination register

Synchronous bounce: decode (R14) to get opcode

Asynchronous bounce: opcode supplied in rest of word

Rounding Exception: Asynchronous bounce occurred during
rounding stage and destination register was written

Enable FPA (default is off)

AU precision

AU rounding mode

AU operation code

AU source register 2 (bit 3 set denotes a constant)

Note that the SB and AB bits are cleared on a read of the FPCR. Only the EN bit is
writable. All other bits shall be set to zero on a write.

Floating point emulator

The instruction set

Floating point coprocessor data transfer

op{condition}prec Fdaddr
op is LDF for load, STF for store
condition is one of the usual ARM conditions (see Appendix A: ARM assembler

on page 4-361)

prec is one of the usual floating point precisions (eg S for single, D for
double, P for packed decimal: see the section entitled Floating point
number formats on page 4-171)

addr is [Rn]{,#offset} or [Rn,#offset]{!}
({1} if present indicates that writeback is to take place.)

Fd is a floating point register symbol (defined via the FN directive).

Load (LDF) or store (STF) the high precision value from or to memory, using one of the
five memory formats. On store, the value is rounded using the ‘round to nearest’
rounding method to the destination precision, or is precise if the destination has
sufficient precision. Thus other rounding methods may be used by having previously
applied some suitable floating point data operation; this does not compromise the
requirement of ‘rounding once only’, since the store operation introduces no additional
rounding error.

The offset is in words from the address given by the ARM base register, and is in the
range —1020 to +1020. In pre-indexed mode you must explicitly specify writeback to
add the offset to the base register; but in post-indexed mode the assembler forces
writeback for you, as without write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Examples:

LDFS FO,[RO] ; load FO from address held in RO
; (single precision)

STFP F1,[R2] ; store number held in F1 at R2

; as a packed decimal number

4-183

Floating point coprocessor multiple data transfer

Floating point literals

LDFS and LDFD can be given literal values instead of a register relative address, and
the Assembler will automatically place the required value in the next available literal
pool. In the case of LDFS a single precision value is placed, in the case of LDFD a
double precision value is placed. Because the allowed offset range within a LDFS or
LDFD instruction is less than that for a LDR instruction (—1020 to +1020 instead of —
4095 to +4095), it may be necessary to code LTORG directives more frequently if
floating point literals are being used than would otherwise be necessary.

Syntax: LDFx Fn, = floating point number

Floating point coprocessor multiple data transfer

4-184

The LFM and SFM multiple data transfer instructions are supported by the assemblers,
but are not provided by the FPPC system, or by some versions of the old FPE:

o versions 2.80 - 2.84 do not support them
e versions 2.85 - 3.39 do support them

e version 3.40 — which is effectively a version of 2.80 that also provides FPPC
hardware support — does not support these instructions.

Attempting to execute these instructions on systems that do not provide them will cause
undefined instruction traps, so you should only use these instructions in software
intended for machines you are confident are using an appropriate version of the old FPE,
or the FPE 400, or the FPA system.

The LFM and SFM instructions allow between 1 and 4 floating point registers to be
transferred from or to memory in a single operation; such a transfer otherwise requires
several LDF or STF operations. The multiple transfers are therefore useful for efficient
stacking on procedure entry/exit and context switching. These new instructions are the
preferred way to preserve exactly register contents within a program.

The values transferred to memory by SFM occupy three words for each register, but the
data format used is not defined, and may vary between floating point systems. The only
legal operation that can be performed on this data is to load it back into floating point
registers using the LFM instruction. The data stored in memory by an SFM instruction
should not be used or modified by any user process.

The registers transferred by a LFM or SFM instruction are specified by a base floating
point register and the number of registers to be transferred. This means that a register set
transferred has to have adjacent register numbers, unlike the unconstrained set of ARM
registers that can be loaded or saved using LDM and STM. Floating point registers are
transferred in ascending order, register numbers wrapping round from 7 to 0: eg
transferring three registers with F6 as the base register results in registers F6, F7 then FO
being transferred.

Floating point emulator

The assembler supports two alternative forms of syntax, intended for general use or just
stack manipulation:

op{condition} Fd,count,addr
op{condition}stacktype Fd,count,[Rn]{!}

op is LFM for load, SFM for store.
condition is one of the usual ARM conditions.
Fd is the base floating point register, specified as a floating point register

symbol (defined via the FN directive).

count is an integer from 1 to 4 specifying the number of registers to be
transferred.
addr is [Rn]{,#offset} or [Rn,#offset]{!}

({1} if present indicates that writeback is to take place).

stacktype is FD or EA, standing for Full Descending or Empty Ascending, the
meanings as for LDM and STM.

The offset (only relevant for the first, general, syntax above) is in words from the
address given by the ARM base register, and is in the range —1020 to +1020. In
pre-indexed mode you must explicitly specify writeback to add the offset to the base
register; but in post-indexed mode the assembler forces writeback for you, as without
write back post-indexing is meaningless.

You should not use R15 as the base register if writeback will take place.

Examples:

SFMNE F6,4,[R0O] ;if NE is true, transfer F6, F7,
;F0 and F1 to the address
;contained in RO

LFMFD F4,2,[R13]! ;load F4 and F5 from FD stack -

LFM F4,2,[R13],#24 ;equivalent to same instruction

;in general syntax

4-185

Floating point coprocessor register transfer

Floating point coprocessor register transfer

FLT{condition}prec{round} Fn,Rd
FLT{condition}prec{round} Fn,#value
FIX{condition}{round} Rd Fn
WEFS{condition} Rd

RFS{condition} Rd

WEFC{condition} Rd

RFC{condition} Rd

{round} is the optional rounding mode: P, M or Z; see below.
Rd is an ARM register symbol.

Fn is a floating point register symbol.

The value may be of the following: 0, 1, 2, 3, 4, 5, 10, 0.5. Note that these values must
be written precisely as shown above, for instance 0.5’ is correct but .5 is not.

FLT Integer to Floating Point Fn:=Rd

FIX Floating point to integer Rd :=Fm

WEFS Write Floating Point Status FPSR :=Rd

RFS Read Floating Point Status Rd :=FPSR

WEC Write Floating Point Control FPC =R Supervisor Only
RFC Read Floating Point Control Rd :=FPC Supervisor Only

The rounding modes are:

Mode Letter

Nearest (no letter required)
Plus infinity P

Minus infinity M

Zero Z

Floating point coprocessor data operations

4-186

The formats of these instructions are:
binop{condition}prec{round} Fd, Fn, Fm
binop{condition}prec{round} Fd, Fn, #value
unop{condition}prec{round} Fd, Fm
unop{condition}prec{round)} Fd, #value

binop is one of the binary operations listed below
unop is one of the unary operations listed below
Fd is the FPU destination register

Fn is the FPU source register (binops only)

Fm

#value

is the FPU source register

Floating point emulator

is a constant, as an alternative to Fm. It must be 0, 1, 2, 3,4, 5, 10 or

0.5, as above.

The binops are:

ADF
MUF
SUF
RSF
DVF
RDF
POW
RPW
RMF

FML
FDV
FRD
POL

Add

Multiply
Subtract
Reverse Subtract
Divide

Reverse Divide
Power

Reverse Power
Remainder

Fast Multiply

Fast Divide

Fast Reverse Divide
Polar angle

The unops are:

MVF
MNF
ABS
RND
SQT
LOG
LGN
EXP
SIN
Cos
TAN
ASN
ACS
ATN
URD
NRM

Move

Move Negated
Absolute value
Round to integral value
Square root
Logarithm to base 10
Logarithm to base e
Exponent

Sine

Cosine

Tangent

Arc Sine

Arc Cosine

Arc Tangent
Unnormalised Round
Normalise

Fd :=Fn+ Fm
Fd :=Fn x Fm
Fd :=Fn—-Fm
Fd :=Fm—Fn
Fd := Fn/Fm
Fd := Fm/Fn

Fd := Fn to the power of Fm

Fd := Fm to the power of Fn

Fd :=remainder of Fn/ Fm

(Fd := Fn — integer value of (Fn/Fm) x Fm)
Fd :=Fn x Fm

Fd:=Fn/Fm

Fd:=Fm/Fn

Fd = polar angle of Fn, Fm

Fd :=Fm
Fd :=-Fm
Fd .= ABS (Fm)

Fd := integer value of Fm

Fd := square root of Fm

Fd :=log Fm

Fd :=In Fm

Fd := e to the power of Fm
Fd := sine of Fm

Fd := cosine of Fm

Fd := tangent of Fm

Fd := arcsine of Fm

Fd := arccosine of Fm

Fd := arctangent of Fm

Fd := integer value of Fm (may be abnormal)
Fd := normalised form of Fm

Note that wherever Fm is mentioned, one of the floating point constants 0, 1, 2, 3, 4, 5,
10, or 0.5 can be used instead.

FML, FRD and FDV are only defined to work with single precision operands. These
‘fast’ instructions are likely to be faster than the equivalent MUF, DVF and RDF
instructions, but this is not necessarily so for any particular implementation.

4-187

Floating point coprocessor status transfer

Rounding is done only at the last stage of a SIN, COS etc — the calculations to compute
the value are done with ‘round to nearest’ using the full working precision.

The URD and NRM operations are only supported by the FPA and the FPE 400.

Floating point coprocessor status transfer

4-188

op{condition}prec{round} Fm, Fn

op is one of the following:

CMF Compare floating compare Fn with Fm
CNF Compare negated floating compare Fn with —-Fm
CMFE Compare floating with exception compare Fn with Fm
CNFE Compare negated floating with exception compare Fn with —-Fm

{condition} an ARM condition.

prec a precision letter

{round} an optional rounding mode: P, M or Z

Fm A floating point register symbol.

Fn A floating point register symbol.

Compares are provided with and without the exception that could arise if the numbers
are unordered (ie one or both of them is not-a-number). To comply with IEEE 754, the
CMF instruction should be used to test for equality (ie when a BEQ or BNE is used
afterwards) or to test for unorderedness (in the V flag). The CMFE instruction should be
used for all other tests (BGT, BGE, BLT, BLE afterwards).

When the AC bit in the FPSR is clear, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than ie Fn less than Fm (or —Fm)

Z Equal

C Greater than or equal ie Fn greater than or equal to Fm (or —Fm)
v Unordered

Note that when two numbers are not equal, N and C are not necessarily opposites. If the
result is unordered they will both be clear.

When the AC bit in the FPSR is set, the ARM flags N, Z, C, V refer to the following
after compares:

N Less than

Z Equal

C Greater than or equal or unordered
v Unordered

Floating point emulator

In this case, N and C are necessarily opposites.

Finding out more...

Further details of the floating point instructions (such as the format of the bitfields
within the instruction) can be found in the Acorn RISC Machine family Data Manual.
VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:

ISBN 0-13-781618-9 and in the Acorn Assembler Release 2 manual.

4-189

SWi Calls

SWI Calls

FPEmulator_ Version
(swi &40480)

Returns the version number of the floating point emulator

On entry

On exit

RO = BCD version number

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined
Use
This call returns the version number of the floating point emulator as a binary coded
decimal (BCD) number in RO.
This SWI will continue to be supported by the hardware expansion.
Related SWis

None

Related vectors

None

4-190

79

ARMS3 Support

Introduction and Overview

The ARM3 Support module provides commands to control the use of the ARM3
processor’s cache, where one is fitted to a machine. The module will immediately kill
itself if you try to run it on a machine that only has an ARM2 processor fitted.

Summary of facilities

Notes

Two * Commands are provided: one to configure whether or not the cache is enabled at
a power-on or reset, and the other to independently turn the cache on or off.

There is also a SWI to turn the cache on or off. A further SWI forces the cache to be
flushed. Finally, there is also a set of SWIs that control how various areas of memory
interact with the cache.

The default setup is such that all RISC OS programs should run unchanged with the
ARM3’s cache enabled. Consequently, you are unlikely to need to use the SWIs
(beyond, possibly, turning the cache on or off).

A few poorly-written programs may not work correctly with ARM3 processors, because
they make assumptions about processor timing or clock rates.

This module is not available in RISC OS 2.00 (ie was introduced in RISC OS 2.01).

Finding out more

For more details of the ARM3 processor, see the Acorn RISC Machine family Data
Manual. VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ, USA:
ISBN 0-13-781618-9.

4-191

SWi Calls

SWI Calls

4-192

Cache_Control
(swi &280)

Turns the cache on or off

On entry

RO = XOR mask
R1 = AND mask

On exit

RO = old state (0 = cacheing was disabled, 1 = cacheing was enabled)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call turns the cache on or off. Bit 0 of the ARM3’s control register 2 is altered by
being masked with R1 and then exclusive ORd with RO: ie new value = ((old value AND
R1) XOR RO). Bit 1 of the control register is also set, so the ARM 3 does not separately
cache accesses to the same address for user and non-user modes. (To do so would
degrade cache performance, and potentially cause cache inconsistency). Other bits of the
control register are set to zero.

Related SWis

None

ARM3 Support

Related vectors

None

4-193

Cache_Cacheable (SWI &281)

Cache_Cacheable
(swi &281)

Controls which areas of memory may be cached

On entry

RO = XOR mask
R1 = AND mask

On exit
RO = old value (bit n set = 2MBytes starting at nx2MBytes are cacheable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call controls which areas of memory may be cached (ie are cacheable). The
ARM3’s control register 3 is altered by being masked with R1 and then exclusive ORd
with RO: ie new value = ((old value AND R1) XOR RO0). If bit n of the control register is
set, the 2MBytes starting at nx2MBytes are cacheable.

The default value stored is &FCO07CFF, so ROM and logical non-screen RAM are
cacheable, but I/O space, physical memory, the RAM disc and logical screen memory
are not.

Related SWis
Cache Updateable (page 4-196), Cache Disruptive (page 4-198)

4-194

ARM3 Support

Related vectors

None

4-195

Cache_Updateable (SWI &282)

Cache_Updateable
(swi &282)

Controls which areas of memory will be automatically updated in the cache

On entry

RO = XOR mask
R1 = AND mask

On exit
RO = old value (bit n set = 2MBytes starting at nx2MBytes are updateable)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call controls which areas of memory will be automatically updated in the cache
when the processor writes to that area (ie are updateable). The ARM3’s control
register 4 is altered by being masked with R1 and then exclusive ORd with RO: ie new
value = ((old value AND R1) XOR RO). If bit n of the control register is set, the
2MBytes starting at nx2MBytes are updateable.

The default value stored is &00007FFF, so logical non-screen RAM is updateable, but
ROM/CAM/DAG, 1I/0 space, physical memory and logical screen memory are not.

Related SWis
Cache_Cacheable (page 4-194), Cache Disruptive (page 4-198)

4-196

ARM3 Support

Related vectors

None

4-197

Cache_Disruptive (SWI &283)

4-198

Cache_Disruptive
(swi &283)

Controls which areas of memory cause automatic flushing of the cache on a write

On entry

RO = XOR mask
R1 = AND mask

On exit
RO = old value (bit n set = 2MBytes starting at nx2MBytes are disruptive)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This call controls which areas of memory cause automatic flushing of the cache when
the processor writes to that area (ie are disruptive). The ARM3’s control register 5 is
altered by being masked with R1 and then exclusive ORd with RO: ie new value = ((old
value AND R1) XOR RO0). If bit n of the control register is set, the 2MBytes starting at
nx2MBytes are disruptive.

The default value stored is &F0000000, so the CAM map is disruptive, but ROM/DAG,
I/O space, physical memory and logical memory are not. This causes automatic flushing
whenever MEMC’s page mapping is altered, which allows programs written for the
ARM2 (including RISC OS itself) to run unaltered, but at the expense of unnecessary
flushing on page swaps.

ARM3 Support

Related SWis
Cache_Cacheable (page 4-194), Cache Updateable (page 4-196)

Related vectors

None

4-199

Cache_Flush (SWI &284)

Cache_Flush
(swi &284)

Flushes the cache

On entry

On exit

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined
Use

This call flushes the cache by writing to the ARM3’s control register 1.
Related SWis

None

Related vectors

None

4-200

ARM3 Support

* Commands
*Cache

Turns the cache on or off, or gives the cache’s current state

Syntax
*Cache [On|Off]

Parameters
On or Off

Use

*Cache turns the cache on or off. With no parameter, it gives the cache’s current state.

Example
*Cache Off

Related commands
*Configure Cache

Related SWis
Cache_Control (page 4-192)

Related vectors

None

4-201

*Configure Cache

*Configure Cache

Sets the configured cache state to be on or off

Syntax
*Configure Cache On|Off

Parameters
On or Off

Use

*Configure Cache sets the configured cache state to be on or off.

Example
*Configure Cache On

Related commands
*Cache

Related SWis
Cache Control (page 4-192)

Related vectors

None

4-202

ARM3 Support

Application Note

Games writers may wish to disable the ARM3 cache so that ARM3 based machines run
at a similar speed to older ARM2 based machines. You must ensure that your code only
tries to call ARM3Support SWIs and * Commands — such as *Cache Off — if the module
is present. A simple way to do so is to call the error-returning form of an ARM3Support
SWI, and see if an error is returned. For example:

SYS "XCache Control",0,-1 TO RO;flags

IF (flags AND 1) THEN arm3=FALSE ELSE arm3=TRUE
IF arm3 THEN *Cache Off

4-203

Application Note

4-204

80 The Portable module

Introduction

This module provides support for portable machines. The SWIs listed are not normally
intended to be issued from user programs, they will normally be issued by other modules
in the system.

4-205

Technical details

Technical details

Colour to grey-scale mapping

The Portable module has to convert the users RGB palette settings into a grey-scale
value in the range 0 to 14 (since the LCD panel only supports 15 unique grey levels). It
does this using the following algorithm:

Luminance = (4 x Green) + (2 x Red) + Blue

Red, Green and Blue are in the range 0 to 255, so the luminance is in the range 0 to 1785
(255 x 7). It is then mapped down onto the range 0 to 14 using the following table:

Luminance Grey level Palette values for R, G and B
0-118 0 &00
119 - 237 1 &12
238 - 356 2 &24
357-475 3 &37
476 - 594 4 &49
595-713 5 &5B
714 - 832 6 &6D
833 -952 7 &TF
953 -1071 8 &92
1072 - 1190 9 &A4
1191 - 1309 10 &B6
1310 - 1428 11 &C8
1429 - 1547 12 &DB
1548 - 1666 13 &ED
1667 - 1785 14 &FF

The mapping table above is provided for information only, and may be subject to change
in later versions of the Portable module.

In 256 colour modes the colour mapping is partly determined by the hardware, since the
top 4 bits of the pixel value go directly to particular bits of the three guns, and the LCD
ASIC only takes input from VIDC’s red output. Thus the grey level will not in general
map correctly from the luminance of the RGB value which would normally be output.

4-206

The Portable module

Service calls

Service Portable
(Service Call &8A)

Power down or up

On entry

R1 =reason code (&8A)

R2 = power up or down:
0 = power down
1 = power up

R3 = bit mask of which ports are being powered down (if R2 = 0)
(bit set = port is being powered down)

bit mask of which ports have been powered up (if R2 = 1)

(bit set = port has been powered up)

On exit

R1=0ifR3 =0, else preserved to pass on

R2 preserved

R3 = bit mask of which ports may be powered down or up
(bit set = no objection to change of state)

Use
This call is issued before power is removed or after power is reapplied to the following:

Econet (bit 0)
serial buffer/oscillator (bit 3)
FDC oscillator (bit 14)

If a module wishes to prevent hardware being powered down, it should clear the
appropriate bit or bits in R3. In addition, if the resulting value in R3 is now zero, the
module should claim the service by setting R1 to zero. (This is to prevent the call being
unnecessarily passed round the rest of the modules). Otherwise the service should be
passed on by preserving R1.

This call should never be claimed.

4-207

SWi Calls

SWI Calls

Portable Speed
(swi &42FCO0)

Controls the processor speed

On entry

RO = EOR mask
R1 = AND mask

On exit

RO = old speed
R1 =new speed (0 = fast, | = slow)

Interrupts

Interrupt status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI controls the processor speed, which is reduced when the system is idle in order
to save power.

The new speed is calculated as follows:
new speed = (old speed AND R1) EOR RO
Speed settings currently supported are:

0 fast
1 slow

4-208

The Portable module

Related SWis
Portable_Control (page 4-210)

Related vectors

None

4-209

Portable_Control (SWI &42FC1)

Portable Control
(swi &42FC1)

Controls various power control and miscellaneous bits

On entry

RO = EOR mask
R1 = AND mask

On exit

RO = old control
R1 = new control

Interrupts

Interrupt status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI controls various power control and miscellaneous bits in the portable
machine.

The new control is calculated as follows:

new control = (old control AND R1) EOR RO

4-210

The Portable module

The bits in control are as follows:

Bit Meaning

0 Set = power to Econet enabled

1 Set = power to LCD display enabled

2 Set = power to external video display enabled

3 Set = power to serial buffer and oscillator enabled
4 Set = dual panel mode enabled

5,6 Video clock control

0 = External clock input

1 = Crystal oscillator, divided by 2
2 = Crystal oscillator

3 = reserved, do not use

7 Set = invert video clock
8 Set = back-light enabled
9 Clear = 1 extra line on display
Set = 2 extra lines on display
10 Clear = 1 DRAM used for dual panel
Set = 2 DRAMs used for dual panel
11-13 Reserved
14 Set = power to FDC oscillator enabled
15 Reserved
16 Set = LCD palette set up for inverse video
17-31 Reserved

Reserved bits must not be modified, nor assumed to read any particular value.

Note that the 82C711 has one oscillator which is used by the serial subunit and by the
floppy disc controller (FDC). Power to the oscillator is removed only if bits 3 and 14 are
both clear.

On some computers the power to the oscillator cannot be removed because the same
oscillator drives other parts of the system (eg IOEB).

If this call results in bits 0, 3 or 14 changing (ie power being removed or applied to the
serial buffer/oscillator, Econet or FDC oscillator), then Service Portable is issued (see
page 4-207).

Related SWis
Portable Speed (page 4-208)

Related vectors

None

4-211

Portable_ReadBMUVariable (SWI &42FC2)

Portable ReadBMUVariable

Reads Battery Management Unit variables

On entry
RO = BMU variable number

On exit

RO preserved
R1 = value of variable

Interrupts

Interrupts enabled except if RO = 10
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use
This SWI reads Battery Management Unit variables.

4-212

(swi &42FC2)

The Portable module

The BMU variable numbers are:

Variable Read/Write Description

o

version number and memory map of BMU microcode

nominal battery capacity

measured battery capacity

used battery capacity

usable battery capacity

reserved
W charge estimate

instantaneous voltage

instantaneous current

instantaneous temperature

flags as follows:

Bit Meaning
1 Set = lid is open
Set = threshold 2 reached
Set = threshold 1 reached
Set = charging system fault
Set = charge state is known
Set = battery present
7 Set = charger connected

11 R charge rate (bits 4 to 7)

= 0 00 J LA WN—
RRARAAIARRARIAIAAIRA

AN B W N

Reading any variable except the flags (variable 10) will enable IRQs (the flags are read
from a soft copy).

Related SWis
Portable WriteBMU Variable (page 4-214)

Related vectors

None

4-213

Portable_WriteBMUVariable (SWI &42FC3)

4-214

Portable WriteBMUVariable
(swi &42FC3)

Writes Battery Management Unit variables

On entry

RO = BMU variable number
R1 = new value of variable

On exit
RO, Rlpreserved

Interrupts

Interrupts status is not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use
This SWI writes Battery Management Unit variables.
The variable numbers are as for Portable ReadBMU Variable on page 4-213. Variables
not marked with a “W’ should not be written.

Related SWis

Portable ReadBMU Variable (page 4-212)

Related vectors

None

The Portable module

Portable CommandBMU
(swi &42FC4)

Issues a command to the Battery Management Unit

On entry

RO = reason code

1 = Remove power

2 = Reserved

3 =Reserved

4 = Set autostart (R1 = delay, in minutes, — 1; eg 0 = 1 minute delay)
Other registers hold reason-code-dependent parameters

On exit

All registers preserved

Interrupts

Interrupts are not defined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI issues a command to the Battery Management Unit. The values of variables
after a command may not change immediately this command is issued.

Related SWis

None

Related vectors

None

4-215

4-216

81 Joystick module

Introduction and Overview

The Joystick module provides a SWI interface for reading the state of a joystick. When
the module initialises it tests for the existence of built-in joystick hardware and if it does
not find any then it will not initialise. Third parties can replace this module to provide
different hardware. It is recommended that any such modules have version numbers
greater than 2.00 so that Acorn can upgrade its own module without preventing its
replacement.

4-217

SWi Calls

SWI Calls

Joystick_Read
(SWI &43F40)

Returns the state of a joystick

On entry
RO = joystick number

On exit
RO = joystick state

Interrupts

Interrupt status is unaltered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

This SWI is used to obtain the state of the requested joystick. The state is returned in the
following format, which supports both digital and analogue devices:

Byte Value

0 Signed Y value in the range —127 to 127. For a single switch joystick,
—64 = Down, 0 = Rest, and 64 = Up.

1 Signed Y value in the range —127 to 127. For a single switch joystick,
—64 = Left, 0 = Rest, and 64 = Right.

2 Switches (eg fire buttons) starting in bit 0; unimplemented switches
return 0.

3 Reserved.

4-218

Joystick module

Applications which are only interested in state (up, down, left, right) should not simply
test the bytes for positive, negative or zero. We recommend that the ‘at rest’ state should
span a middle range, say from —32 to 32, since analogue joysticks cannot be relied upon
to produce 0 when at rest.

Related SWis

None

Related vectors

None

4-219

4-220

Part 14 — Programmer’s support

4-221

4-222

82 Debugger

Introduction

The debugger is a module that allows a program to be stopped at set places called
breakpoints. Whenever the instruction that a breakpoint is set on is reached, a command
line will be entered. From here, you can type debug commands and resume the program
when you want.

Other commands may be called at any time to examine or change the values contained at
particular addresses in memory and to list the contents of the registers. You can display
memory as words or bytes.

There is also a facility to disassemble instructions. This means converting the
instruction, stored as a word, into a string representation of its meaning. This allows you
to examine the code anywhere in readable memory.

4-223

Technical Details

Technical Details

The debugger provides one SWI, Debugger Disassemble (SWI &40380), which will
disassemble one instruction. There are also the following * Commands:

Command Description

*BreakClr Remove breakpoint

*BreakList List currently set breakpoints

*BreakSet Set a breakpoint at a given address
*Continue Start execution from a breakpoint saved state
*Debug Enter the debugger

*InitStore Fill memory with given data

*Memory Display memory between two addresses/register
*MemoryA Display and alter memory

*Memoryl Disassemble ARM instructions

*ShowRegs Display registers caught by traps

When an address is required, it should be given in hexadecimal. A preceding & is
optional; that is, unlike most of the rest of the system, the debugger uses hexadecimal as
a default base rather than decimal.

*Quit should be used to return from the debugger to the previous environment after a
breakpoint — see page 1-332.

Note that the breakpoints discussed here are separate from those caused by OS_BreakPt.
See page 1-311 for details of this SWI.

When a breakpoint is set, the previous contents of the breakpoint address are replaced
with a branch into the debugger code. This means that breakpoints may only be set in
RAM. If you try to set a breakpoint in ROM, the error ‘Bad breakpoint’ will be given.

When a breakpoint instruction is reached, the debugger is entered, with the prompt
Debug*

from which you can type any * Command. An automatic register dump is also
displayed.

From RISC OS 3 onwards this module supports ARM 3 instructions, and warns of
certain unwise or invalid code sequences (see Appendix B: Warnings on the use of ARM
assembler on page 4-383). Some of the output when disassembling has been changed for
greater clarity than that provided by RISC OS 2.

4-224

Debugger

SWI Calls

Debugger Disassemble
(swi &40380)

Disassemble an instruction

On entry

RO = instruction to disassemble
R1 = address to assume the instruction came from

On exit

RO = preserved
R1 = address of buffer containing null-terminated text
R2 = length of disassembled line

Interrupts

Interrupt status is undefined
Fast interrupts are enabled

Processor Mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

RO contains the 32-bit instruction to disassemble. R1 contains the address from which to
assume the instruction came, which is needed for instructions such as B, BL,

LDR Rn, [PC...], and so on. On exit, R1 points to a buffer which contains a zero
terminated string. This string consists of the instruction mnemonic, and any operands, in
the format used by the *Memoryl instruction. The length in R2 excludes the zero-byte.

Related SWis

None

4-225

Debugger_Disassemble (SWI &40380)

Related vectors

None

4-226

Debugger

*Commands
*BreakClr

Removes a breakpoint

Syntax
*BreakClr [addr|reg]
Parameters
addr hexadecimal address of breakpoint to clear
reg register containing address of breakpoint to clear
Allowed register names are r0 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*BreakClr removes the breakpoint at the specified address or register value, putting the
original contents back into that location. You can unset the last hit breakpoint with the
command *BreakClr pc

If you give no parameter then you can remove all breakpoints — you will be prompted:

Clear all breakpoints [Y/N]?

Example
*BreakClr 816C

Related commands
*BreakSet, *BreakList

Related SWis

None

Related vectors

None

4-227

*BreakList

*BreakList

List all the breakpoints that are currently set

Syntax
*BreakList

Parameters

None

Use

*BreakList lists all the breakpoints that are currently set with *BreakSet.

Example

*BreakList
Address Old Data
0000816C EF00141C

Related commands
*BreakSet

Related SWis

None

Related vectors

None

4-228

Sets a breakpoint

Syntax
*BreakSet addr|reg

Parameters
addr
reg

Use

Debugger

*BreakSet

hexadecimal address of breakpoint to set
register containing address of breakpoint to set

Allowed register names are r0 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

*BreakSet sets a breakpoint at the specified address or register value, so that when the
code is executed and the instruction at that address is reached, execution will be halted.

When a breakpoint is set, the previous contents of the breakpoint address are replaced
with a branch into the debugger code. This means that you may only set breakpoints in
RAM. If you try to set a breakpoint in ROM, the error ‘Bad breakpoint’ is generated.

Example
*BreakSet 816C

Related commands

*BreakClr, *BreakList, *Continue

Related SWis

None

Related vectors

None

4-229

*Continue

4-230

*Continue

Resumes execution after a breakpoint

Syntax

*Continue

Parameters

None

Use

*Continue resumes execution after a breakpoint, using the saved state. If there is a
breakpoint at the continuation position, then this prompt is given:

Continue from breakpoint set at &0000816C
Execute out of line? [Y/N]?

Reply ‘Y’ if it is permissible to execute the instruction at a different address (ie it does
not refer to the PC).

If the instruction that was replaced by the breakpoint contains a PC-relative reference
(such as LDR RO0,label, a B or BL instruction, or an ADR directive), you should not
execute it out of line. Instead you should clear the breakpoint, and then re-issue the
*Continue command. The instruction will then be executed in line, avoiding the wrong
address being referenced.

Related commands
*BreakClr, *BreakList, *BreakSet

Related SWis

None

Related vectors

None

Debugger

*Debug

Enters the debugger

Syntax
*Debug

Parameters

None

Use

Debug enters the debugger. A prompt of Debug appears. Use Escape to return to the
caller, or *Quit to exit to the caller’s parent.

*Quit is documented on page 1-332.

Related commands
*Quit

Related SWis

None

Related vectors

None

4-231

*InitStore

dlot
InitStore
Fills user memory with a value
Syntax
*InitStore [value|reg]
Parameters
value word with which to fill user memory
reg register value with which to fill user memory
Allowed register names are 10 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*InitStore fills user memory with the specified value or register value, or with the value
&E6000010 (which is an illegal instruction) if no parameter is given. If you give this
command from within an application (eg BASIC) the machine will crash, and will have
to be reset.

RISC OS 2 used the value &E1000090 instead. This is no longer an illegal instruction
for all versions of the ARM processor.

Example
*InitStore &381E6677

Related commands

None

Related SWis

None

Related vectors

None

4-232

Debugger

*Memory

Displays the values in memory

Syntax

*Memory [B] addrl|regl

*Memory [B] addrl|regl [+|-laddr2|reg2
*Memory [B] addri|regl +|-addr2|reg2 +addr3|reg3

Parameters
B
addrliregl
addr2|reg?2
addr3|reg3
Use

optionally display as bytes

hexadecimal address, or register containing address for start
of display

hexadecimal offset, or register containing offset
hexadecimal offset, or register containing offset

Allowed register names are r0 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.

*Memory displays the values in memory, in bytes if the optional B is given, or in words

otherwise.

If only one address is given, 256 bytes are displayed starting from addrl. If two
addresses are given, addr2 specifies the end of the range to be displayed (as an absolute
address or, if “+’ or ‘-’ is present, as an offset from addrl). If three addresses are given,
addr2 specifies an offset for the start from addrl, and addr3 specifies the end of the
range to be displayed (as an offset from the combined address given by addrl and

addr2).

Example

*Memory 1000 -200 +500

Related commands
*MemoryA, ¥*Memoryl

Display memory from &E00 to &12FF

4-233

*Memory

Related SWis

None

Related vectors

None

4-234

Syntax

Debugger

*MemoryA

Displays and alters memory

*MemoryA [B] addr|regl [value|reg?2]

Parameters
B optionally display as bytes
addrliregl hexadecimal address, or register containing address for start
of display
value value to write into the specified location
reg2 register containing value to write into the specified location
Allowed register names are 10 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*MemoryA displays and alters memory in bytes, if the optional B is given, or in words
otherwise.

If you give no further parameters, interactive mode is entered. At each line, something
similar to the following is printed:

*MemoryA 8000
+ 00008000 : x.. : 00008F78 : ANDEQ R8,R0,R8,ROR PC
Enter new value :

or, for byte mode:

*MemoryA B 8001
+ 00008001 : « : 8F :
Enter new value :

The first character shows the direction in which Return steps (‘+’ for forwards, ‘-’ for
backwards). Next is the address of the word/byte being altered, then the character(s) in
that word/byte, then the current hexadecimal value of the word/byte, and finally (for
words only) the instruction at that address.

4-235

*MemoryA

You may type any of the following at the prompt:

Return to go to the ‘next’ location

- to step backwards in memory

+ to step forwards in memory

hex digits Return to alter a location and proceed
to exit.

As an alternative to using this command interactively, you can give the new data value
on the line after the address.

Example
*MemoryA 87A0 12345678

Related commands
*Memory, *Memoryl

Related SWis

None

Related vectors

None

4-236

Debugger

*
Memoryl
Disassembles memory into ARM instructions
Syntax
*Memoryl addri|regl
*Memoryl addrl|regl [+|-]addr2|reg?2
*Memoryl addri|regl +|-addr2|reg2 +addr3|reg3
Parameters
addrl|regl hexadecimal address, or register containing address for start
of display
addr2|reg?2 hexadecimal offset, or register containing offset
addr3|reg3 hexadecimal offset, or register containing offset
Allowed register names are 10 - r15, sp (equivalent to r13),
Ir (r14 without the psr bits) and pc (r15 without the psr bits).
These are taken from the current ExceptionDumpArea.
Use

*Memoryl disassembles memory into ARM instructions.

If only one address is given, 24 instructions are disassembled starting from addrl. If two
addresses are given, addr2 specifies the end of the range to be disassembled (as an
absolute address or, if “+” or ‘—’ is present, as an offset from addrl). If three addresses
are given, addr2 specifies an offset for the start from addrl1, and addr3 specifies the end
of the range to be disassembled (as an offset from the combined address given by addrl
and addr2).

These options are particularly useful for disassembling modules, which contain offsets,
not addresses.

4-237

*Memoryl

Example

*modules
No. Position Workspace Name

22 0184D684 018016B4 Debugger Find address of Debugger

*memoryi 184D684 +24

0184D684 : ... : 00000000 : ANDEQ RO,R0,R0

0184D688 : \... : 0000005C : ANDEQ RO,R0,R12,ASR RO

0184D68C : (... : 00000128 : ANDEQ RO,R0,R8,LSR #2

0184D690 : ... : 00000104 : ANDEQ RO,R0,R4,LSL #2

0184D694 : (.. : 00000028 : ANDEQ RO,RO,R8,LSR #32

0184D698 : >... : 0000003E : ANDEQ RO,R0,R14,LSR RO

0184D69C : h... : 00000168 : ANDEQ RO,R0,R8,ROR #2

0184D6A0 : ... : 00040380 : ANDEQ RO,R4,R0,LSL #7

0184D6A4 : ii... : 000005FC : MULEQ RO,R12,R5 < Offset of SWI handler is &5FC

*memoryi 184D684 +5FC +20 Disassemble SWI handler
0184DC80 : .B-¢ : E92D4200 : STMDB R13!,{R9,R14}

0184DC84 : .Ati : E49CC000 : LDR R12,[R12],40
0184DCS88 : ..;a : E33B0000 : TEQ R11,#0

0184DC8C : 0A000005 : BEQ &0184DCAS8
0184DC90 : ..-4 : E28F0004 : ADR R0,&0184DC9C
0184DC9%4 : _..¢ : EBOO075F : BL &0184FA18
0184DC98 : . /-¢ : EEBD8200 : LDMIA R13!,{R9,PC}
0184DCOC : : 0000010F : ANDEQ RO,R0,PC,LSL #2

_—

—

Related commands
*Memory, *MemoryA

Related SWis
Debugger Disassemble (page 4-225)

Related vectors

None

4-238

Debugger

*ShowRegs

Displays the register contents for the saved state

Syntax

*ShowRegs

Parameters

Use

None

*ShowRegs displays the register contents for the saved state, which may be caught on
one of the five following traps:

¢ undefined instruction

e address exception

e data abort

e prefetch abort

e break point.

It also prints the address in memory where the registers are stored, so you can alter them

(for example after a breakpoint) by using *MemoryA on these locations, before using
*Continue.

Example

*ShowRegs

Register dump (stored at &01804D2C) is:

RO =0026D2CF R1 =002483C1 R2 =00000000 R3 = 00000000

R4 =00000000 RS =52491ACE R6 =42538FFD R7 =263598DE
R8 =B278A456 R9 = C2671D37 R10 = A72B34DC R11 = 82637D2F
R12 =00004000 R13 = 2538DAF0 R14 = 24368000 R15 = 7629D100
Mode USR flags set : nzevif

Related commands

None

Related SWis

None

4-239

*ShowRegs

Related vectors

None

4-240

84 The shared C library

Introduction

The shared C library is a RISC OS relocatable module (called SharedCLibrary) which
contains the whole of the ANSI C library. It is used by many programs written in C.
Consequently, it saves both RAM space and disc space.

The shared C library is used by the RISC OS applications Edit, Paint, Draw and
Configure.

Generally you will use the shared C library by linking your programs with the library
stubs. However, you may also call it directly from assembly language by means of SW1Is
provided by the shared C library (you would normally only want to do this if you are
implementing your own library stubs for your own language run-time system).

4-249

Overview

Overview

How to use the C library kernel

C library structure

The C library is organised into three layers:

at the centre is the language-independent library kernel providing basic support
services;

at the next level is a C-specific layer providing compiler support functions;

at the outermost level is the actual C library.

A full description of all the C library functions is given in the section entitled C library
functions on page 4-296.

The library kernel

The library kernel is designed to allow run-time libraries for different languages to
co-reside harmoniously, so that inter-language calling can be smooth. It provides the
following facilities:

a generic, status-returning, procedural interface to SWIs

a procedural interface to commonly used SW1s, arithmetic functions and
miscellaneous functions

support for manipulating the IRQ state from a relocatable module
support for allocating and freeing memory in the RMA area
support for stack-limit checking and stack extension

trap handling, error handling, event handling and escape handling.

A full description of all the library kernel functions is given in the section entitled
Library kernel functions on page 4-283.

Interfacing a language run-time system to the Acorn library kernel

You can also write your own language Run-Time System to use the shared C library.
For full details, see the section entitled Interfacing a language run-time system to the
Acorn library kernel on page 4-250.

4-250

The shared C library

How the run-time stack is managed and extended

Management

The run-time stack consists of a doubly-linked list of stack chunks. Each stack chunk is
allocated by the storage manager of the master language (in a C program allocating and
freeing stack chunks is accomplished using malloc() and free()).

Stack extension

Two types of stack extension are provided:

e Pascal/Modula-2 style

e C-style

Calling other programs from C

The C library procedure system() provides the means whereby a program can pass a
command to the host system’s command line interpreter — in this case the RISC OS
command line interpreter. For a full description, see the section entitled Calling other
programs from C on page 4-251.

Storage management

The storage manager manages the heap in the most ‘efficient’ manner possible. A
rudimentary understanding of it will help you make the best use of it; see the section
entitled Storage management on page 4-251.

Handling host errors

Calls made to RISC OS via a kernel function return a specific value if an operating
system error occurs. A call is provided to then find the associated error number and
string. For full details, see the section entitled Handling host errors on page 4-261.

4-251

Technical details

Technical details

The shared C library module implements a single SWI which is called by code in the
library stubs when your program linked with the stubs starts running. That SWI call tells
the stubs where the library is in the machine. This allows the vector of library entry
points contained in the stubs to be patched up in order to point at the relevant entry
points in the library module.

The stubs also contain your private copy of the library’s static data. When code in the
library executes on your behalf, it does so using your stack and relocates its accesses to
its static data by a value stored in your stack-chunk structure by the stubs initialisation
code and addressed via the stack-limit register. (This is why you must preserve the
stack-limit register everywhere if you use the shared C library and call your own
assembly language sub-routines.) The compiler’s register allocation strategy ensures
that the real dynamic cost of the relocation is almost always low: for example, by doing
it once outside a loop that uses it many times.

Execution time costs

It costs only 4 cycles (0.5us) per function call and a very small penalty on access to the
library’s static data by the library (the user program’s access to the same data is
unpenalised). In general, the difference in performance between using the shared

C library and linking a program stand-alone with ANSILib is less than 1%. For the
important Dhrystone-2.1 benchmark the performance difference cannot be measured.

How to use the C library kernel

C library structure

4-252

The C library is organised into three separate layers. At the centre is the
language-independent library kernel. This is implemented in assembly language and
provides basic support services, described below, to language run-time systems and,
directly, to client applications.

One level out from the library kernel is a thin, C-specific layer, also implemented in
assembly language. This provides compiler support functions such as structure copy,
interfaces to stack-limit checking and stack extension, setjmp and longjmp support, etc.
Everything above this level is written in C.

Finally, there is the C library proper. This is implemented in C and, with the exception
of one module which interfaces to the library kernel and the C-specific veneer, is highly
portable.

The shared C library

The library kernel

The library kernel provides the following facilities:

initialisation functions

stack management functions:

unwinding the stack

finding the current stack chunk

four kinds of stack extension —
small-frame and large-frame extension,
number of actual arguments known (eg Pascal), or unknown (eg C) by
the callee.

program environment functions:

finding the identity of the host system (RISC OS, Arthur, etc)
determining whether the floating point instruction set is available
getting the command string with which the program was invoked
returning the identity of the last OS error

reading an environment variable

setting an environment variable

invoking a sub-application

claiming memory to be managed by a heap manager

finding the name of a function containing a given address
finding the source language associated with code at a given address
determining if IRQs are enabled

enabling IRQs

disabling IRQs.

general utility functions:

generic SWI interface routines
special SWI interfaces for certain commonly used SWIs.

memory allocation functions:

allocating a block of memory in the RMA
extending a block of memory in the RMA
freeing a block of memory in the RMA.

language support functions:

unsigned integer division

unsigned integer remainder

unsigned divide by 10 (much faster than general division)
signed integer division

signed integer remainder

signed divide by 10 (much faster than general division).

4-253

How to use the C library kernel

4-254

Interfacing a language run-time system to the Acorn library kernel

In order to use the kernel, a language run-time system must provide an area named
RTSK$$DATA, with attributes READONLY. The contents of this area must be a
_kernel languagedescription as follows:

typedef enum { NotHandled, Handled } _kernel HandledOrNot

typedef struct {
int regs [16];
} _kernel_registerset;

typedef struct {
int regs [10];
} _kernel eventregisters;

typedef void (*PROC) (void);
typedef _kernel _HandledOrNot

(*_kernel_trapproc) (int code, _kernel registerset *regs);
typedef _kernel _HandledOrNot

(*_kernel_eventproc) (int code, _kernel registerset *regs);

typedef struct {
int size;
int codestart, codeend;
char *name;
PROC (*InitProc)(void); /* that is, InitProc returns a PROC */
PROC FinaliseProc;
_kernel_trapproc TrapProc;
_kernel_trapproc UncaughtTrapProc;
_kernel_eventproc EventProc;
_kernel eventproc UnhandledEventProc;
void (*FastEventProc) (_kernel eventregisters *);
int (*UnwindProc) (_kernel unwindblock *inout, char **language);
char * (*NameProc) (int pc);
} _kernel_languagedescription;

Any of the procedure values may be zero, indicating that an appropriate default action is
to be taken. Procedures whose addresses lie outside [codestart...codeend] also cause the
default action to be taken.

codestart, codeend

These values describe the range of program counter (PC) values which may be taken
while executing code compiled from the language. The linker ensures that this can be
described with just a single base and limit pair if all code is compiled into areas with the
same unique name and same attributes (conventionally, Language$$code, CODE,
READONLY. The values required are then accessible through the symbols
Language$$code$$Base and Language$$codeSLimit).

The shared C library

InitProc

The kernel contains the entrypoint for images containing it. After initialising itself, the
kernel calls (in a random order) the InitProc for each language RTS present in the image.
They may perform any required (language-library-specific) initialisation: their return
value is a procedure to be called in order to run the main program in the image. If there
is no main program in its language, an RTS should return 0. (An InitProc may not itself
enter the main program, otherwise other language RTSs might not be initialised. In some
cases, the returned procedure may be the main program itself, but mostly it will be a
piece of language RTS which sets up arguments first.)

It is an error for all InitProcs in a module to return 0. What this means depends on the
host operating system; if RISC OS, SWI OS_GenerateError is called (having first taken
care to restore all OS handlers). If the default error handlers are in place, the difference
is marginal.

FinaliseProc

On return from the entry call, or on call of the kernel’s Exit procedure, the FinaliseProc
of each language RTS is called (again in a random order). The kernel then removes its
OS handlers and exits setting any return code which has been specified by a call of

_kernel setreturncode.

TrapProc, UncaughtTrapProc

On occurrence of a trap, or of a fatal error, all registers are saved in an area of store
belonging to the kernel. These are the registers at the time of the instruction causing the
trap, except that the PC is wound back to address that instruction rather than pointing a
variable amount past it.

The PC at the time of the trap together with the call stack are used to find the
TrapHandler procedure of an appropriate language. If one is found, it is invoked in user
mode. It may return a value (Handled or NotHandled), or may not return at all. If it
returns Handled, execution is resumed using the dumped register set (which should have
been modified, otherwise resumption is likely just to repeat the trap). If it returns
NotHandled, then that handler is marked as failed, and a search for an appropriate
handler continues from the current stack frame.

If the search for a trap handler fails, then the same procedure is gone through to find a
‘uncaught trap’ handler.

If this too fails, it is an error. It is also an error if a further trap occurs while handling a
trap. The procedure kernel exittraphandler is provided for use in the case the handler
takes care of resumption itself (eg via longjmp).

4-255

How to use the C library kernel

4-256

(A language handler is appropriate for a PC value if LanguageCodeBase < PC and PC <
LanguageCodeLimit, and it is not marked as failed. Marking as ‘failed’ is local to a
particular kernel trap handler invocation. The search for an appropriate handler
examines the current PC, then R14, then the link field of successive stack frames. If the
stack is found to be corrupt at any time, the search fails).

EventProc, UnhandledEventProc

The kernel always installs a handler for OS events and for Escape flag change. On
occurrence of one, all registers are saved and an appropriate EventProc, or failing that an
appropriate UnhandledEventProc is found and called. Escape pseudo-events are
processed exactly like Traps. However, for ‘real’ events, the search for a handler
terminates as soon as a handler is found, rather than when a willing handler is found (this
is done to limit the time taken to respond to an event). If no handler is willing to claim
the event, it is handed to the event handler which was in force when the program started.
(The call happens in CallBack, and if it is the result of an Escape, the Escape has already
been acknowledged.)

In the case of escape events, all side effects (such as termination of a keyboard read)
have already happened by the time a language escape handler is called.

FastEventProc

The treatment of events by EventProc isn’t too good if what the user level handler wants
to do is to buffer events (eg conceivably for the key up/down event), because there may
be many events to one event handler call. The FastEventProc allows a call at the time of
the event, but this is constrained to obey the rules for writing interrupt code (called in
IRQ mode; must be quick; may not call SWIs or enable interrupts; must not check for
stack overflow). The rules for which handler gets called in this case are rather different
from those of (uncaught) trap and (unhandled) event handlers, partly because the user
PC is not available, and partly because it is not necessarily quick enough. So the
FastEventProc of each language in the image is called in turn (in some random order).

UnwindProc

UnwindProc unwinds one stack frame (see description of kernel unwindproc for
details). If no procedure is provided, the default unwind procedure assumes that the
ARM Procedure Call Standard has been used; languages should provide a procedure if
some internal calls do not follow the standard.

NameProc

NameProc returns a pointer to the string naming the procedure in whose body the
argument PC lies, if a name can be found; otherwise, 0.

The shared C library

How the run-time stack is managed and extended

The run-time stack consists of a doubly-linked list of stack chunks. The initial stack
chunk is created when the run-time kernel is initialised. Currently, the size of the initial
chunk is 4Kb. Subsequent requests to extend the stack are rounded up to at least this
size, so the granularity of chunking of the stack is fairly coarse. However, clients may
not rely on this.

Each chunk implements a portion of a descending stack. Stack frames are singly linked
via their frame pointer fields within (and between) chunks. See Appendix C: ARM
procedure call standard on page 4-397 for more details.

In general, stack chunks are allocated by the storage manager of the master language
(the language in which the root procedure — that containing the language entry point — is
written). Whatever procedures were last registered with _kernel register allocs() will
be used (each chunk ‘remembers’ the identity of the procedure to be called to free it).
Thus, in a C program, stack chunks are allocated and freed using malloc() and free().

In effect, the stack is allocated on the heap, which grows monotonically in increasing
address order.

The use of stack chunks allows multiple threading and supports languages which have
co-routine constructs (such as Modula-2). These constructs can be added to C fairly
easily (provided you can manufacture a stack chunk and modify the fp, sp and sl fields
of a jmp_buf, you can use setjmp and longjmp to do this).

Stack chunk format

A stack chunk is described by a _kernel stack chunk data structure located at its
low-address end. It has the following format:

typedef struct stack chunk {
unsigned long sc_mark; /* == 0xf606901f */
struct stack chunk *sc_next, *sc_prev;
unsigned long sc_size;
int (*sc_deallocate)();

} _kernel stack chunk;

sc_mark is a magic number; sc_next and sc_prev are forward and backward pointers
respectively, in the doubly linked list of chunks; sc_size is the size of the chunk in bytes
and includes the size of the stack chunk data structure; sc_deallocate is a pointer to the
procedure to call to free this stack chunk — often free() from the C library. Note that the
chunk lists are terminated by NULL pointers — the lists are not circular.

The seven words above the stack chunk structure are reserved to Acorn. The stack-limit
register points 512 bytes above this (ie 560 bytes above the base of the stack chunk).

4-257

Calling other programs from C

Stack extension

Support for stack extension is provided in two forms:
o fp, arguments and sp get moved to the new chunk (Pascal/Modula-2-style)

o fpis left pointing at arguments in the old chunk, and sp is moved to the new chunk
(C-style).

Each form has two variants depending on whether more than 4 arguments are passed
(Pascal/Modula-2-style) or on whether the required new frame is bigger than 256 bytes
or not (C-style). See the appendix entitled Appendix C: ARM procedure call standard on
page 4-397 for more details.

_kernel_stkovf_copyargs

Pascal/Modula-2-style stack extension, with some arguments on the stack (ie stack
overflow in a procedure with more than four arguments). On entry, ip must contain the
number of argument words on the stack.

_kernel_stkovf_copy0Oargs

Pascal/Modula-2-style stack extension, without arguments on the stack (ie stack
overflow in a procedure with four arguments or fewer).
_kernel_stkovf_split_frame

C-style stack extension, where the procedure detecting the overflow needs more than
256 bytes of stack frame. On entry, ip must contain the value of sp — the required frame
size (ie the desired new sp which would be below the current stack limit).

_kernel_stkovf_split Oframe

C-style stack extension, where the procedure detecting the overflow needs 256 or fewer
bytes of stack frame.

Stack chunks are deallocated on returning from procedures which caused stack
extension, but with one chunk of latency. That is, one extra stack chunk is kept in hand
beyond the current one, to reduce the expense of repeated call and return when the stack
is near the end of a chunk; others are freed on return from the procedure which caused
the extension.

Calling other programs from C

The C library procedure system() provides the means whereby a program can pass a
command to the host system’s command line interpreter. The semantics of this are
undefined by the draft ANSI standard.

4-258

The shared C library

RISC OS distinguishes two kinds of commands, which we term built-in commands and
applications. These have different effects. The former always return to their callers, and
usually make no use of application workspace; the latter return to the previously set-up
‘exit handler’, and may use the currently-available application workspace. Because of
these differences, system() exhibits three kinds of behaviour. This is explained below.

Applications in RISC OS are loaded at a fixed address specified by the application
image. Normally, this is the base of application workspace, &8000. While executing,
applications are free to use store between the base and end of application workspace.
The end is the value returned by SWI OS_GetEnv. They terminate with a call of SWI
OS_Exit, which transfers control to the current exit handler.

When a C program makes the call system("command") several things are done:

o The calling program and its data are copied to the top end of application workspace
and all its handlers are removed.

e The current end of application workspace is set to just below the copied program
and an exit handler is installed in case "command" is another application.

e "command" is invoked using SWI OS_CLIL

When "command" returns, either directly (if it is a built-in command) or via the exit
handler (if it is an application), the caller is copied back to its original location, its
handlers are re-installed and it continues, oblivious of the interruption.

The value returned by system() indicates
o whether the command or application was successfully invoked

« ifthe command is an application which obeys certain conventions, whether or not it
ran successfully.

The value returned by system (with a non-NULL command string) is as follows:
<0 — couldn’t invoke the command or application (eg command not found);
>=(— invoked OK and set Sys$ReturnCode to the returned value.

By convention, applications set the environmental variable Sys$ReturnCode to 0 to
indicate success and to something non-0 to indicate some degree of failure. Applications
written in C do this for you, using the value passed as an argument to the exit() function
or returned from the main() function.

If it is necessary to replace the current application by another, use:
system("CHAIN:command");

If the first characters of the string passed to system() are "CHAIN:" or "chain:", the
caller is not copied to the top end of application workspace, no exit handler is installed,
and there can be no return (return from a built-in command is caught by the C library
and turned into a SWI OS_Exit).

4-259

Storage management (malloc, calloc, free)

Typically, CHAIN: is used to give more memory to the called application when no
return from it is required. The C compiler invokes the linker this way if a link step is
required. On the other hand, the Acorn Make Utility (AMU) calls each command to be
executed. Such commands include the C compiler (as both use the shared C library, the
additional use of memory is minimised). Of course, a called application can call other
applications using system(). A callee can even CHAIN: to another application and still,
eventually, return to the caller. For example, AMU might execute:

system("cc hello.c");
to call the C compiler. In turn, cc executes:
system("CHAIN:link -o hello o.hello $.CLib.o.Stubs");
to transfer control to the linker, giving link all the memory cc had.

However, when Link terminates (calls exit(), returns from main() or aborts) it returns to
AMU, which continues (providing Sys$ReturnCode is good).

Storage management (malloc, calloc, free)

4-260

The aim of the storage manager is to manage the heap in as ‘efficient’ a manner as
possible. However, ‘efficient’ does not mean the same to all programs and since most
programs differ in their storage requirements, certain compromises have to be made.

You should always try to keep the peak amount of heap used to a minimum so that, for
example, a C program may invoke another C program leaving it the maximum amount
of memory. This implementation has been tuned to hold the overhead due to
fragmentation to less than 50%, with a fast turnover of small blocks.

The heap can be used in many different ways. For example it may be used to hold data
with a long life (persistent data structures) or as temporary work space; it may be used to
hold many small blocks of data or a few large ones or even a combination of all of these
allocated in a disorderly manner. The storage manager attempts to address all of these
problems but like any storage manager, it cannot succeed with all storage
allocation/deallocation patterns. If your program is unexpectedly running out of storage,
see the section entitled Guidelines on using memory efficiently on page 1-348. This
gives you information on the storage manager’s strategy for managing the heap, and
may help you to remedy the problem.

Note the following:

e The word heap refers to the section of memory currently under the control of the
storage manager.

e All block sizes are in bytes and are rounded up to a multiple of four bytes.

e All blocks returned to the user are word-aligned.

The shared C library

e All blocks have an overhead of eight bytes (two words). One word is used to hold
the block’s length and status, the other contains a guard constant which is used to
detect heap corruptions. The guard word may not be present in future releases of the
ANSI C library.

Handling host errors

Calls to RISC OS can be made via one of the kernel functions, (such as

_kernel osfind(64, "...")). If the call causes an operating system error, the function will
return the value —2. To find out what the error was, a call to _kernel last oserror should
be made. This will return a pointer to a _kernel oserror block containing the error
number and any associated error string. If there has been no error since
_kernel last oserror was last called, the function returns the NULL pointer. Some
functions in the C library call kernel functions, so if an C library function (such as
fopen("...", "r")) fails, try calling kernel last oserror to find out what the error was.

4-261

SWi Calls

SWI Calls

SharedCLibrary LibInitAPCS_A
(SWI &80680)

This SWI interfaces an application which uses the old ‘A’ variant (SP=R12) of the
Procedure Call Standard to the shared C library. Its use is deprecated and it should not
be called in any programs. Use SharedCLibrary LibInitAPCS R instead.

4-262

The shared C library

SharedCLibrary LibInitAPCS R
(SWI &80681)

Interfaces an application with the shared C library

On entry

RO = pointer to list of stub descriptions each having the following format:
+00: library chunk id (1 or 2)
+04: entry vector base
+08: entry vector limit
+12: static data base
+16: static data limit
The list is terminated by an entry with a library chunk id of —1

R1 = pointer to workspace start
R2 = pointer to workspace limit

R3=-1
R4=0
R5=-1

R6= Bits0-15=0
Bits 16 - 31 = Root stack size in Kilobytes

On exit

Entry vectors specified by the stubs descriptions are patched to contain branches to
routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace specified
in R1 and the Client static data offset (at byte offset +24 from the stack base) is
initialised.

For each library chunk the library statics are copied either into the workspace specified

in R1 if RS > R4 on entry or to the static data area specified in the chunks stub
description if RS < R4.

The Library static data offset (at byte offset +20 from the stack base) is initialised.

Space for the root stack chunk is claimed from the workspace specified in R1.

4-263

SharedClLibrary_LibInitAPCS_R (SWI &80681)

4-264

RO = value of R2 on entry

R1 = stack base

R2 = limit of space claimed from workspace passed in R1. This value should be
used as the SP for the root stack chunk

R6 = library version number (currently = 5)

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI allows you to interface an application with the shared C library without using
the shared C library stubs.

LibInitAPCS_R is used by applications which use APCS_R (see Appendix C: ARM
procedure call standard on page 4-397 for more details).

Two library chunks are currently defined.

Chunk Id 1 - The Kernel module

The Kernel module defines 48 entries, these are described in the section entitled Library
kernel functions on page 4-283. You must reserve 48 words in your branch vector table.
The words at offsets +04 and +08 of the Kernel stub description must be initialised to the
start and limit (end + 1) of your vector table.

The Kernel module requires &3 1C bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage.

Chunk Id 2 - The C library module

If you wish to use the C library module you must include the Kernel stub description
before the C library stub description in the list of stubs descriptions.

The C library module defines 183 entries, these are described in the section entitled
C library functions on page 4-296. You must reserve 183 words in your branch vector
table.

The shared C library

The words at offsets +04 and +08 of the Kernel stub description must be initialised to the
start and limit (end + 1) of your vector table.

The C library module requires &B48 bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage. This storage must be contiguous with that for the Kernel
module.

Calling library functions

Before calling any library functions you must call the kernel function kernel init (entry
no. 0). For details on how to call these functions refer to their entries in the section
entitled Library kernel functions on page 4-283.

SP, SL and FP must be set up before calling any library function. kernel init initialises
these for the root stack chunk passed to it.

If you wish to call C library functions you must pass a suitable kernel language
description block to _kernel init. For details on the format of a kernel language
description block refer to the section entitled /nterfacing a language run-time system to
the Acorn library kernel on page 4-250.

To call C library functions the fields of the kernel language description block must be as
follows:

size The size of this structure in bytes (24 - 52 depending on the number of
entries in this block).

codestart, These two words should be set to the start and limit of an area

codelimit which is to be treated as C code with respect to trap and event
handling. Both these values may be set to 0 in which case no traps or
events will be passed to the trap or event handler described in this
language description block.

name This must contain a pointer to the 0 terminated string "C".

InitProc Pointer to your initialisation procedure. Your initialisation procedure
must call clib_initialise (entry no. 20). For details on how to call
_clib_initialise refer to its entry in the section entitled C library
functions on page 4-296. It should then load RO with the address at
which execution is to continue at the end of initialisation.

FinaliseProc Pointer to your finalisation procedure. This may contain 0.

The remainder of the entries are optional and may omitted. You must set the size field
correctly if omitting entries. If all optional entries are omitted the size field should be set
to 24.

4-265

SharedClLibrary_LibInitAPCS_R (SWI &80681)

Related SWis
SharedCLibrary LibInitAPCS_A (SWI &80680)

Related vectors

None

4-266

The shared C library

SharedCLibrary LibInitModule
(SWI &80682)

Interfaces a module with the shared C library

On entry

RO = pointer to list of stub descriptions each having the following format:
+00: library chunk id (1 or 2)
+04: entry vector base
+08: entry vector limit
+12: static data base
+16: static data limit
The list is terminated by an entry with a library chunk id of —1

R1 = pointer to workspace start
R2 = pointer to workspace limit
R3 = base of area to be zero-initialised
R4 = pointer to start of static data
RS = pointer to limit of static data
R6= Bits0-15=0
Bits 16 - 31 = Root stack size in Kilobytes

On exit

Entry vectors specified by the stubs descriptions are patched to contain branches to
routines in the library.

If R5 > R4 on entry the users statics are copied to the bottom of the workspace specified
in R1 and the Client static data offset (at byte offset +24 from the stack base) is
initialised.

For each library chunk the library statics are copied either into the workspace specified

in R1 if RS > R4 on entry or to the static data area specified in the chunks stub
description if RS < R4.

The Library static data offset (at byte offset +20 from the stack base) is initialised.
Space for the root stack chunk is claimed from the SVC stack.

RO = value of R2 on entry

R1 = stack base

R2 = limit of space claimed from workspace passed in R1
R6 = library version number (currently = 5)

4-267

SharedCLibrary_LibInitModule (SWI &80682)

4-268

Note: You must save the words at offsets +20 and +24 from the returned stack base.
You must do this before exiting your module initialisation code. These words
contain the shared libraries static data offset and the client static data offset (the
offset you must use when accessing your static data). These must be restored in the
static data offset locations at offsets +00 and +04 from the base of the SVC stack
when you are re-entering the module in SVC mode (e.g. in a SWI handler). When
restoring the static data offsets you must save the previous static data offsets around
the module entry.

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

SWI is re-entrant

This SWI allows you to interface a module with the shared C library without using the
shared C library stubs.

SharedCLibrary LibInitModule is used by modules, which must use APCS_R, and
must be called in the module Initialisation code.

Two library chunks are currently defined.

Chunk Id 1 - The Kernel module

The Kernel module defines 48 entries, these are described in the section entitled Library
kernel functions on page 4-283. You must reserve 48 words in your branch vector table.
The words at offsets +04 and +08 of the Kernel stub description must be initialised to the
start and limit (end + 1) of your vector table.

The Kernel module requires &3 1C bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage.

Chunk Id 2 - The C library module

If you wish to use the C library module you must include the Kernel stub description
before the C library stub description in the list of stubs descriptions.

The shared C library

The C library module defines 183 entries, these are described in the section entitled
C library functions on page 4-296. You must reserve 183 words in your branch vector
table.

The words at offsets +04 and +08 of the Kernel stub description must be initialised to the
start and limit (end + 1) of your vector table.

The C library module requires &B48 bytes of static data space. You must reserve this
amount of storage. The words at offsets +12 and +16 must be initialised to the start and
limit (end + 1) of this storage. This storage must be contiguous with that for the Kernel
module.

Calling library functions

Before calling any library functions you must call the kernel function
_kernel moduleinit (entry no. 38). For details on how to call these functions refer to
their entries in the section entitled Library kernel functions on page 4-283.

SP, SL and FP must be set up before calling any library function. kernel init initialises
these for the root stack chunk passed to it.

If you wish to call C library functions you must pass a suitable kernel language
description block to _kernel init. For details on the format of a kernel language
description block refer to the section entitled /nterfacing a language run-time system to
the Acorn library kernel on page 4-250.

To call C library functions the fields of the kernel language description block must be as
follows:

size The size of this structure in bytes (24 - 52 depending on the number of
entries in this block).

codestart, These two words should be set to the start and limit of an area

codelimit which is to be treated as C code with respect to trap and event
handling. Both these values may be set to 0 in which case no traps or
events will be passed to the trap or event handler described in this
language description block.

name This must contain a pointer to the 0 terminated string "C".

InitProc Pointer to your initialisation procedure. Your initialisation procedure
must call clib_initialise (entry no. 20). For details on how to call
_clib_initialise refer to its entry in the section entitled C library
functions on page 4-296. It should then load RO with the address at
which execution is to continue at the end of initialisation.

FinaliseProc Pointer to your finalisation procedure. This may contain 0.

4-269

SharedCLibrary_LibInitModule (SWI &80682)

4-270

The remainder of the entries are optional and may omitted. You must set the size field
correctly if omitting entries. If all optional entries are omitted the size field should be set
to 24.

Accessing shared library data

The following items of data are exported from the shared library data and may be used
in your programs.

Name Offset Notes

errno &0000 The variable errno is set whenever certain error conditions arise in the
C library.
These error conditions are described in the section ‘errno’ on page
4-315.

stdin ~ &0004 These three variables contain the standard C library FILE

stdout &002C structures stdin, stdout and stderr. The address of these variables

stderr &0054 may be passed to any C library function which accept a FILE *
argument. For an example of their use see the call to ‘fputs’ in the
module example.

ctype &0290 This is a 256 byte array containing an 8 bit mask for each character in
the range 0 to 255. Each bit defines some aspect of the character as
follows:

bit 0 character is a whitespace character

bit 1 character is a punctuation character

bit 2 character is a blank (“ *)

bit 3 character is a lowercase letter

bit 4 character is an uppercase letter

bit 5 character is a decimal digit

bit 6 character is a control character

bit 7 character is one of the characters A, B, C, D, E, F or
a,b,c,d,e, f

This table is initialised for the C locale; it may be changed by calls to

the ‘setlocale’ function.

Note: The offsets given above are offsets into the C library statics. These must be
preceded immediately by the kernel statics, which are 800 (&31C) bytes long. To
convert offsets in the C library statics to offsets in the library statics add 800 (&31C).

If you are accessing static data within a program (i.e. code which uses

SharedCLibrary LibInitAPCS R) you can access the static data directly in your own
static data area definition. If, however, however you are accessing static data from
within a module (using SharedCLibrary LibInitModule) you must use the add the client
static data relocation to the address in your own static data area definition to obtain the

The shared C library

true address of the static data. If you wish your module to be multiply instantiable or
rommable you must add this relocation when accessing your own static data, not just
when accessing the libraries static data.

The client static data relocation is stored at offset -536 (-&218) from the SL register
(R10).

For an example of how to use the static data relocation see the call to ‘fputs’ in the
module example.

Related SWis

None

Related vectors

None

4-271

Example programs

Example programs

Calling the shared C library

; This example demonstates how to call the shared C library.
; It is written for the ObjAsm assembler supplied with the Software
; Developers Toolkit (SDT) and the Desktop Development Environment (DDE).

5

0 RN 0

rl RN 1

2 RN 2

3 RN 3

r4 RN 4

15 RN 5

6 RN 6

sp RN 13

Ir RN 14

pc RN 15

|_kernel_init| EQU 0%*4 ; Offsets in kernel vector table
| clib_initialise] EQU 20 * 4 ; Offsets in C vector table
fopen EQU 87*4

fprintf EQU 92%*4

fclose EQU 85*4

OS_GenerateError EQU ~ &2b
OS_Exit EQU &Il

SharedCLibrary_LibInitAPCS_R EQU &80681

IMPORT |Image$$RO$$Base| ; Linker defined symbol giving
; start of image.
AREA printf, CODE, READONLY

ENTRY

ADR 10, stubs
ADRL rl, workspace
ADD 12,rl,#32 * 1024 ;32K workspace. A real program

MOV 13, #-1 ; would use OS_ChangeEnvironment
MOV 14, #0 ; to find the memorylimit.
MOV 15, #-1

MOV 16, #&00080000

SWI SharedCLibrary LibInitAPCS_R

MOV 14,10

ADR 10, kernel_init_block

MOV 13,#0

B kernel_vectors + |_kernel_init| ; Continues at c_init below

4-272

stubs
DCD 1
DCD kernel vectors
DCD kernel vectors_end
DCD kernel_statics

DCD kernel_statics_end DCD 2

DCD clib_vectors
DCD clib vectors end
DCD clib_statics

DCD clib_statics end

DCD -1

kernel_init_block

DCD |Image$$RO$$Base|

DCD rts_block
DCD rts block end

rts_block
DCD rts_block_end - rts_block
DCD 0
DCD 0
DCD ¢ str
DCD c_init
DCD 0

rts_block end

c_str DCB "C",0

; Must be "C" for CLib to finalise

ALIGN ; properly.

c_init MOV 10, sp
MOV rl,#0
MOV 12, #0
STMDB sp!, {Ir}

BL clib_vectors + | clib_initialise|

ADR 10, c_run
LDMIA sp!, {pc}”

¢ run ADR 10, outfile
ADR rl, access
BL clib_vectors + fopen
CMP 10, #0
ADREQ 10, Err_Open
SWIEQ OS_GenerateError
MOV 14,10
ADR rl, format
BL clib_vectors + fprintf

MOV 10, r4
BL clib_vectors + fclose
CMP 10, #0

ADRNE 10, Err_Close
SWINE OS GenerateError
SWI OS_Exit

; Continue at ¢_run below

; Will actually say
; Uncaught trap: Error opening ...

; Uncaught trap: Error writing ...

The shared C library

4-273

Calling the shared C library from a module

outfile DCB "OutFile", 0
access DCB "w",0

format DCB "Sample string printed from asm using fprintf!", 10, 0
ALIGN

Err Open DCD &1000
DCB "Error opening OutFile", 0
ALIGN

Err Close DCD &1001
DCB "Error writing OutFile", 0
ALIGN

kernel vectors % 48 * 4
kernel_vectors_end

clib_vectors % 183 * 4
clib_vectors_end

kernel statics % &31c
kernel_statics_end

clib_statics % &b48
clib_statics_end

workspace ; Start of workspace at end of app.

END

Calling the shared C library from a module

; This example demonstates how to call the shared C library from a module.
; It is written for the ObjAsm assembler supplied with the Software
; Developers Toolkit (SDT) and the Desktop Development Environment (DDE)

0 RN 0
rl RN 1
2 RN 2
3 RN 3
4 RN 4
5 RN 5
6 RN 6
7 RN 7
r8 RN 8
9 RN 9
rl0 RN 10
rll RN 11
rl2 RN 12
sl RN 10
fp RN 11
sp RN 13
Ir RN 14
pc RN 15

swibase EQU &88000
V_Bit EQU 1:SHL:28

4-274

The shared C library

Module_Claim EQU 6

Service_Error EQU &06
Service Help EQU &09

XOS_Module EQU &2001e
XSharedCLibrary LibInitModule EQU &80682

OS_WriteS EQU 1
OS_Exit EQU &l1

A 0 ; Offsets in module workspace
size # 4 ; Size of this block
libreloc # 4 ; Offset for accessing librarys statics
clientreloc # 4 ; Offset for accessing our statics
ws_size # 0

Lib Offset EQU 20 ; Offset of library relocation offset
; from base of stack.

SL Lib Offset EQU 540 ; Negative offset of library relocation
; offset from SL register

Client_Offset EQU 24 ; Offset of client relocation offset

SL_Client_Offset EQU 536 ; Negative offset of client relocation
; offset from SL register

| _kernel command string| EQU 7 * 4
|_kernel_moduleinitf EQU 38 *4
| _kernel entermodule] EQU 42 * 4

|_main| EQU 18*4
|_clib_initialise] EQU 20*4
atexit EQU 71*4
printf EQU 91*4
fputs EQU 104 *4
putchar EQU 111*4

|_clib_finalisemodule] EQU 179 * 4

IMPORT |_ RelocCode| ; Linker supplied relocation routine
IMPORT [Image$$SRO$$Base| ; Linker defined base / limit symbols
IMPORT |ImageS$RW$$Base|

IMPORT |Image$SSRWS$SLimit

IMPORT |Image$$ZI$$Base|

AREA module code, CODE, READONLY

module_base
DCD start - module_base
DCD init - module_base
DCD terminate - module base
DCD service - module_base
DCD title - module_base
DCD help - module_base
DCD cmdtbl - module_base
DCD swibase
DCD swicode - module_base
DCD switbl - module_base

4-275

Calling the shared C library from a module

4-276

title DCB "SLClient", 0

help

base

DCB "SLClient", 9, "1.00 (11-Dec-91)", 0
ALIGN

DCD [Image$SRWS$S$Base|

limit DCD |Image$$SRWS$SLimit|
zi_base DCD |Image$$ZI$$Base|

cmdtbl DCB "SLClient_Command", 0

ALIGN

DCD cmdcode - module_base

DCB 0

DCB &ff

DCB 255

DCB 0

DCD 0 ; No syntax message
DCD 0 ; No help message

switbl DCB "SLClient", 0

init

DCB "SWI", 0 ; SLClient_ SWI
DCB 0
ALIGN

STMDB sp!, {r7-r11, Ir} ; Save only regs that need saving
MOV sl sp, LSR #20 ; Get base of SVC stack in sl.
MOV s, sl, LSL #20
LDMIA sl, {r4,r5} ; Save old relocation modifiers
STMDB sp!, {r4,r5} ; from base of SVC stack

BL |_RelocCode| ; Relocate module
MOV 10, #Module_Claim

LDR r4, base

LDR 15, limit

SUB 13,15, r4

ADD 13,13, #ws_size
SWI XOS_Module

MOV 19,rl2

STR 12,[r12] ; Set private word

MOV rl2,r2

STR 13, [rl12] ; First word of block is size of block

ADR 10, stubs

ADD rl,rl2, #ws_size

ADD 12,r12,13

LDR 13, zi base

MOV 16, #4 :SHL: 16

SWI XSharedCLibrary_LibInitModule

ADD 18, rl, #Lib_Offset

LDMIA 18, {r7,18} ; Get Lib and Client reloc. offset
STMIB rl2, {r7,1r8} ;Save in work area
ADR 10, kernel_init_block

BL call moduleinit

STMDB sp!, {r9} ; Save workspace pointer
BL clib_vectors + |_clib_initialise|

LDMIA sp!, {r2}

The shared C library

ADD 10, sp, #(10-7+2)*4 ; Point to R10 on stack
LDMIA 10, {10, r1}

BL user init

MOV sl sp, LSR #20 ; Get base of SVC stack in sl.
MOV s, sl, LSL #20

LDMIA sp!, {r4, 15}

STMIA sl, {r4, r5}

LDMIA sp!, {r7-rl1, Ir}

CMPS 10, #0

BICEQS pc, Ir, #V_Bit

ORRS pc, Ir, #V_Bit

; _kernel_moduleinit expects the return address to be in the first word on the
; stack rather than in LR. This function sets up the return address correctly.
call_moduleinit

STMDB sp!, {Ir}

B kernel vectors +|_kernel moduleinit|

terminate

STMDB sp!, {r7-rl1, Ir} ; Save only regs that need saving

MOV sl, sp, LSR #20 ; Get base of SVC stack in sl.

MOV sl, sl, LSL #20

LDMIA sl, {r4,r5} ; Save old relocation modifiers

MOV 10, rl2 ; Set up private word pointer for
;_clib_finalisemodule

LDR rl2,[r12] ; Pointer to static data

LDMIB rl2, {r11,rl12}

STMIA s, {rl1,r12} ; Set up relocation modifiers

ADD sl sl, #SL Lib_Offset

MOV fp, #0 ; FP = 0 => end of linked stack frames
; so backtrace stops here

BL clib_vectors + | clib_finalisemodule|

MOV sl, sp, LSR #20

MOV sl, sl, LSL #20

STMIA sl, {r4,r5} ; Restore old relocation modifiers

LDMIA sp!, {r7-rll, pc}”

start ADR 10, kernel_init_block
MOV 18,rl2
MOV rl2, #-1
MOV 16, #4 * 1024
B kernel vectors + | kernel entermodule]

c_init STMDB sp!, {Ir}
BL clib_vectors + |_clib_initialise|
ADR 10, c_run ; Continue at ¢_run below
LDMIA sp!, {pc}

c run BL kernel vectors +| kernel command string|
ADR rl,user run ; Continue at user_run below
B clib_vectors + | main|

4-277

Calling the shared C library from a module

cmdcode STMDB sp!, {r10, r11, Ir}
MOV sl sp, LSR #20 ; Get base of SVC stack
MOV s, sl, ASL #20
LDMIA sl, {r4,r5} ; Save old relocation modifiers in R4, RS
LDR rl2,[rl12]
LDMIB r12, {r11,r12} ; Setup our relocation modifiers
STMIA sl, {rl1,rl12}
ADD sl, sl, #SL_Lib_Offset ; Set up stack limit for SVC stack
MOV fp, #0 ; Stop backtrace here
BL user cmd ; Call APCS user_cmd routine
MOV s, sp, LSR #20
MOV sl sl, ASL #20 ; Get base of SVC stack again
STMIA s, {r4,15} ; Restore old relocation modifiers
LDMIA sp!, {r10,rl1, Ir}
CMP 10, #0 ; Set V bit on RO and return
BICEQS pc, Ir, #V_Bit
ORRS pc, I, #V_Bit

swicode STMDB sp!, {r0-r9, Ir} ; Set up regset on SVC stack
MOV sl sp, LSR #20 ; Get base of SVC stack
MOV sl sl, ASL #20
LDMIA sl, {r8,19} ; Save old relocation modifiers in R8, R9
MOV 10,rll
MOV rl,sp ; Pointer to regs on stack
MOV 12,rl2
LDR rl2,[rl12]
LDMIB rl2, {rl1,r12} ; Set up relocation modifiers
STMIA s, {rl1, r12}
ADD sl sl, #SL_Lib_Offset ; Set up stack limit for SVC stack
MOV fp, #0 ; Stop backtrace here
BL user_swi ; Call APCS user_swi routine
MOV sl sp, LSR #20 ; Get base of SVC stack again
MOV sl sl, ASL #20
STMIA sl, {r8,19} ; Restore old relocation modifiers
CMP 10, #0 ; Set RO on stack to error pointer
STRNE 10, [sp] ; if error on return.
LDMIA sp!, {r0-19, Ir}
BICEQS pc, Ir, #V_Bit ; Set V bit on RO and return.
ORRS pc, Ir, #V_Bit

service TEQ rl, #Service Help ; Check service nos. first for speed
TEQNE rl, #Service_Error
MOVNES pc, Ir
STMDB sp!, {r0-r9, s, fp, Ir} ; Set up regset on SVC/IRQ stack

MOV 10,rl

MOV rl,sp ; Pointer to regs on stack

MOV 16, pc ; Save old mode

BIC Ir, 16, #3 ; To SVC mode from SVC/IRQ mode
TEQP Ir, #3

MOV 10,10 ; NOP after mode change

MOV fp, #0 ; Stop backtrace

MOV 17, 1Ir ; Save SVC Ir if entered in IRQ mode

MOV sl, sp, LSR #20 ; Get base of SVC stack
MOV s, sl, ASL #20
LDMIA sl {r8,19} ; Save old relocation modifiers in R8, R9

4-278

The shared C library

MOV 12,r12

LDR rl2,[rl2]

LDMIB rl2, {r11,r12} ; Setup relocation modifiers

STMIA sl {rl1,rl12}

ADD sl sl, #SL_Lib_Offset ; Set up stack limit for SVC stack
BL user_service ; Call APCS user_service routine

MOV Ir, 17 ; Restore SVC Ir
TEQP 16, #0 ; Back to entry mode
MOV 10,10 ; NOP after mode change

MOV sl, sp, LSR #20 ; Get base of SVC stack

MOV sl sl, ASL #20

STMIA sl {r8,1r9} ; Restore old relocation modifiers
LDMIA sp!, {r0-19, sl, fp, pc}*

; _kernel_oserror *user_init(char *cmd_tail, int base, void *pw);
user_init

10

STMDB sp!, {r4, 19, Ir}
LDR 19, [sl, #-SL_Client_Offset] ; Get Client relocation
MOV 14,10
ADR r0, format
ADR rl, init_str
BL clib_vectors + printf
ADR 10, cmd_ format
LDR rl, stdout ; Address stdout in library statics
ADD rl,rl, 19 ; Add client relocation
BL clib_vectors + fputs
LDRB 10, [r4], #1
CMP 10, #32
MOVCC 10, #10
BL clib_vectors + putchar
BCS %BI10
ADR 10, user_exit ; Set up atexit handler
BL clib_vectors + atexit
MOV 10, #0
LDMIA sp!, {r4, 19, pc}"

stdout DCD clib_statics + &2¢

; void user_exit(void);
user_exit

STMDB sp!, {Ir}

ADR r0, format

ADR rl, exit_str

BL clib_vectors + printf
LDMIA sp!, {pc}”

4-279

Calling the shared C library from a module

; int user_run(int arge, char **argv);
user_run
STMDB sp!, {r4, r5, 16, Ir}
MOV 14,10
MOV 15,rl
ADR 10, format
ADR rl, run_str
BL clib _vectors + printf
ADR 10, argc_format
MOV rl, r4
BL clib_vectors + printf
MOV 16, #0
10 CMP 16,14
ADRCC 10, argv_format
MOVCC rl,r6
LDRCC 12, [15, 16, LSL #2]
BLCC clib_vectors + printf
ADDCC 16, 16, #1
BCC %BI10
MOV 10, #0
LDMIA sp!, {r4, 15, 16, pc}"

; kernel oserror *user cmd(char *args, int argc);
user_cmd

STMDB sp!, {r4, r5, Ir}

MOV 14,10

MOV 15,1l

ADR r0, format

ADR rl, cmd_str

BL clib_vectors + printf

ADR 10, args_format

MOV rl,r5

BL clib _vectors + printf
10 LDRB 10, [r4], #1

CMP 10, #32

MOVCC 10, #10

BL clib_vectors + putchar

BCS %B10

MOV 10, #0

LDMIA sp!, {r4, 15, pc}”

; _kernel_oserror *user_swi(int swi_no, kernel swi_regs *r, void *pw);
user_swi

STMDB sp!, {Ir}

ADR 10, format

ADR rl, swi_str

BL clib_vectors + printf

MOV 10, #0

LDMIA sp!, {pc}"

4-280

; void user_service(int service no, kernel swi_regs *r, void *pw);
user_service

STMDB sp!, {Ir}

CMP 10, #Service_Help

ADR r0, format

ADREQ rl, help_str

ADRNE rl, error_str

BL clib_vectors + printf

LDMIA sp!, {pc}”

format DCB "In %s code", 10, 0
ALIGN

argc_format DCB "argc = %d", 10,0
ALIGN

argv_format DCB "argv[%d] = %s", 10, 0
ALIGN

args_format DCB "argc = %d, args =", 0
ALIGN

cmd format DCB "Command tail=", 0
ALIGN

init_str DCB 'initialisation", 0
ALIGN

exit str DCB "exit", 0
ALIGN

run_str DCB "run",0
ALIGN

cmd_str DCB "command", 0
ALIGN

SWi_str DCB "swi",0
ALIGN

help_str DCB 'help",0
ALIGN

error str DCB "error", 0
ALIGN

stubs
DCD 1
DCD kernel_vectors
DCD kernel vectors_end
DCD kernel_statics
DCD kernel statics_end

DCD 2

DCD clib_vectors
DCD clib_vectors end
DCD clib_statics

DCD clib_statics end

DCD -1

kernel init block
DCD [Image$$RO$$Base|
DCD rts_block
DCD rts block end

The shared C library

4-281

Calling the shared C library from a module

4-282

rts_block
DCD rts_block_end - rts_block
DCD 0
DCD 0
DCD ¢ str
DCD c_init
DCD 0

rts_block end

c_str DCB "C",0
ALIGN

kernel vectors % 48 * 4
kernel_vectors_end

clib_vectors % 183 * 4
clib_vectors_end

; Unlike the application example the kernel statics and clib statics must be in
; a data area otherwise the data size calculation above (using Image$$RWSBase
; & Image$$SRWSSLimit does not work.
; Ideally this would be a zero init area of appropriate size but the assembler
; doesn't support zero init areas.
AREA module_data

kernel statics % &3lc
kernel_statics_end

clib_statics % &b48
clib_statics end

END

The shared C library

Library kernel functions

The library kernel functions are grouped under the following headings:
o initialisation functions

o stack management functions

e program environment functions

o general utility functions

« memory allocation functions

o language support functions.

Index of library kernel functions by entry number

entry no. Name on page
0 _kernel init page 4-286
1 _kernel exit page 4-289
2 _kernel _setreturncode page 4-289
3 _kernel_exittraphandler page 4-290
4 _kernel unwind page 4-289
5 _kernel procname page 4-289
6 _kernel language page 4-289
7 _kernel command _string page 4-289
8 _kernel _hostos page 4-290
9 _kernel_swi page 4-291
10 _kernel_osbyte page 4-292
11 _kernel _osrdch page 4-292
12 _kernel_oswrch page 4-292
13 _kernel osbget page 4-292
14 _kernel _osbput page 4-292
15 _kernel_osgbpb page 4-292
16 _kernel osword page 4-292
17 _kernel osfind page 4-293
18 _kernel osfile page 4-293
19 _kernel osargs page 4-293
20 _kernel oscli page 4-293
21 _kernel last_oserror page 4-290
22 _kernel_system page 4-293
23 _kernel getenv page 4-290
24 _kernel setenv page 4-290
25 _kernel register allocs page 4-294
26 _kernel alloc page 4-294
27 _kernel_stkovf split Oframe page 4-288

4-283

Library kernel functions

4-284

entry no. Name
28 _kernel stkovf split
29 _kernel stkovf copyargs
30 _kernel stkovf copyOargs
31 _kernel udiv
32 _kernel urem
33 _kernel udivl0
34 _kernel sdiv
35 _kernel srem
36 _kernel sdiv10
37 _kernel fpavailable
38 _kernel moduleinit
39 _kernel irgs on
40 _kernel irgs_off
41 _kernel irgs_disabled
42 _kernel entermodule
43 _kernel escape seen
44 _kernel current stack chunk
45 _kernel swi ¢
46 _kernel register slotextend
47 _kernel raise error

Index of library kernel functions by function name

Name

_kernel alloc

_kernel command_string
_kernel current stack chunk
_kernel entermodule
_kernel escape_seen
_kernel exit

_kernel exittraphandler
_kernel fpavailable
_kernel getenv

_kernel hostos

_kernel init

_kernel irqgs_disabled
_kernel irgs_off

_kernel irgs on

_kernel language
_kernel last oserror
_kernel moduleinit

_kernel osargs

entry no.

26
7
44
42
43
1
3
37
23
8
0
41
40
39
6
21
38

19

on page
page 4-288
page 4-288
page 4-288
page 4-294
page 4-295
page 4-295
page 4-295
page 4-295
page 4-295
page 4-290
page 4-287
page 4-291
page 4-291
page 4-291
page 4-287
page 4-290
page 4-288
page 4-291
page 4-294
page 4-290

on page

page 4-294
page 4-289
page 4-288
page 4-287
page 4-290
page 4-289
page 4-290
page 4-290
page 4-290
page 4-290
page 4-286
page 4-291
page 4-291
page 4-291
page 4-289
page 4-290
page 4-287
page 4-293

The shared C library

Name entry no. on page

_kernel osbget 13 page 4-292
_kernel osbput 14 page 4-292
_kernel osbyte 10 page 4-292
_kernel oscli 20 page 4-293
_kernel osfile 18 page 4-293
_kernel osfind 17 page 4-293
_kernel osgbpb 15 page 4-292
_kernel osrdch 11 page 4-292
_kernel osword 16 page 4-292
_kernel oswrch 12 page 4-292
_kernel procname 5 page 4-289
_kernel raise error 47 page 4-290
_kernel register allocs 25 page 4-294
_kernel register slotextend 46 page 4-294
_kernel sdiv 34 page 4-295
_kernel sdiv10 36 page 4-295
_kernel setenv 24 page 4-290
_kernel setreturncode 2 page 4-289
_kernel srem 35 page 4-295
_kernel stkovf copyOargs 30 page 4-288
_kernel stkovf copyargs 29 page 4-288
_kernel stkovf split 28 page 4-288
_kernel stkovf split Oframe 27 page 4-288
_kernel swi 9 page 4-291
_kernel swi ¢ 45 page 4-291
_kernel_system 22 page 4-293
_kernel udiv 31 page 4-294
_kernel udivl0 33 page 4-295
_kernel unwind 4 page 4-289
_kernel urem 32 page 4-295

The following structure is common to all library kernel functions:

typedef struct {

int errnum; /* error number */

char errmess[252];/* error message (zero terminated) */
} _kernel oserror;

4-285

Initialisation functions

Initialisation functions

Entry no. 0: _kernel_init

4-286

On entry

RO = Pointer to kernel init block having the following format
+00: Image base (e.g. the value of the linker symbol Image$$RO$$Base)
+04: pointer to start of language description blocks
+08: pointer to end of language description blocks

R1 =base of root stack chunk (value returned in R1 from LibInitAPCS A or
LibInitAPCS R)

R2 =top of root stack chunk (value returned in R2 from LibInitAPCS A or
LibInitAPCS R)

R3 = 0 for application
1 for module

R4 = end of workspace

On exit

Does not return. Control is regained through the procedure pointer returned in RO by one
of the language initialisation procedures (i.e. control is passed to the run code of the
language).

This call does not obey the APCS. All registers are altered. The APCS_R SL, FP and SP
(R10, R11 and R13) are set up. LR does not contain a valid return address when control
is passed to the run entry.

This function must be called by any client which calls LibInitAPCS A or
LibInitAPCS_R. Modules should call this entry in their run entry.

The words at offsets +04 and +08 from RO describe an area containing at least one
language description block. Any number of language description blocks may be present.
The size field of each block must be the offset to the next language description block.

The command line is copied to an internal buffer at the top of the root stack chunk. To
set a command line call SWI OS_WriteEnv. RISC OS sets up a command line before
running your application or entering your module.

Exit, Error, CallBack, Escape, Event, UpCall, Illegal Instruction, Prefetch Abort, Data
Abort and Address Exception handlers are set up.

Initial default alloc and free procs for use during stack extension are set up. These should
be replaced with your own alloc and free procs as soon as possible.

The kernel’s workspace pointers are initialised to the values contained in R1 and R4.
Note that it is assumed the root stack chunk resides at the base of the workspace area.

The shared C library

A small stack (159 words) for use during stack extension is claimed from the workspace
following R2 (i.e. 159 words are claimed from R2 upwards).

Note: kernel init does not check that there is sufficient space in the workspace to
claim this area. You must ensure there is sufficient space before calling
_kernel init.

The availability of floating point is determined (by calling SWI FPE_Version).

If executing under the desktop the initial wimpslot size is determined by reading the
Application Space handler.

The initialisation for each language is called, then the run code if any is called. If no run
code is present the error No main program is generated.

Entry no. 38: _kernel_moduleinit

On entry

RO = pointer to kernel init block as described in _kernel init on page 4-286
R1 = pointer to base of SVC stack (as returned by SWI LibInitModule)

On exit

This call does not obey the APCS.

It assumes that LR has already been pushed on the stack, and so returns to the address on
top of the stack (ie the address pointed to by SP), rather than to the address contained in
LR on entry. The stack pointer is incremented by 4. See the section entitled Calling the
shared C library from a module on page 4-274 for an example.

On exit SL points to R1 on entry + 560.

RO, R1, R2 and R12 are indeterminate.

The kernel init block is copied for later use. The Image base is ignored.

The functions kernel RMAalloc and kernel RMAfree are established as the default
alloc and free procs for use during stack extension.

You should call this function after calling SWI LibInitModule.

Entry no. 42: _kernel_entermodule

On entry

RO = pointer to kernel init block as described in _kernel init on page 4-286
R6 = requested root stack size

R8 = modules private word pointer

RI2=-1

4-287

Stack management functions

On exit

Does not return.
Control is regained through the procedure pointer returned in RO by one of the language
initialisation procedures.

The private word must point to the module workspace word which must contain the
application base, the shared library static offset, and the client static offset in words 0, 1
and 2 (the application base is ignored for modules).

After claiming workspace from the application space and claiming a root stack from this
_kernel entermodule calls kernel init.

Stack management functions

Entry no. 27: _kernel_stkovf_split_0frame

This function is described in the section entitled How the run-time stack is managed and
extended on page 4-251.

Entry no. 28: _kernel_stkovf_split

This function is described in the section entitled How the run-time stack is managed and
extended on page 4-251.

Entry no. 29: _kernel_stkovf_copyargs

This function is described in the section entitled How the run-time stack is managed and
extended on page 4-251.

Entry no. 30: _kernel_stkovf_copy0Qargs

This function is described in the section entitled How the run-time stack is managed and
extended on page 4-251.

typedef struct stack chunk {
unsigned long sc_mark; /* == 0xf60690ff */
struct stack chunk *sc_next, *sc_prev;
unsigned long sc_size;
int (*sc_deallocate)()

} _kernel stack chunk;

Entry no. 44: _kernel_stack_chunk *_kernel_current_stack_chunk(void)

Returns a pointer to the current stack chunk.

4-288

The shared C library

typedef struct {

intr4, r5, 16, 7, 18, 19;

int fp, sp, pc, sl;

int f4[3], 5[3], f6[3], f7[3];
} kernel unwindblock;

Entry no. 4: int _kernel_unwind(_kernel_unwindblock *inout,
char **language)

Unwinds the call stack one level. Returns:

>0 if it succeeds

0 ifit fails because it has reached the stack end or
<0 ifit fails for any other reason (e.g. stack corrupt)

Input values for fp, s/ and pc must be correct. r4-r9 and f4-f7 are updated if the frame
addressed by the input value of fp contains saved values for the corresponding registers.

1, sp, sl and pc are always updated, the word pointed to by language is updated to point
to a string naming the language corresponding to the returned value of pc.

Program environment functions

Entry no. 5: char *_kernel_procname(int pc)

Returns a string naming the procedure containing the address pc (or 0 if no name for it
can be found).

Entry no. 6: char *_kernel_language(int pc)

Returns a string naming the language in whose code the address pc lies (or 0 if it is in no
known language).

Entry no. 7: char *_kernel_command_string(void)

Returns a pointer to a copy of the command string used to run the program.

Entry no. 2: void _kernel_setreturncode(unsigned code)

Sets the return code to be used by _kernel exit.
Entry no. 1: void _kernel_exit(void)

Calls OS_Exit with the return code specified by a previous call to
_kernel setreturncode.

4-289

Program environment functions

4-290

Entry no. 47: void _kernel_raise_error(_kernel_oserror *)

Generates an external error.

Entry no. 3: void _kernel_exittraphandler(void)

Resets the InTrapHandler flag which prevents recursive traps. Used in trap handlers
which do not return directly but continue execution. For example, the longjmp function
in the C library calls _kernel exittraphandler if called from within a signal handler.

Entry no. 8: int _kernel_hostos(void)

Returns 6 for RISC OS.
(Returns the result of calling OS_Byte with RO =0 and R1 =1.)

Entry no. 37: int _kernel_fpavailable(void)

Returns non-zero if floating point is available.

Entry no. 21: _kernel_oserror *_kernel_last_oserror(void)

Returns a pointer to an error block describing the last OS error since
_kernel last oserror was last called (or since the program started if there has been no
such call). If there has been no OS error it returns 0. Note that occurrence of a further
error may overwrite the contents of the block. This can be used, for example, to
determine the error which caused fopen to fail. If kernel swi caused the last OS error,
the error already returned by that call gets returned by this too.

Entry no. 23: _kernel_oserror *_kernel_getenv(const char *name, char
*buffer, unsigned size)

Reads the value of a system variable, placing the value string in the buffer (of size size).

Entry no. 24: _kernel_oserror *_kernel_setenv(const char *name,const
char *value)

Updates the value of a system variable to be string valued, with the given value (value =
0 deletes the variable).

Entry no. 43: int _kernel_escape_seen(void)

Returns 1 if there has been an escape since the previous call of _kernel escape seen (or
since the program start if there has been no previous call). Escapes are never ignored
with this mechanism, whereas they may be with the language EventProc mechanism
since there may be no stack to call the EventProc on.

The shared C library

Entry no. 39: void _kernel_irqs_on(void)

Enable interrupts. You should not disable interrupts unless absolutely necessary. If you
disable interrupts you should re-enable them as soon as possible (preferably within
10uS).

This function can only be used from code running in SVC mode.

Entry no. 40: void _kernel_irqs_off(void)

Disable IRQ interrupts. You should not disable interrupts unless absolutely necessary. If
you disable interrupts you should re-enable them as soon as possible (preferably within
10uS).

This function can only be used from code running in SVC mode.

Entry no. 41: int _kernel_irqs_disabled(void)

Returns non-zero if IRQ interrupts are disabled.

General utility functions

typedef struct {
int r[10]; /* only 10 - r9 matter for swi’s */
} _kernel swi_regs;

Entry no. 9: _kernel_oserror *_kernel_swi(int no, _kernel_swi_regs *in,
_kernel_swi_regs *out)

Call the SWI specified by no. The X bit is set by _kernel swi unless bit 31 of the SWI
no (in no) is set. in and out are pointers to blocks for RO - R9 on entry to and exit from
the SWI.

Returns a pointer to an error block if an error occurred, otherwise 0.

Entry no. 45: _kernel_oserror *_kernel_swi_c(int no, _kernel_swi_regs *in,
_kernel_swi_regs *out, int *carry)

Similar to _kernel swi but returns the status of the carry flag on exit from the SWI in the
word pointed to by carry.

4-291

General utility functions

Entry no. 10: int _kernel_osbyte(int op, int x, int y)

Performs an OS_Byte operation. If there is no error, the result contains:
the return value of R1 (x) in its bottom byte

the return value of R2 (y) in its second byte

1 in the third byte if carry is set on return, otherwise 0

0 in its top byte

Note that some OS_Byte calls return values too great too fit in a single byte.

Entry no. 11: int _kernel_osrdch(void)

Returns a character read from the currently selected OS input stream.

Entry no. 12: int _kernel_oswrch(int ch)

Writes a byte to all currently selected OS output streams. The return value just indicates
success or failure.

Entry no. 13: int _kernel_osbget(unsigned handle);
Returns the next byte from the file identified by handle. (-1 =EOF)

Entry no. 14: int _kernel_osbput(int ch, unsigned handle)

Writes a byte to the file identified by sandle. The return value just indicates success or
failure.

typedef struct {
void * dataptr; /* memory address of data */
int nbytes, fileptr;
int buf len; /* these fields for RISC OS gpbp extensions */
char * wild_fld; /* points to wildcarded filename to match */
} _kernel osgbpb_block;

Entry no. 15: int _kernel_osgbpb(int op, unsigned handle,
_kernel_osgbpb_block *inout);
Reads or writes a number of bytes from a filing system. The return value just indicates
success or failure. Note that for some operations, the return value of C is significant, and

for others it isn’t. In all cases, therefore, a return value of —1 is possible, but for some
operations it should be ignored.

Entry no. 16: int _kernel_osword(int op, int *data)

Performs an OS_Word operation. The size and format of the block pointed to by data
depends on the particular OS_Word being used; it may be updated.

4-292

The shared C library

Entry no. 17: int _kernel_osfind(int op, char *name)

Opens or closes a file. Open returns a file handle (0 = open failed without error). For
close the return value just indicates success or failure.

typedef struct {

int load, exec; /* load, exec addresses */

int start, end; /* start address/length, end address/attributes */
+ _kernel osfile block;

Entry no. 18: int _kernel_osfile(int op, const char *name,
_kernel_osfile_block *inout)

Performs an OS_File operation, with values of R2 - R5 taken from the osfile block. The
block is updated with the return values of these registers, and the result is the return
value of RO (or an error indication).

Entry no. 19: int _kernel_osargs(int op, unsigned handle, int arg)

Performs an OS_ Args operation. The result is the current filing system number (if op =
0) otherwise the value returned in R2 by the OS_Args operation.

Entry no. 20: int _kernel_oscli(char *s)

Calls OS_CLI with the specified string. If used to run another application the current
application will be closed down. If you wish to return to the current application use
_kernel system. Any return value indicates an error in _kernel oscli itself.

Entry no. 22: int _kernel_system(char *string, int chain)

Calls OS_CLI with the specified string. If chain is 0, the current application is copied to
the top of memory first, then handlers are installed so that if the command string causes
an application to be invoked, control returns to _kernel system, which then copies the
calling application back into its proper place. Hence the command is executed as a
sub-program. If chain is 1, all handlers are removed before calling the CLI, and if it
returns (the command is built-in) kernel system exits. Any return value indicates an
error in _kernel system itself.

4-293

Memory allocation functions

Memory allocation functions

Entry no. 26: unsigned _kernel_alloc(unsigned words, void **block)

Tries to allocate a block of size = words words. Failing that, it allocates the largest
possible block (may be size zero). If words is <2048 it is rounded up to 2048. Returns a
pointer to the allocated block in the word pointed to by block. The return value gives the
size of the allocated block.

typedef void freeproc(void *);
typedef void * allocproc(unsigned);

Entry no. 25: void _kernel_register_allocs(allocproc *malloc, freeproc
*free)

Registers procedures to be used by the kernel when it requires to free or allocate storage.
Currently this is only used to allocate and free stack chunks. Since allocproc and
freeproc are called during stack extension, they must not check for stack overflow
themselves or call any procedure which does stack checking and must guarantee to
require no more than 41 words of stack.

The kernel provides default alloc and free procedures, however you should replace these
with your own procedures since the default procedures are rather naive.

typedef int _kernel ExtendProc(int /*n*/, void** /*p*/);

Entry no. 46: _kernel_ExtendProc *_kernel_register_slotextend
(_kernel_ExtendProc *proc)

When the initial heap (supplied to _kernel init) is full, the kernel is normally capable of
extending it by extending the wimpslot. However, if the heap limit is not the same as the
application limit, it is assumed that someone else has acquired the space between, and
the procedure registered here is called to request n bytes from it.

Its return value is expected to be > n, or 0 to indicate failure. If successful the word
pointed to by p should be set to point to the space allocated.

Language support functions

Entry no. 31: unsigned _kernel_udiv(unsigned divisor, unsigned dividend);

Divide and remainder function, returns the remainder in R1.

4-294

The shared C library

Entry no. 32: unsigned _kernel_urem(unsigned divisor, unsigned
dividend);

Remainder function.

Entry no. 33: unsigned _kernel_udiv10(unsigned dividend);

Divide and remainder function, returns the remainder in R1.

Entry no. 34: int _kernel_sdiv(int divisor, int dividend);

Signed divide and remainder function, returns the remainder in R1.

Entry no. 35: int _kernel_srem(int divisor, int dividend);

Signed remainder function.

Entry no. 36: int _kernel_sdiv10(int dividend);

Signed divide and remainder function, returns the remainder in R1.

4-295

C library functions

C library functions

The C library functions are grouped under the following headings:

e Language support functions
Provides functions for trap and event handling, initialisation and finalisation, and
mathematical routines such as number conversion and multiplication.

. assert

The assert module provides one function which is useful during program testing.

e cChpe
The ctype module provides several functions useful for testing and mapping
characters.

e errmo

The word variable __errno at offset 800 in the library statics is set whenever certain
error conditions arises.
e locale

This module handles national characteristics, such as the different orderings
month-day-year (USA) and day-month-year (UK).

o math
This module contains the prototypes for 22 mathematical functions. All return the
type double.

e setjmp

This module provides two functions for bypassing the normal function call and
return discipline.

o signal
Signal provides two functions.
o stdio
stdio provides many functions for performing input and output.
o stdlib
stdlib provides several general purpose functions.
o String

string provides several functions useful for manipulating character arrays and other
objects treated as character arrays.

o time
time provides several functions for manipulating time.

4-296

The shared C library

Index of C library functions by entry number

entry no. name on page

0 trapHandler page 4-306

1 uncaughtTrapHandler page 4-306

2 eventHandler page 4-307

3 unhandledEventHandler page 4-307

4 x$stack overflow page 4-308

5 x$stack overflow 1 page 4-308

6 x$udivide page 4-308

7 x$uremainder page 4-308

8 x$divide page 4-308

9 x$divtest page 4-308
10 x$remainder page 4-308
11 x$multiply page 4-308
12 _rdlchk page 4-309
13 _rd2chk page 4-309
14 _rd4chk page 4-309
15 _wrlchk page 4-309
16 _wr2chk page 4-309
17 _wrdchk page 4-309
18 _main page 4-309
19 _exit page 4-310
20 _clib_initialise page 4-310
21 _backtrace page 4-311
22 _count page 4-311
23 _countl page 4-311
24 _stfp page 4-311
25 _ldfp page 4-311
26 _printf page 4-326
27 _fprintf page 4-327
28 _sprintf page 4-327
29 clock page 4-348
30 difftime page 4-348
31 mktime page 4-348
32 time page 4-349
33 asctime page 4-349
34 ctime page 4-349
35 gmtime page 4-349
36 localtime page 4-349
37 strftime page 4-349
38 memcpy page 4-343
39 memmove page 4-343

4-297

C library functions

4-298

entry no.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

name

strepy
strncpy
strcat
strncat
memcmp
stremp
strncmp
memchr
strchr
strespn
strpbrk
strrchr
strspn
strstr
strtok
memset
strerror
strlen
atof
atoi
atol
strtod
strtol
strtoul
rand
srand
calloc
free
malloc
realloc
abort
atexit
exit
getenv
system
bsearch
gsort
abs

div

labs

on page
page 4-343
page 4-343
page 4-344
page 4-344
page 4-344
page 4-344
page 4-344
page 4-345
page 4-345
page 4-345
page 4-346
page 4-346
page 4-346
page 4-346
page 4-346
page 4-347
page 4-347
page 4-347
page 4-335
page 4-335
page 4-335
page 4-335
page 4-335
page 4-336
page 4-337
page 4-337
page 4-337
page 4-337
page 4-337
page 4-337
page 4-338
page 4-338
page 4-338
page 4-338
page 4-339
page 4-339
page 4-339
page 4-340
page 4-340
page 4-340

The shared C library

entry no. name on page
80 1div page 4-340
81 remove page 4-322
82 rename page 4-322
83 tmpfile page 4-322
84 _old tmpnam page 4-323
85 fclose page 4-323
86 fflush page 4-323
87 fopen page 4-323
88 freopen page 4-324
89 setbuf page 4-324
90 setvbuf page 4-325
91 printf page 4-326
92 fprintf page 4-325
93 sprintf page 4-326
94 scanf page 4-328
95 fscanf page 4-327
96 sscanf page 4-328
97 vprintf page 4-328
98 viprintf page 4-329
99 vsprintf page 4-329
100 _vprintf page 4-327
101 fgetc page 4-329
102 fgets page 4-329
103 fputc page 4-329
104 fputs page 4-330
105 __filbuf page 4-334
106 getc page 4-330
107 getchar page 4-330
108 gets page 4-330
109 __flsbuf page 4-334
110 putc page 4-330
111 putchar page 4-331
112 puts page 4-331
113 ungetc page 4-331
114 fread page 4-331
115 fwrite page 4-332
116 fgetpos page 4-332
117 fseek page 4-332
118 fsetpos page 4-333
119 ftell page 4-333
120 rewind page 4-333
121 clearerr page 4-333

4-299

C library functions

4-300

entry no.
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

name
feof
ferror
perror
__ignore_signal handler
__error_signal marker
__default_signal handler
signal
raise
setjmp
longjmp
acos
asin
atan
atan2
cos

sin

tan

cosh
sinh
tanh

exp
frexp
ldexp
log
log10
modf
pow

sqrt

ceil

fabs
floor
fmod
setlocale
isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace

on page
page 4-333
page 4-334
page 4-334
page 4-321
page 4-321
page 4-321
page 4-319
page 4-320
page 4-319
page 4-319
page 4-317
page 4-317
page 4-317
page 4-317
page 4-317
page 4-317
page 4-317
page 4-317
page 4-317
page 4-317
page 4-317
page 4-318
page 4-318
page 4-318
page 4-318
page 4-318
page 4-318
page 4-318
page 4-318
page 4-318
page 4-318
page 4-318
page 4-316
page 4-313
page 4-313
page 4-313
page 4-313
page 4-313
page 4-313
page 4-314
page 4-314
page 4-314

The shared C library

entry no. name on page
164 isupper page 4-314
165 isxdigit page 4-314
166 tolower page 4-314
167 toupper page 4-314
168 __assert page 4-313
169 _memcpy page 4-312
170 _memset page 4-312
171 localeconv page 4-316
172 mblen page 4-341
173 mbtowc page 4-341
174 wctomb page 4-341
175 mbstowcs page 4-342
176 wcstombs page 4-342
177 strxfrm page 4-345
178 strcoll page 4-344
179 _clib_finalisemodule page 4-312
180 _clib_version page 4-312
181 finalise page 4-312
182 tmpnam page 4-322
error condition EDOM page 4-315
error condition ERANGE page 4-315
error condition ESIGNUM page 4-315

Index of C library functions by function name

name entry no. on page

abort 70 page 4-338
abs 77 page 4-340
acos 132 page 4-317
asctime 33 page 4-349
asin 133 page 4-317
__assert 168 page 4-313
atan 134 page 4-317
atan2 135 page 4-317
atexit 71 page 4-338
atof 58 page 4-335
atoi 59 page 4-335
atol 60 page 4-335
_backtrace 21 page 4-311
bsearch 75 page 4-339
calloc 66 page 4-337
ceil 150 page 4-318

4-301

C library functions

4-302

name

clearerr
_clib_finalisemodule
_clib_initialise
_clib_version
clock

cos

cosh

_count
_countl
ctime
__default_signal handler
difftime

div
__error_signal marker
eventHandler
exit

_exit

exp

fabs

fclose

feof

ferror

fflush

fgetc

fgetpos

fgets

_ filbuf
finalise

floor
__flsbuf
fmod

fopen

fprintf
_fprintf

fputc

fputs

fread

free

freopen

frexp

fscanf

fseek

entry no.

121
179
20
180
29
136
139
22
23
34
127
30
78
126
2
72
19
142
151
85
122
123
86
101
116
102
105
181
152
109
153
87
92
27
103
104
114
67
88
143
95
117

on page
page 4-333
page 4-312
page 4-310
page 4-312
page 4-348
page 4-317
page 4-317
page 4-311
page 4-311
page 4-349
page 4-321
page 4-348
page 4-340
page 4-321
page 4-307
page 4-338
page 4-310
page 4-317
page 4-318
page 4-323
page 4-333
page 4-334
page 4-323
page 4-329
page 4-332
page 4-329
page 4-334
page 4-312
page 4-318
page 4-334
page 4-318
page 4-323
page 4-325
page 4-327
page 4-329
page 4-330
page 4-331
page 4-337
page 4-324
page 4-318
page 4-327
page 4-332

The shared C library

name entry no. on page

fsetpos 118 page 4-333
ftell 119 page 4-333
fwrite 115 page 4-332
getc 106 page 4-330
getchar 107 page 4-330
getenv 73 page 4-338
gets 108 page 4-330
gmtime 35 page 4-349
__ignore_signal handler 125 page 4-321
isalnum 155 page 4-313
isalpha 156 page 4-313
isentrl 157 page 4-313
isdigit 158 page 4-313
isgraph 159 page 4-313
islower 160 page 4-313
isprint 161 page 4-314
ispunct 162 page 4-314
isspace 163 page 4-314
isupper 164 page 4-314
isxdigit 165 page 4-314
labs 79 page 4-340
localeconv 171 page 4-316
ldexp 144 page 4-318
_1dfp 25 page 4-311
1div 80 page 4-340
localtime 36 page 4-349
log 145 page 4-318
logl0 146 page 4-318
longjmp 131 page 4-319
_main 18 page 4-309
malloc 68 page 4-337
mblen 172 page 4-341
mbstowcs 175 page 4-342
mbtowc 173 page 4-341
memchr 47 page 4-345
mememp 44 page 4-344
memcpy 38 page 4-343
_memcpy 169 page 4-312
memmove 39 page 4-343
memset 55 page 4-347
_memset 170 page 4-312
mktime 31 page 4-348

4-303

C library functions

4-304

name

modf
_old_tmpnam
perror
pow
printf
_printf
putc
putchar
puts
gsort
raise
rand
_rdlchk
_rd2chk
_rd4chk
realloc
remove
rename
rewind
scanf
setbuf
setjmp
setlocale
setvbuf
signal
sin

sinh
sprintf
_sprintf
sqrt
srand
sscanf
_stfp
strcat
strchr
stremp
strcoll
strepy
strespn
strerror
strftime
strlen

entry no.
147
84
124
148
91
26
110
111
112
76
129
64
12
13
14
69
81
82
120
94
89
130
154
90
128
137
140
93
28
149
65
96
24
42
48
45
178
40

56
37
57

on page
page 4-318
page 4-323
page 4-334
page 4-318
page 4-326
page 4-326
page 4-330
page 4-331
page 4-331
page 4-339
page 4-320
page 4-337
page 4-309
page 4-309
page 4-309
page 4-337
page 4-322
page 4-322
page 4-333
page 4-328
page 4-324
page 4-319
page 4-316
page 4-325
page 4-319
page 4-317
page 4-317
page 4-326
page 4-327
page 4-318
page 4-337
page 4-328
page 4-311
page 4-344
page 4-345
page 4-344
page 4-344
page 4-343
page 4-345
page 4-347
page 4-349
page 4-347

The shared C library

name entry no. on page

strncat 43 page 4-344
strncmp 46 page 4-344
strncpy 41 page 4-343
strpbrk 50 page 4-346
strrchr 51 page 4-346
strspn 52 page 4-346
strstr 53 page 4-346
strtod 61 page 4-335
strtok 54 page 4-346
strtol 62 page 4-335
strtoul 63 page 4-336
strxfrm 177 page 4-345
system 74 page 4-339
tan 138 page 4-317
tanh 141 page 4-317
time 32 page 4-349
tmpfile 83 page 4-322
tmpnam 182 page 4-322
tolower 166 page 4-314
toupper 167 page 4-314
trapHandler 0 page 4-306
uncaughtTrapHandler 1 page 4-306
ungetc 113 page 4-331
unhandledEventHandler 3 page 4-307
viprintf 98 page 4-329
vprintf 97 page 4-328
_vprintf 100 page 4-327
vsprintf 99 page 4-329
wcestombs 176 page 4-342
wctomb 174 page 4-341
_wrlchk 15 page 4-309
_wr2chk 16 page 4-309
_wrdchk 17 page 4-309
x$divide 8 page 4-308
x$divtest 9 page 4-308
x$multiply 11 page 4-308
x$remainder 10 page 4-308
x$stack overflow 4 page 4-308
x$stack overflow 1 5 page 4-308
x$udivide 6 page 4-308
x$uremainder 7 page 4-308

4-305

Language support functions

Language support functions
Entry no. 0: TrapHandler

Entry no. 1: UncaughtTrapHandler

On entry:

RO = error code

R1 = pointer to register dump

On exit:

Only exits if the trap was not handled

RO = 0 (indicating that the trap was not handled).

These are the default TrapProc and UncaughtTrapProc handlers used by the C library in
its kernel language description (see the section entitled Interfacing a language run-time
system to the Acorn library kernel on page 4-250).

You may use these entries in your own kernel language description if you wish to have
trap handling similar to that provided by the C library, or you may call these entries
directly from your own trap handler if you wish to perform some pre-processing before
passing the trap on.

The error code on entry is converted to a signal number as follows:

Signal no. Error codes
2 (SIGFPE) &80000020 (Error_DivideByZero),
&80000200 (Error FPBase) — &800002FF (Error FPLimit — 1)
3 (SIGILL) &80000000 (Error_Illegallnstruction),

&80000001 (Error PrefetchAbort),
&80000005 (Error BranchThroughZero)

5 (SIGSEGV) &80000002 (Error DataAbort),
&80000003 (Error AddressException),
&80800EAO (Error ReadFail),
&80800EA1 (Error WriteFail)

7 (SIGSTAK) &80000021 (Error_StackOverflow)

10 (SIGOSERROR) All other errors

It then determines whether a signal handler has been set up for the converted signal
handler; if no such handler has been set up (ie the signal handleris setto SIG DFL) it
returns with RO = 0.

4-306

The shared C library

Otherwise it calls the C library function raise with the derived signal number. If the raise
function returns (ie the signal handler returns) a postmortem stack backtrace is
generated.

Entry no. 2: EventHandler

Entry no. 3: UnhandledEventHandler

On entry:

RO = event code
R1 = pointer to register dump

On exit:
RO =1 if the event was handled, else 0

These are the default EventProc and UnhandledEventProc handlers used by the
C library in its kernel language description (see the section entitled Interfacing a
language run-time system to the Acorn library kernel on page 4-250).

You may use these entries in your own kernel language description if you wish to have
event handling similar to that provided by the C library or you may call these entries
directly from your own event handler if you wish to perform some pre-processing before
passing the event on.

The event code on entry is either a RISC OS event number as described in the chapter
entitled Events on page 1-147, or —1 to indicate an escape event.

All events codes except —1 are currently ignored. The handler simply returns with RO =
0 if RO # —1 on entry.

EventHandler then determines whether a SIGINT signal handler has been set up. If no
handler is set up (ie the signal handler is set to _ SIG_DFL) EventHandler returns with
RO =0.

The C library function raise is then called with the signal number SIGINT. Note: raise is
always called by UnhandledEventHandler even if the signal handler is set to
__ SIG_DFL.

If the signal handler returns the event handler returns with RO = 1.

Certain sections of the C library are non-reentrant. When these sections are entered they
set the variable _interrupts off at offset 964 in the library statics to 1.

EventHandler and UnhandledEventHandler check this variable and, if it is set, they set
the variable saved interrupt at offset 968 in the library statics to SIGINT and return
immediately with RO = 1 and without calling raise.

4-307

Language support functions

4-308

When the non-reentrant sections of code finish they reset the variable _interrupts off
and check the variable saved_interrupts. If saved interrupts is non-zero it is reset to
zero and the signal number stored in _saved_interrupts (before it was reset to 0) is
raised.

Entry no. 4: x$stack_overflow

This entry branches directly to _kernel stkovf split Oframe which is described in the
section entitled How the run-time stack is managed and extended on page 4-251.

Entry no. 5: x$stack_overflow_1

This entry branches directly to _kernel stkovf split which is described in the section
entitled How the run-time stack is managed and extended on page 4-251.

Entry no. 6: x$udivide
This entry branches directly to _kernel udiv described on page 4-294.

Entry no. 7: x$uremainder
This entry branches directly to _kernel urem described on page 4-295.

Entry no. 8: x$divide
This entry branches directly to kernel sdiv described on page 4-295.

Entry no. 9: x$divtest

This function is used by the C compiler to test for division by zero when the result of the
division is discarded.

If RO is non-zero the function simply returns. Otherwise it generates a Divide by zero
error.

Entry no. 10: x$remainder
This entry branches directly to _kernel srem described on page 4-295.

Entry no. 11: x$multiply

On entry:

RO = multiplicand
R1 = multiplier

The shared C library

On exit:

RO=RO x R1
R1, R2 scrambled.

Entry no. 12: _rd1chk

Entry no. 13: _rd2chk

Entry no. 14: _rd4chk

The functions _rdlchk, rd2chk and rd4chk check that the value of RO passed to them
is a valid address in the application space (&8000 < R0 < &1000000). rd2chk and
_rd4chk also check that the value is properly aligned for a half-word / word access
respectively.

If the value of RO is a valid address the function just returns, otherwise it generates an
Illegal read error.

These calls are used by the C compiler when compiling with memory checking enabled.

Entry no. 15: _wrichk

Entry no. 16: _wr2chk

Entry no. 17: _wr4chk

The functions _wrlchk, wr2chkand wrdchk check that the value of RO passed to them
is a valid address in the application space (&8000 < R0 < &1000000). rd2chk and
_rd4chk also check that the value is properly aligned for